CN1229607C - 吸附式氦氢混合工质脉管制冷法 - Google Patents

吸附式氦氢混合工质脉管制冷法 Download PDF

Info

Publication number
CN1229607C
CN1229607C CN 03128816 CN03128816A CN1229607C CN 1229607 C CN1229607 C CN 1229607C CN 03128816 CN03128816 CN 03128816 CN 03128816 A CN03128816 A CN 03128816A CN 1229607 C CN1229607 C CN 1229607C
Authority
CN
China
Prior art keywords
pulse tube
regenerator
specific heat
performance
heat capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 03128816
Other languages
English (en)
Other versions
CN1514190A (zh
Inventor
陈国邦
甘智华
黄永华
蒋彦龙
邱利民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN 03128816 priority Critical patent/CN1229607C/zh
Publication of CN1514190A publication Critical patent/CN1514190A/zh
Application granted granted Critical
Publication of CN1229607C publication Critical patent/CN1229607C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • F25B2309/14181Pulse-tube cycles with valves in gas supply and return lines the valves being of the rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1421Pulse-tube cycles characterised by details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

本发明公开了一种吸附式氦氢混合工质脉管制冷法。在脉管制冷机中,利用氦氢混合工质对在要求的制冷温区内的高制冷效应与利用回热器填料自身高比热容的同时,通过回热器填料具有的对氢组分的吸附作用增加相应的对比热容,改善回热性能;两者共同作用促使脉管制冷性能更大程度的提高。该发明与传统的依靠纯工质以及增加回热器填料比热容改善脉管制冷机性能的方法相比,具有原理简单、效果显著、操作简便等优点,已在实验中获得了验证。

Description

吸附式氦氢混合工质脉管制冷法
                          技术领域
本发明涉及一种吸附式氦氢混合工质脉管制冷法。
                          背景技术
对于斯特林、G-M和脉管制冷机等回热式低温制冷机,回热器是它的关键部件。通过回热器的传热量要比气体制冷机的制冷量大约大10-50倍,所以其传热性能优劣,对气体制冷机的性能有决定性影响。
由于回热器换热面积和换热系数有限,不论是在热吹期还是在冷吹期,气体与填料间总存在着换热温差,这就形成了换热的不可逆性,称为有限传热损失。理论研究表明,回热器效率主要取决于传热单元数NTU和填料与工质的对比热容Γ(填料与气体的热容量之比Cr/C)的大小。在假定传热单元数不变的情形下,回热器效率主要取决于对比热容Γ的大小。对比热容越大,回热不可逆损失越小,反之则越大。当对比热容接近1时,便产生回热器的“热饱和”现象,其时回热器效率为零,制冷性能将严重恶化。
随着工作温度的降低,气体和填料的物性参数变化很大。金属填料的晶格比热容随温度的降低以cm∝T3的关系迅速减小,而压力氦气的定容比热容和密度却随着温度的降低而增加。所以对比热容随着工作温度的降低明显减小,以致回热器各截面上填料温度随时间变化的波幅增大,传热不可逆损失增加。为此,许多学者开展了以提高回热器比热容为主的回热材料的研究,并取得了进展。目前采用在低温下具有磁比热反常的磁性蓄冷材料的低温制冷机,低温下的对比热容明显增大,最低制冷温度可达到液氦温区。然而,这些研究只是单纯从提高填料的比热容角度出发,没有顾及填料与气体相互作用的影响。事实上,填料和工质两者的耦合作用,有可能对回热器性能的改善做出进一步的贡献。
在另一方面,关于工质的选择,长期以来人们一直认为氦气是低温制冷机最理想的工质。虽然混合工质在节流制冷器中具有改善制冷性能,提高热力效率的优越性。但是在回热式制冷机中,制冷机制是绝热膨胀,并非节流时的等焓膨胀,一般来说,混合工质无论是其等熵膨胀制冷效应,还是传热与流动特性都比氦气差。特别是用于低温制冷的混合工质中的高沸点组分的冷凝温度一般远低于室温,不可能像普冷中采用的氨、氟利昂等工质那样将冷凝潜热释放到环境中去。而且,随着温度的降低,混合工质中高沸点组分的冷凝和固化产生的液滴或固体颗粒对于具有排出器的制冷机来说是危险的。因而,人们普遍认为混合工质在回热式制冷机中的应用是没有希望的。
                          发明内容
本发明的目的是提供一种吸附式氦氢混合工质脉管制冷法。
在脉管制冷机中,利用氦氢混合工质对在要求的13-40K制冷温区内的高制冷效应与利用回热器填料自身高比热容的同时,通过回热器填料具有的对氢组分的吸附作用增加相应的对比热容,改善回热性能;两者共同作用促使脉管制冷性能度的提高。其中,氦氢混合工质的含氢量为7-60%,回热器填料为稀土化合物磁性蓄冷材料。
该发明与传统的依靠纯工质以及增加回热器填料比热容改善脉管制冷机性能的方法相比,具有原理简单、效果显著、操作简便等优点,己在实验中获得了验证。
                          附图说明
图1是由两个等熵与两个等压过程组成的回热制冷循环的T-S图,图中过程1-2和4-5为回热部分;
图2是实验用制冷机结构示意图,图中,I级回热器1、II级回热器2、I级脉管3、II级脉管4、I级小孔5、II级小孔6、I级双向进气孔7、II级双向进气孔8、第二小孔9、I级气库10、II级气库11、平面旋转阀12;
图3是回热器填料布置方案示意图;
图4是不同氢组分下的制冷量和COP曲线实验结果图。
                          具体实施方式
由于脉管制冷机的脉管中没有运动部件,因而避免了由工质相变导致的液滴或固体颗粒使排出器等运动部件受损害的可能性,是适合于用混合工质制冷的首选低温制冷机。在不考虑填料对工质吸附作用时,脉管制冷机的性能取决于与工质热物性相关的循环热力学性能及回热器传热和压降损失等因素的共同作用。基于申请者提出的如图1所示的改进的布雷顿循环,对氦氢混合工质热力学性能的初步计算表明,采用合适的氦氢混合工质对(含氢量为7-80%),在13-40K温区能够获得比纯氦更高的制冷效应。与此同时,基于回热器的传热和压降损失的理论计算也表明,采用氦氢混合工质时的回热器传热和压降损失小于相同条件下的氦气。因此,无论从提高循环热力学性能,还是从减少回热器损失角度出发,氦气并不是在所有温区的都是回热式低温制冷机的“最理想工质”。采用氦氢混合工质,有助于提高一定温区内脉管制冷循环热力学性能和减小相应的回热器损失。
进一步研究发现,稀土化合物磁性蓄冷材料如Er3Ni、ErNi、Er(Ni1-xCox)2、Er1-xDyxNi2和HoCu2等,在某一低温下不仅具有较高的反常体积比热容,同时还具有较强的吸氢能力。因此,在利用回热器填料自身高比热容的同时,通过回热器填料具有的对氢组分的吸附作用增加相应的对比热容,可以进一步减少回热器传热不可逆损失,由此获得更高的制冷性能。
在上述分析的基础上,利用工质和回热器填料的耦合作用,我们在一台如图2所示的二级脉管制冷机上,初步开展了以提高30K温区附近(13-40K)制冷性能为目标的氦氢混合工质实验研究。为了提高低温区回热性能,二级回热器采用Er3Ni作为蓄冷材料,它在低温下不仅具有较高的体积比热容,而且具有优越的吸氢能力,相应的填料布置方案见图3。随着制冷温度的降低,工质非理想物性逐步显现,在没有发生吸附的情形下,如纯氦作工质时,相应的填料和工质对比热容急速减小,不可逆损失增大,产生回热器的“热饱和”现象,制冷性能恶化。采用磁性蓄冷材料可以显著改善一定温区的对比热容,但其提高幅度仍然有限。若采用氦氢混合工质,不仅氢的热力特性有助于提高循环热力学性能和减少回热器损失,而且由于Er3Ni对氢具有明显的吸附特性,使得吸附有氢的稀土填料和工质的对比热容维持在较大值,从而导致二级回热器具有较高的回热性能,两者共同作用使得制冷性能比纯氦时明显改善。如图4给出的氦氢混合工质脉管制冷初步实验结果表明,采用含氢7%、20%、34%、45%和60%的氦氢混合物,在25-40K温区均获得了明显高于纯氦的制冷量和COP。以30K温区为例,含氢60%时的氦氢混合工质制冷量和COP分别比纯氦时提高了33%和42%。随着对工质和回热器填料耦合作用机理的深入研究,制冷性能有望进一步提高。

Claims (2)

1.一种吸附式氦氢混合工质脉管制冷法,其特征在于在脉管制冷机中,利用氦氢混合工质对在要求的13-40K制冷温区内的高制冷效应与利用回热器填料自身高比热容的同时,通过回热器填料具有的对氢组分的吸附作用增加相应的对比热容,改善回热性能;两者共同作用促使脉管制冷性能的提高,其中,氦氢混合工质的含氢量为7-60%,回热器填料为稀土化合物磁性蓄冷材料。
2.根据权利要求1所述的一种吸附式氦氢混合工质脉管制冷法,其特征在于所说的磁性蓄冷材料为Er3Ni、ErNi、Er(Ni1-xCox)2、Er1-xDyxNi2或HoCu2
CN 03128816 2003-05-19 2003-05-19 吸附式氦氢混合工质脉管制冷法 Expired - Fee Related CN1229607C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 03128816 CN1229607C (zh) 2003-05-19 2003-05-19 吸附式氦氢混合工质脉管制冷法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 03128816 CN1229607C (zh) 2003-05-19 2003-05-19 吸附式氦氢混合工质脉管制冷法

Publications (2)

Publication Number Publication Date
CN1514190A CN1514190A (zh) 2004-07-21
CN1229607C true CN1229607C (zh) 2005-11-30

Family

ID=34239733

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 03128816 Expired - Fee Related CN1229607C (zh) 2003-05-19 2003-05-19 吸附式氦氢混合工质脉管制冷法

Country Status (1)

Country Link
CN (1) CN1229607C (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852511B (zh) * 2009-03-31 2013-05-08 中国科学院理化技术研究所 变压吸附制冷机

Also Published As

Publication number Publication date
CN1514190A (zh) 2004-07-21

Similar Documents

Publication Publication Date Title
Qian et al. A review of regenerative heat exchange methods for various cooling technologies
Cabeza et al. Review on sorption materials and technologies for heat pumps and thermal energy storage
Li et al. Progress in the development of solid–gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy
EP2660538B1 (en) Refrigerating method and refrigerating device with combination of magnetic refrigeration and regenerative gas refrigeration
CN100458310C (zh) 蓄冷器及克莱欧泵
JP2783112B2 (ja) 極低温冷凍機
CN114353366A (zh) 耦合膨胀机构和回热式制冷机的高效预冷及液化系统
CN113803905A (zh) 一种间隙式制冷机高效预冷及液化系统
Jones Sorption refrigeration research at JPL/NASA
CN211451439U (zh) 跨临界二氧化碳双级压缩制冷和除霜系统
CN1229607C (zh) 吸附式氦氢混合工质脉管制冷法
CN201110668Y (zh) 用氦3-氦4双工质的液氦温区斯特林型多级脉管制冷机
CN100402952C (zh) 吸附调相式脉管制冷机
CN203258918U (zh) 采用全碳气凝胶回热填料的自由活塞式脉管制冷机
CN203231579U (zh) 斯特林/脉管复合型制冷机预冷的低温j-t节流制冷机
CN100392332C (zh) 混合工质深度冷冻吸附制冷装置
CN1219183C (zh) 采用活性炭吸附氮气的吸附式回热方法及其装置
CN1140739C (zh) 一种无回热器的反相气体循环低温制冷机
Zhao et al. Simulation of heat and mass transfer performance with consolidated composite activated carbon
JP2818099B2 (ja) 極低温冷凍機
Gao et al. A hybrid two-stage refrigerator operated at temperatures below 4K
CN2684109Y (zh) 采用活性炭吸附氮气的吸附式回热装置
de Waele Millikelvin Cooling by Expansion of ³He in 4He
CN212378304U (zh) 一种冷藏箱
JP2000146332A (ja) 蓄冷型冷凍機

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee