CN1226077C - 输送颗粒状固体的方法 - Google Patents

输送颗粒状固体的方法 Download PDF

Info

Publication number
CN1226077C
CN1226077C CNB028066855A CN02806685A CN1226077C CN 1226077 C CN1226077 C CN 1226077C CN B028066855 A CNB028066855 A CN B028066855A CN 02806685 A CN02806685 A CN 02806685A CN 1226077 C CN1226077 C CN 1226077C
Authority
CN
China
Prior art keywords
mentioned
pipeline
solid
pressure
rising
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB028066855A
Other languages
English (en)
Other versions
CN1498130A (zh
Inventor
马丁·希尔施
斯图尔特·斯涅德
洛塔·福曼奈克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metso Corp
Original Assignee
Outokumpu Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outokumpu Oyj filed Critical Outokumpu Oyj
Publication of CN1498130A publication Critical patent/CN1498130A/zh
Application granted granted Critical
Publication of CN1226077C publication Critical patent/CN1226077C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0025Feeding of the particles in the reactor; Evacuation of the particles out of the reactor by an ascending fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/52Adaptations of pipes or tubes
    • B65G53/521Adaptations of pipes or tubes means for preventing the accumulation or for removal of deposits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Manufacture Of Iron (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)

Abstract

本发明涉及一种通过气态介质,将颗粒状固体从一个压力为4到16巴的第一区域通过一个下降管线和一个上升管线连续输送到一个压力比第一区域中低3到15巴的第二区域中的工艺。为确保在连续输送颗粒状固体时以较低的成本和较少的维护工作减小两个区域之间的压力,在通过下降管线(2)将颗粒状固体输送到一个上升管线(3)中的位置通过一个向上指向的喷嘴(6)将气态介质(9)流入一个管中。

Description

输送颗粒状固体的方法
本发明涉及一种通过气态介质,将颗粒状固体从一个压力为4到16巴的第一区域通过一个下降管线和一个上升管线连续输送到一个压力比第一区域中低3到15巴的第二区域中的方法。
在直接还原工厂中,颗粒状固体,如直接还原铁,从一个升高的压力引入大气压下,用于在工厂中进一步加工。在该工厂中,直接还原的铁从一个流化床反应器输送到一个加压旋流器,从该旋流器通过一个储存料仓经一个下降管线将颗粒状固体向下排出。将惰性气体引入该下降管线中。
通过一个阀,该下降管线通常与一个上升管线联接,通过将惰性气体供应到该上升管线中,颗粒状固体通过该上升管线向上输送到一个冲击罐中。固体从上述冲击罐引入一个压块料仓中,同时进一步引入惰性气体。由于连续供应细微颗粒状固体,在下降管线中形成这些固体的一列,该列同时代表一个压力隔层。
当在阀上使用前述的方案时,从下降管线到上升管线的过渡需要更多的工作和维护,由于颗粒状固体的温度水平和粗糙表面,密封和关闭本体受到非常高的磨损,因而必须很频繁地更换。
根据US-A2684873,细微颗粒状固体引入一个流入箱体中,通过一个阀对再次供应的量进行调节。在该流入箱体中,形成了一定量的细微颗粒状固体,一个管伸入该箱体中,固体通过该管运输到位于较高高度的箱体中。一个对流入箱体进行加压的管线向流入箱体内部开放,从而通过该管将固体运输到设置于较高高度的该箱体中。
这种已知的方法相似地用于调节固体流入的阀。对于要运输的较大量固体,流入箱体的尺寸必须相应地较大,这再次使装置非常复杂而昂贵。
本发明的目的是,在上述方法中,能廉价地并以很少的维护工作来降低两个区域之间的压力,同时连续输送颗粒状固体。
根据本发明,提供了一种连续输送颗粒状固体的方法,通过气态介质、将颗粒状固体从一个压力为4到16巴的第一区域通过一个下降管线和一个上升管线连续输送到一个压力比第一区域中低3到15巴的第二区域中,其特征在于,该方法包括:将气态介质通过位于下降管线向上升管线内部开放的位置的一个向上指向的输送喷嘴来引入上述上升管线,以携带固体在上述下降管线中下降,在上述上升管线中上升;和保持上升管线中的固体重量为松填重量的0.3到0.8倍。
为了尽可能减少运动能量的损失,用于流入气体的喷嘴小孔应当方便地设置成尽量靠近要运输的散料。由于散料下降的管线,因而喷嘴小孔应当有利地设置在管轴线交叉点下方一定距离处,该距离为喷嘴小孔的液压直径的0.5至8倍。
由于从下降管线流出的细微颗粒状固体因其上方直立的列而被紧压,有利的是在输送喷嘴旁边设置一个辅助喷嘴。
特别有利的是,上升管线中的固体重量为松填重量的0.3到0.8倍,优选地是松填重量的0.4到0.7倍。
在有限的整体高度下,有利的是通过一个多级压降来输送固体。
下面参照附图通过举例对该方法的实施例进行描述,其中:
图1表示该方法的流程图;
图2表示图1中的详细图示;
图3表示该多级方法的流程图。
热固体在650℃到800℃的温度下从一个加热器输送到一个旋流器(1)。在该旋流器(1)中存在着一个4至16巴的压力。成细微颗粒状的固体通过一个下降管线(2)向下排放。将惰性气体(8a)氮气引入该下降管线中,从而冲洗出还原气体。
在下降管线之后,通过供应载运气体(9)如氮气,由一个上升管线(3)将固体向上输送到一个冲击罐(4),该冲击罐中的压力在1至2巴范围内。从上述冲击罐将固体引入一个压块料仓(5),然后通过供应惰性气体而进入一个压块压力机(10)中。
由于细微颗粒状固体的连续流入,在下降管线(2)中形成这些固体的一个列,该列同时代表一个压力隔层。该列固体具有2至15米的高度,其高度可通过一个位置计来测量。该列可通过向下排放来调节。
流过下降管线(2)的固体流取决于惰性气体流入量(8a),该惰性气体流入量(8a)同时影响下降管线(2)中固体列的高度。下降管线(2)向上升管线(3)开放的点的压力为4至16巴。
在上升管线(3)的中心线与下降管线(2)的中心线的交叉点下方,载运气体(9)通过一个喷嘴(6)流入。喷嘴小孔(6)处的压力比旋流器(1)中的压力高0.5至1.5巴。通过该上升管线(3)将固体输送到一个其中压力为1至2巴的冲击罐(4)。从下降管线(2)的小孔到过流料仓(4)的高度为10至50米。上升管线(3)的直径可在0.2至1.5米之间。
在喷嘴小孔(6)周围设有多个辅助喷嘴(7),该多个辅助喷嘴(7)使固体松散,并将其从喷嘴小孔(6)运输到载运气体(9)的影响范围之内。该载运气体(9)穿过喷嘴(6)和(7)。
图3表示压力多级递减地输送固体。热固体在650至800℃温度下从一个加热器输送到一个旋流器(1)。该旋流器(1)中存在着4至16巴的压力。细微颗粒状固体通过一个下降管线(2)向下排放。将惰性气体(8a)如氮气引入该下降管线中,从而冲洗出还原气体。
在下降管线(2)之后,通过供应载运气体(9)如氮气,由一个上升管线(3)将固体向上输送到一个冲击罐(4)中,该冲击罐中的压力在2至8巴范围内。通过进一步供应惰性气体(8b),从上述冲击罐将固体输送到一个第二下降管线(11)。
在下降管线之后,通过供应载运气体(12)如氮气,由另一个上升管线(13)将固体向上输送到一个冲击罐(14)中,该冲击罐中的压力在1至2巴范围内。通过供应惰性气体(8b),从上述冲击罐将固体输送到一个压块料仓(5)。
例1:
以64吨/小时的速度将直接还原的铁与规定浓度的40000立方米/小时(Nm3/h)的H2一起供应到旋流器(1),此时温度为730℃,压力为4.5巴。在H2与固体分离后,通过直径为0.5米长度为16米的下降管线(2)排出固体。通过管线(8a)供应规定浓度的70牛立方米/小时(Nm3/h)的N2,用于冲洗该空间中所含的H2。在直径为0.25米长度为25米的上升管线(3)中,通过经喷嘴(6)和(7)填加规定浓度的150立方米/小时的N2,经过管线(3)将固体输送到冲击罐(4)。在此过程中,压力降到1巴。将固体从上述冲击罐引入一个压块料仓(5)中,然后通过供应规定浓度的30立方米/小时的N2(8b)而输送到压块压力机(10)中。
例2
以64吨/小时的速度将直接还原的铁与规定浓度的40000立方米/小时的H2一起供应到旋流器(1),此时温度为730℃,压力为4.5巴。在H2与固体分离后,通过直径为0.5米长度为8米的下降管线(2)排出固体。通过管线(8a)供应规定浓度的50立方米/小时的N2,用于冲洗该空间中所含的H2。在直径为0.25米长度为10米的上升管线(3)中,通过经喷嘴(6)和(7)填加规定浓度的150立方米/小时的N2,经过管线(3)将固体输送到冲击罐(4),在该冲击罐(4)中获得了3.0巴的压力。通过该下降管线(11)将固体从上述冲击罐排出,该下降管线(11)具有0.5米的直径和8米的长度。通过管线(8b)和(8c)供应50牛立方米/小时的N2(8b),以进一步冲洗该空间中的所含的H2。
在直径为0.25米长度为15米的上升管线(3)中,经管线(13)填加规定浓度的100立方米/小时的N2(12)而将固体输送到冲击罐中,该冲击罐中存在着1巴的压力。固体从上述冲击罐引入一个压块料仓(5)中,然后通过供应规定浓度的30立方米/小时的N2(8d)而进入一个压块压力机(10)中。

Claims (6)

1.一种连续输送颗粒状固体的方法,通过气态介质、将颗粒状固体从一个压力为4到16巴的第一区域通过一个下降管线和一个上升管线连续输送到一个压力比第一区域中低的压力为3到15巴的第二区域中,其特征在于,该方法包括:将气态介质通过位于下降管线向上升管线内部开放的位置的一个向上指向的输送喷嘴来引入上述上升管线,以携带固体在上述下降管线中下降,在上述上升管线中上升;和保持上升管线中的固体重量为松填重量的0.3到0.8倍。
2.如权利要求1中所述的方法,其特征在于,用于流入气态介质的喷嘴小孔设置在上升和下降管线的轴线交叉点下方一定距离处,该距离为喷嘴小孔的液压直径的0.5至8倍。
3.如权利要求2所述的方法,其特征在于,在输送喷嘴旁边设有至少一个将气态介质引入上述上升管线的辅助喷嘴。
4.如权利要求1所述的方法,其特征在于,上升管线中的固体重量保持在松填重量的0.4到0.7倍。
5.如权利要求1所述的方法,其特征在于,通过至少两个下降管线和至少两个上升管线输送固体。
6.一种从一个旋流器在4到16巴的压力下输送直接还原的颗粒状固体的方法,包括下列步骤:
(a)使上述颗粒状固体从上述旋流器通过一个下降管线向下流动,在该下降管线中,使固体的柱状高度保持在2到15米;
(b)将颗粒状固体在上述一个下降管线和一个上升管线的交叉点上从上述下降管线供入上升管线;
(c)使上升管线中的固体重量保持在松填的固体重量的0.3到0.8倍;
(d)通过一个输送喷嘴将载运气体引入上述上升管线,上述输送喷嘴设置在上述交叉点下方的输送喷嘴的液压直径的0.5到0.8倍的距离上,上述输送喷嘴向上打开并轴向地进入上述上升管线中,以携带在上述上升管线中向上的固体;
(e)将上述上升管线中的上述固体向上输送到一个冲击罐中,该冲击管的压力保持在低于上述旋流器中压力的3到15巴;和
(f)将上述固体从上述冲击罐向下排出。
CNB028066855A 2001-04-04 2002-03-09 输送颗粒状固体的方法 Expired - Lifetime CN1226077C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10116892A DE10116892A1 (de) 2001-04-04 2001-04-04 Verfahren zum Fördern von körnigen Feststoffen
DE10116892.6 2001-04-04

Publications (2)

Publication Number Publication Date
CN1498130A CN1498130A (zh) 2004-05-19
CN1226077C true CN1226077C (zh) 2005-11-09

Family

ID=7680433

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028066855A Expired - Lifetime CN1226077C (zh) 2001-04-04 2002-03-09 输送颗粒状固体的方法

Country Status (12)

Country Link
US (1) US6666629B2 (zh)
EP (1) EP1372838B1 (zh)
CN (1) CN1226077C (zh)
AR (1) AR033074A1 (zh)
AU (1) AU2002242726B2 (zh)
BR (2) BR0208569A (zh)
DE (1) DE10116892A1 (zh)
EG (1) EG23097A (zh)
MY (1) MY136337A (zh)
SA (1) SA02230227B1 (zh)
WO (1) WO2002081074A1 (zh)
ZA (1) ZA200306482B (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US7663333B2 (en) 2001-06-12 2010-02-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
FR2858972B1 (fr) * 2003-08-19 2006-02-17 Inst Francais Du Petrole Dispositif pour le transport de particules solides granulaires avec un debit controle
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
DE112005000738T5 (de) 2004-03-29 2007-04-26 Evolution Robotics, Inc., Pasadena Verfahren und Vorrichtung zur Positionsbestimmung unter Verwendung von reflektierten Lichtquellen
KR101142564B1 (ko) 2004-06-24 2012-05-24 아이로보트 코퍼레이션 자동 로봇 장치용의 원격 제어 스케줄러 및 방법
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
KR101240732B1 (ko) 2005-02-18 2013-03-07 아이로보트 코퍼레이션 습식 및 건식 청소를 위한 자동 표면 청소 로봇
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
ATE534941T1 (de) 2005-12-02 2011-12-15 Irobot Corp Abdeckungsrobotermobilität
EP2544065B1 (en) 2005-12-02 2017-02-08 iRobot Corporation Robot system
ES2334064T3 (es) 2005-12-02 2010-03-04 Irobot Corporation Robot modular.
ES2522926T3 (es) 2005-12-02 2014-11-19 Irobot Corporation Robot Autónomo de Cubrimiento
EP2394553B1 (en) 2006-05-19 2016-04-20 iRobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
DE102007009759A1 (de) * 2007-02-27 2008-08-28 Outotec Oyj Verfahren und Vorrichtung zur Aufteilung eines Feststoffstromes
DE102007009758A1 (de) 2007-02-27 2008-08-28 Outotec Oyj Verfahren und Vorrichtung zur Regelung eines Feststoffstromes
KR101301834B1 (ko) 2007-05-09 2013-08-29 아이로보트 코퍼레이션 소형 자율 커버리지 로봇
US8075227B2 (en) * 2007-11-30 2011-12-13 Uop Llc Device to transfer catalyst from a low pressure vessel to a high pressure vessel and purge the transferred catalyst
US7600950B2 (en) * 2007-11-30 2009-10-13 Uop Llc Device to transfer catalyst from a low pressure vessel to a high pressure vessel and purge the transferred catalyst
EP3192419B1 (en) 2010-02-16 2021-04-07 iRobot Corporation Vacuum brush
DE102010022773B4 (de) 2010-06-04 2012-10-04 Outotec Oyj Verfahren und Anlage zur Erzeugung von Roheisen
JP5868839B2 (ja) * 2012-12-27 2016-02-24 三菱重工業株式会社 チャー払出管
US9207728B2 (en) * 2013-06-07 2015-12-08 Apple Inc. Computer input/output interface
JP6109796B2 (ja) * 2014-09-16 2017-04-05 三菱日立パワーシステムズ株式会社 粉体搬送装置及びチャー回収装置
WO2016209649A1 (en) * 2015-06-24 2016-12-29 Uop Llc Ultra low pressure continuous catalyst transfer without lock hopper
CN113454008B (zh) * 2019-01-18 2023-04-18 特里高亚科技有限公司 用于转移固体颗粒的系统和方法
CN109911626A (zh) * 2019-04-23 2019-06-21 长春万荣装饰材料有限公司 一种用于粉料、砂子等物料传输的气力输送装置
CN113274952B (zh) * 2021-05-19 2022-07-26 浙江大学 一种流化床外循环的稳定控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2684872A (en) 1950-03-13 1954-07-27 Union Oil Co Conveyance of granular solids
US2684873A (en) 1950-03-13 1954-07-27 Union Oil Co Method and apparatus for the conveyance of granular solids
US2684868A (en) 1951-01-16 1954-07-27 Union Oil Co Conveyance of granular solids
US2978279A (en) * 1951-12-20 1961-04-04 Socony Mobil Oil Co Inc Method and apparatus for transferring contact material
US2750181A (en) * 1952-01-03 1956-06-12 Phillips Petroleum Co Pebble heater
US3106429A (en) * 1960-05-31 1963-10-08 Sun Oil Co Elevation of granular solids
US3389076A (en) * 1966-06-30 1968-06-18 Exxon Research Engineering Co Fluid solids transport
US3874739A (en) * 1973-08-07 1975-04-01 Exxon Research Engineering Co Method and apparatus for the transfer of entrained solids
DE2939029C2 (de) * 1979-09-27 1986-08-07 Bergwerksverband Gmbh Einspeisungsvorrichtung für feinkörniges Schüttgut an einem Flugstromrohr
US4327055A (en) * 1979-12-31 1982-04-27 Exxon Research & Engineering Co. Continuous catalyst unloading device
DE3413750A1 (de) * 1984-04-12 1985-10-24 Metallgesellschaft Ag, 6000 Frankfurt Vorrichtung zum austragen von feinkoernigem material

Also Published As

Publication number Publication date
WO2002081074A1 (en) 2002-10-17
CN1498130A (zh) 2004-05-19
BRPI0208569B1 (pt) 2019-04-24
MY136337A (en) 2008-09-30
AR033074A1 (es) 2003-12-03
EP1372838B1 (en) 2014-05-07
ZA200306482B (en) 2004-08-20
BR0208569A (pt) 2004-03-30
EP1372838A1 (en) 2004-01-02
SA02230227B1 (ar) 2007-04-07
US6666629B2 (en) 2003-12-23
DE10116892A1 (de) 2002-10-17
US20020146291A1 (en) 2002-10-10
AU2002242726B2 (en) 2007-01-25
EG23097A (en) 2004-03-31

Similar Documents

Publication Publication Date Title
CN1226077C (zh) 输送颗粒状固体的方法
AU2002242726A1 (en) Process of conveying granular solids
DE102005047583C5 (de) Verfahren und Vorrichtung zur geregelten Zufuhr von Brennstaub in einen Flugstromvergaser
CA2623508C (en) Drill cuttings storage and conveying
US4191500A (en) Dense-phase feeder method
US8646664B2 (en) Method and device for the metered removal of a fine to coarse-grained solid matter or solid matter mixture from a storage container
DE102007009758A1 (de) Verfahren und Vorrichtung zur Regelung eines Feststoffstromes
RU2006135840A (ru) Улучшенный способ обессеривания
EP1910198A1 (en) Fluidising apparatus
FR2534891A1 (fr) Dispositif clos a fluidisation potentielle pour le controle horizontal de materiaux pulverulents
US4409101A (en) Fluidized bed apparatus
CN1011417B (zh) 由固体燃料制造含氢和一氧化碳气体的方法
CN1304863A (zh) 用于把松散材料填充进管子中的装置
US5149062A (en) Prereduction furnace of a smelting reduction facility of iron ore
EP4232385A1 (en) Double lock aggregate mixer, aggregate transport system, methods for operating the same
JP2015131273A (ja) ジグ選別装置、及びジグ選別方法
CN1047814A (zh) 用于流体-固体粒子床加工处理的设备
US6688474B1 (en) Process for removing relatively coarse-grained solids from a stationary fluidized bed
CN1069706A (zh) 无动力破拱导流装置
DE102004001708B4 (de) Verfahren und Vorrichtung zur kontinuierlichen Beschickung von Festbett-Druckvergasungsreaktoren
EP1105544B1 (de) Verfahren zur zinkerzeugung nach dem is-verfahren in einer is-schachtofenanlage
WO2003000391A1 (en) Improved method and apparatus for gasifying a liquid
CN2749858Y (zh) 物料转运卸料装置
DE3244742A1 (de) Vorrichtung zum austragen von feststoffpartikeln aus einem behaelter, insbesondere einem wirbelschichtreaktor sowie verfahren zum betreiben einer solchen vorrichtung
US767548A (en) Unloading apparatus.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: OUTOTEC GMBH

Free format text: FORMER OWNER: OUTOKUMPU OYJ

Effective date: 20121210

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20121210

Address after: Espoo, Finland

Patentee after: Outokumpu Technology Oyj

Address before: Espoo, Finland

Patentee before: Outokumpu Oyj

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20051109