CN1232446C - 一种纳米金属-膜复合电极催化还原的水处理方法 - Google Patents

一种纳米金属-膜复合电极催化还原的水处理方法 Download PDF

Info

Publication number
CN1232446C
CN1232446C CN 02155454 CN02155454A CN1232446C CN 1232446 C CN1232446 C CN 1232446C CN 02155454 CN02155454 CN 02155454 CN 02155454 A CN02155454 A CN 02155454A CN 1232446 C CN1232446 C CN 1232446C
Authority
CN
China
Prior art keywords
water
composite electrode
cathode
nano metal
proton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 02155454
Other languages
English (en)
Other versions
CN1508074A (zh
Inventor
范彬
范经华
栾兆坤
贾智萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN 02155454 priority Critical patent/CN1232446C/zh
Publication of CN1508074A publication Critical patent/CN1508074A/zh
Application granted granted Critical
Publication of CN1232446C publication Critical patent/CN1232446C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

本发明提出了一种纳米金属-膜复合电极催化还原的水处理方法。将一种贵金属如钯、铂、钌、铱等的纳米粒子,或者一种上述贵金属和一种过渡族金属如铜、锡、铅、锌、铁等的合金的纳米粒子,固定在质子交换膜的一侧作为阴极,将惰性导体材料如活性炭、氧化钌、氧化铅等固定在质子交换膜的另一侧作为阳极,形成纳米金属-质子膜复合电极。在通电的情况下,阴极可以将水中的氧化态污染物如硝酸盐、卤代有机物等还原脱除。本发明具有快速、高效脱除水中氧化态污染物的优点,反应过程洁净并易于实现自动化运行。

Description

一种纳米金属-膜复合电极催化还原的水处理方法
(一)技术领域
本发明涉及一种通过还原法去除饮用水或废水中氧化态污染物的方法,具体是一种将纳米电催化材料固定在质子交换膜材料上形成复合电极,进而形成电化学反应器,在通电的情况下阴极发生还原反应,将水中的氧化态污染物还原脱除的方法和装置。
(二)技术背景
污染水的化学物质中有一大类属于氧化态物质,比较常见的如硝态氮(硝酸盐和亚硝酸盐等)、卤代有机物等等。这些污染物质有的是必须通过还原的方法才能彻底消除,如硝态氮;有的是最好通过还原法破坏其中的难降解性或有毒性的基团,使其无害化或者使还原后的产物更容易通过生化反应等方法进一步去除,这样的物质如卤代有机物。
硝酸盐是目前地下水中最常见的污染物之一,在一些地表水或工业污水中也可能存在。我国地下水等水体中硝酸盐的污染尤其严重。摄入过多的硝酸盐对人体和动物的健康都有很多害处。目前去除水中硝酸盐的方法主要有物理化学分离法、生物反硝化法和化学还原法。物理化学分离法是将原水中的硝酸盐浓缩到废水中的方法,因此这不是彻底消除污染的方法,在应用中受到很多限制。生物反硝化方法通过生物的还原作用使硝态氮转化为氮气,是目前主要的脱硝方法,并且曾被认为是最有前景的脱硝方法。但生物法存在基质和细菌等对出水的二次污染问题,并且对运行管理的要求较高,尤其不适合中小型水处理。化学还原法是近年来才发展出来的一类脱硝方法,主要有电化学还原法、金属单质还原法和氢催化还原法。(见“范彬,曲久辉,刘锁祥,孟光辉.饮用水中硝酸盐的脱除.环境污染治理技术与设备,2000,1(3):44.”和“范彬,黄霞.化学反硝化法脱除地下水中的硝酸盐.中国给水排水,2001,17(11):27.”)目前化学还原法虽未开始进入大规模实用,但这方面的专利和研究论文增长的速度很快。
水中的卤代有机物属于最危险的污染物质,这些物质往往具有“三致”性。目前世界上公认的12类持久性有机污染物都是卤代有机物。出现在水体中的卤代有机物既可能源于化工三废、农药等,还可源自于饮用水氯消毒法的副产物。水中的卤代有机物的去除方法与硝酸盐的去除方法有些相似,也主要是物理化学分离法、生物法和化学法等。与脱硝一样,卤代有机物也只有通过生化的或化学的方法才能彻底消除。由于这类物质往往都很难生物降解或者对微生物有毒性作用,因此生物法的应用有很多局限性。化学脱卤可以分为氧化脱卤和还原脱卤两类。通过一些高级氧化法虽可将一些卤代有机物降解,但卤取代基本身处于较高的氧化态,并且很多卤代有机物的化学性质都很稳定,所以去除的效果并很理想。通过加氢还原的方法是一种脱卤的捷径。氢可以将卤代有机物上的卤原子取代下来,一方面可以消除或降低毒性,另一方面失去卤原子的有机物也更容易为其他方法(如生物法)降解。因此近年来化学还原脱卤的专利和研究论文增加很快。
以氢气作为还原剂在有催化剂存在的情况下可以将水中的多种氧化态污染物还原脱除,并且氢气是一种洁净的还原剂,可以避免对水的二次污染,因此成为化学还原水处理方法的首选还原剂。但氢气在水中的溶解度极低,并且易燃易爆,在应用时有诸多不便。另外在反应中一般都需要精确控制反应微环境中的pH,但受扩散传质效果的限制,采用常规的负载催化剂的方法很难实现这一目的。这是现有的加氢催化还原法难以开展大规模应用的主要原因之一。为此,本发明提出一种纳米-膜电极催化还原的水处理技术其装置。
(三)发明内容
本发明的目的是:克服现有方法的缺陷,将电化学技术、纳米电催化技术、质子膜复合电极技术集成在一起,建立一种安全高效的还原法水处理方法和装置,用于脱除饮用水或废水中的硝酸盐、卤代有机物、重金属离子、偶氮有机物等氧化态污染物。
本发明的方法如下:
将一种贵金属如钯、铂、金、钌、铱等的纳米粒子,或者将含有上述贵金属和另外一种过渡金属如铜、锡、锌、铅、铁等的纳米粒子,固定在质子交换膜的一侧,将此侧作为阴极。所采用的纳米粒子的粒度为1~30nm,推荐采用粒度为2~7nm的粒子。将具有惰性导电材料如活性炭材料、氧化钌材料、氧化铅材料固定在质子交换膜的另一侧,并将此侧作为阳极。质子膜具有质子导电性。将上述的质子膜复合电极安装在反应容器中构成纳米金属-质子膜复合电极电催化还原反应器。质子膜复合电极将反应器分隔成阴极区和阳极区。被处理的水从阴极区通过,同时在阳极区也注入水。在通电的情况下,阴极区发生电催化还原反应,将水中的氧化态污染物还原。阳极区发生水的电解,产生氧气排出。
(四)附图说明
本发明的反应器如附图所示。纳米金属-质子膜复合电极电催化还原反应器1由反应容器4、纳米金属-质子膜复合电极5以及进出水口3、7、8、10组成。图2是质子膜复合电极5的放大示意图。质子膜复合电极5由片状质子交换膜11、电流收集板13和16、纳米金属14、惰性阳极材料15、阴极接线柱12和阳极接线柱17按图2所示的方式组合而成。阴极电流收集板13和阳极电流收集板16为具有透水性的导电材料,可以选择纸状的碳纤维材料。将纳米金属14以-薄层固定在阴极电流收集板13上,将13固定在质子交换膜11的一侧,将阴极电流收集板13与阴极接线柱12相连接,形成纳米-膜复合电极的阴极。将惰性导阳极材料15以薄层固定在阳极电流收集板16上,将16固定在质子交换膜11的另一侧,并将阳极电流收集板16与阳极接线柱17相连,形成纳米金属-质子膜膜复合电极的阳极。纳米金属-质子膜复合电极5安装在反应容器4中,将反应容器4分隔成阴极区6和阳极区9。将反应器1按图示方式接通直流电源。被处理的水由阴极区进水口3给入,在阴极区发生催化还原反应后,由阴极区出水口7流出。为了保证反应的顺利进行,在阳极区也通入洁净的水,水由阳极区进水口注入,由阳极区出水口流出。根据具体情况,阳极区的进水可采用阴极区的出水。
本发明的特点是:
(1)电子是一种最洁净的还原剂,采用电化学方法在反应过程中无须投加任何药剂,可以避免对出水的二次污染问题。同时有利于将整个系统设计成全自动运行的模式,操作管理十分简便。
(2)质子交换膜具有很强的质子导电性,一方面有利于提高电流密度、加快反应速度;另一方面质子可以迅速从阳极传递到阴极,对精确控制纳米合金表面微环境中的pH十分有利,这一点对于提高催化反应的选择性非常重要。
(3)质子交换膜复合电极高度集成,两极间的距离很小(<5mm),不仅有利于提高反应的电流效率,还使反应器更加紧凑,时空效率更高。通过质子交换膜复合电极还可方便地将反应器分隔成阴极区和阳极区,有利于在阴极区形成还原性环境。
(4)电极过程和异相催化过程都对材料的表面特性十分敏感,纳米合金将这两个过程集成在同一个纳米表面,可以使催化还原的过程和电化学的过程发生质的改善,提高主反应的速度并减少副反应的速度。
(五)具体实施方式
实施例一:
反应器阴极区的有效容积5L,电极面积400cm2(阴极面积等于阳极面积)。
采用一种2~5nm的钯/铜合金(Pd0.25Cu0.75)颗粒作为阴极反应的电极催化剂,单位面积阴极上的载钯为0.025mg/cm2
应用本发明的装置处理含硝酸盐的水,进水硝酸盐氮的浓度为31mg/L,进水pH=6.9,水温10℃。
反应器的输入电压为2.1V,反应器输入电流强度为8.9A。反应器的水力停留时间为10min。
处理效果:
出水硝酸盐氮的浓度为2.85mg/L,出水中亚硝酸盐氮的浓度为0.13mg/L,出水中NH3-N的浓度为0.08mg/L。
根据上述运行参数和处理效果计算:
(1)总脱硝率为90.39%。
(2)单位面积纳米-质子膜复合电极的脱硝速度为2.10mgNO3 --N/(cm2·h)。
(3)纳米电极催化剂的催化活性为84mgNO3 --N/(mgPd·h),将硝酸盐氮转化为氮气的催化选择性为99.25%。
(4)反应的电流效率为91%。
(5)以输入的电流电压计,脱除硝酸盐氮的电能消耗为19KWh/(kgNO3 --N),处理水的电能消耗为0.623KWh/m3
实施例二:处理含四氯化碳的水
反应器阴极区的有效容积5L,电极面积400cm2(阴极面积等于阳极面积)。
采用一种2~5nm的Pd0.33Sn0.67合金颗粒作为阴极反应的电极催化剂,单位面积阴极上的载钯为0.03mg/cm2
进水中四氯化碳浓度为200mg/L,转换为有机氯的浓度为184.4mg/L。进水的pH=7.0,水温25℃。
反应器的输入电压为2.5V,反应器输入电流强度为12.9A。阳极区的进水为阴极区的出水。
阴极区水力停留时间为15min。
处理效果:出水中有机氯的浓度为0.60mg/L,脱除率为99.67%。
实施例三:处理含硝酸盐、四氯化碳、三氯化碳、三氯乙烯的水反应器阴极区有效容积10L,阴极面积为850cm2,采用的电极催化剂为Pd0.25Cu0.75,催化剂的粒度为2~5nm。阴极的载钯量为0.025mg/cm2。进水中,硝酸盐氮的浓度为28mg/L,四氯化碳的浓度为200μg/L,三氯化碳的浓度为200μg/L,三氯乙烯的浓度为200μg/L。进水pH=7.1,水温10℃。
采用阴极区的出水作为阳极区的进水。
阴极区水力停留时间为8min。
反应器的输入电压为2.5V,输入电流密度为19.5A。
处理效果:
(1)出水硝酸盐氮的浓度为4.54mg/L,亚硝酸盐氮的浓度为0.09mg/L,氨氮浓度为0.18mg/L。氮的脱除率为82.82%,氮气转化率为98.84%。
(2)出水中四氯化碳的浓度为0.1,三氯甲烷的浓度为0.3μg/L,三氯乙烯的浓度为15mμg/L。

Claims (5)

1.一种水处理方法,应用纳米金属-膜复合电极催化还原的方法,脱除被污染水中的氧化态污染物,其特征在于:
在质子交换膜的一侧负载粒度为1nm~30nm的钯的金属粒子或者钯铜合金的金属粒子,并将此侧作为阴极侧,
在质子交换膜的另一侧负载氧化钌颗粒,并将此侧称为阳极侧,
组成纳米金属-膜复合电极;
用纳米金属-膜复合电极与辅助材料一起构成电化学反应器,其中质子膜复合电极将电化学反应器分隔成两个反应室,阴极侧对应的反应室称为阴极室,阳极侧对应的反应室称为阳极室;
用导体材料将阴极侧的金属粒子与直流电源的负极相连接,并用导体材料将阳极侧的氧化钌颗粒与直流电源的正极相连接;
将含有污染物的待处理水注入阴极室,同时向阳极室注入清洁的水;
当电化学反应器接通电源时,阴极纳米金属的表面即发生电催化还原反应,使阴极室被处理水中的氧化态污染物脱除。
2.如权利要求1所说的水处理方法,其特征在于,所说的钯用铂、金、钌、铱中的一种代替。
3.如权利要求1所说的水处理方法,其特征在于,所说的铜用铅、锡、锌、铁的一种代替。
4.如权利要求1所说的水处理方法,其特征在于,所说的氧化钌颗粒用活性炭或氧化铅的颗粒代替。
5.如权利1所说的水处理方法,其特征在于,质子膜阴极侧负载的粒子粒度为2~7nm。
CN 02155454 2002-12-13 2002-12-13 一种纳米金属-膜复合电极催化还原的水处理方法 Expired - Fee Related CN1232446C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 02155454 CN1232446C (zh) 2002-12-13 2002-12-13 一种纳米金属-膜复合电极催化还原的水处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 02155454 CN1232446C (zh) 2002-12-13 2002-12-13 一种纳米金属-膜复合电极催化还原的水处理方法

Publications (2)

Publication Number Publication Date
CN1508074A CN1508074A (zh) 2004-06-30
CN1232446C true CN1232446C (zh) 2005-12-21

Family

ID=34235915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 02155454 Expired - Fee Related CN1232446C (zh) 2002-12-13 2002-12-13 一种纳米金属-膜复合电极催化还原的水处理方法

Country Status (1)

Country Link
CN (1) CN1232446C (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432297C (zh) * 2004-12-15 2008-11-12 中国科学院生态环境研究中心 去除水中硝酸盐的电极及制备方法
ITPN20050079A1 (it) * 2005-10-28 2007-04-29 Akuatech S R L Nuova soluzione acquosa ad alta stabilita'
CN103233242B (zh) * 2013-03-30 2016-04-13 浙江工业大学 一种dsa/铅合金复合电极及其制备方法和应用
CN103936109B (zh) 2014-04-12 2016-08-17 大连双迪创新科技研究院有限公司 饮水电解制取装置
CN104646405A (zh) * 2015-02-15 2015-05-27 中国科学院生态环境研究中心 一种用于降低水稻中砷铅浓度的电极装置及方法
CN105973955A (zh) * 2016-04-26 2016-09-28 中国科学院电子学研究所 锡钯复合电极及其制备方法、应用
CN107739075B (zh) * 2017-11-02 2021-04-20 广西大学 一种含氯代有机污染物废水电催化还原脱氯的方法
CN109175347B (zh) * 2018-08-31 2020-10-02 中国科学院福建物质结构研究所 一种Au-Ir纳米合金、其制备方法及作为催化剂的应用
CN114011251B (zh) * 2021-12-22 2024-01-23 南京水滴智能环保装备研究院有限公司 一种高效去除水中硝酸盐的导电膜及其制备方法

Also Published As

Publication number Publication date
CN1508074A (zh) 2004-06-30

Similar Documents

Publication Publication Date Title
Guo et al. Electrochemical methods for landfill leachate treatment: A review on electrocoagulation and electrooxidation
He et al. Cleaning chromium pollution in aquatic environments by bioremediation, photocatalytic remediation, electrochemical remediation and coupled remediation systems
Brillas Progress of homogeneous and heterogeneous electro-Fenton treatments of antibiotics in synthetic and real wastewaters. A critical review on the period 2017–2021
De Corte et al. Bio‐palladium: from metal recovery to catalytic applications
CN101734817B (zh) 一种处理有机化工废水的方法
Zhang et al. A new type of continuous-flow heterogeneous electro-Fenton reactor for Tartrazine degradation
CN101591082B (zh) 有机电镀废水多元氧化预处理方法及装置
CN102070230A (zh) 一种三维电极电芬顿去除水中有机物的方法及装置
CN108423772B (zh) 一种基于载纳米零价铁导电复合树脂为催化剂的阴阳两极协同降解硝酸盐的装置及方法
Yu et al. A review on the landfill leachate treatment technologies and application prospects of three-dimensional electrode technology
CN109502932B (zh) 一种基于微生物降解耦合电化学法的氯代烃污染地下水处理装置和修复方法
CN106630429B (zh) 一种基于生物电化学及光催化的污水原位处理系统及应用
CN1232446C (zh) 一种纳米金属-膜复合电极催化还原的水处理方法
Wu et al. Three-dimensional biofilm electrode reactors (3D-BERs) for wastewater treatment
CN104556494A (zh) 污水深度处理工艺
Qin et al. The three-dimensional electrochemical processes for water and wastewater remediations: Mechanisms, affecting parameters, and applications
CN113371798B (zh) 一种臭氧耦合电芬顿催化去除废水中化学需氧量的方法
Selvaraj et al. Self-sustained semi-pilot scale Hybrid Eco-Electrogenic Engineered System for the wastewater treatment and bioenergy generation
CN204022601U (zh) Meo微电解高级氧化反应器
CN105198049A (zh) 一种污水处理的方法
CN111423066A (zh) 污水处理系统
CN201458880U (zh) 有机电镀废水多元氧化预处理系统
CN101973661B (zh) 处理五倍子加工废水的方法
CN211255376U (zh) 一种降低水中氮含量的电还原装置
CN102815767A (zh) 一种自清洁复合活性炭电极电解氧化还原方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee