CN1216670A - 镇流电路 - Google Patents

镇流电路 Download PDF

Info

Publication number
CN1216670A
CN1216670A CN97193942A CN97193942A CN1216670A CN 1216670 A CN1216670 A CN 1216670A CN 97193942 A CN97193942 A CN 97193942A CN 97193942 A CN97193942 A CN 97193942A CN 1216670 A CN1216670 A CN 1216670A
Authority
CN
China
Prior art keywords
circuit
signal
phase
drive
current transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97193942A
Other languages
English (en)
Other versions
CN1143606C (zh
Inventor
C·青
J·常
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1216670A publication Critical patent/CN1216670A/zh
Application granted granted Critical
Publication of CN1143606C publication Critical patent/CN1143606C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • H02M7/53803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2828Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using control circuits for the switching elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2851Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2856Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against internal abnormal circuit conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2981Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2986Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against internal abnormal circuit conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3925Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by frequency variation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53878Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current by time shifting switching signals of one diagonal pair of the bridge with respect to the other diagonal pair
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)

Abstract

一种镇流电路,包括:一个变流器,供产生交变电压用,具有至少一个开关元件;一个负荷电路,接变流器,且具一些供接电灯用的端子;一个驱动电路,接开关元件,供产生使开关元件交替通断的驱动信号;一个测量电路,接负荷电路和驱动电路,供产生作为负荷电流测定结果的第一信号。此外,驱动电路还包括一个相移电路,供产生相对于第一信号相移的第二信号,且驱动电路包括控制装置,供控制得使驱动信号基本上与第二信号同相。由于第一信号与驱动信号之间的相移,有效避免了容性工作状态。

Description

镇流电路
本发明涉及一种使电灯工作的镇流电路,包括:
一个变流器,用于产生交变电压,具有至少一个开关元件;
一个负荷电路,接变流器,具有一些供接电灯用的端子;
一个驱动电路,接开关元件,供产生使开关元件交替通断的驱动信号;
一个测量电路,接负荷电路和驱动电路,供产生作为负荷电流测定结果的第一信号。
从美国专利4,952,849可了解到这种镇流电路的情况。
镇流电路,也叫做电子灯镇流器,通常有一些变流器给负荷提供基本上呈方波的高频电压输出。负荷一般包括工作过程中由电灯组成的负荷电路。一般的变流电路都有电力变换线路(即一些晶体管)将输入的直流变换成所要求的高频交流输出。
控制电路,如Fellows等人的美国专利4,952,849所公开的那一种,供驱动电路馈电变流器的开关线路,检测负荷电流从而控制开关线路。各开关都处于接通状态,为的是最大限度地减少过渡过程期间对开关造成的损害。这通常叫做零电压转换(ZVS)。这种转换方法最大限度地减小开关接通过程中开关两端的电压。
变流器的开关频率一般高于谐振电路的谐振频率,即维持谐振电路处于感性状态。维持电路处于感性状态,在ZVS线路中各电源开关之间的切换过渡过程中极为关键,否则会导致电力大量损耗,使电路中各元件损坏。
实现零电压转换通常采用的一个方法是维持开关频率使其高于谐振频率,如Steigerwald在1998年4月的《电气与电子工程师协会工业电子学学报》第174~181页上发表的题为“半桥式谐振变换器电路布局的比较”一文中所述的那样。这种以频率为基础的线路不难用压控振荡器(VCO)付诸实施。但这种控制方法严格要求需要预先知道谐振频率,以确定扫频区。在简单的应用中,例如在单个电灯的LC谐振变流器为基础的电源和电子镇流器中,只要各变流器是在高品质因数条件下运行,最高增益频率在负荷和线路变动的过程中基本不变。在这些情况下,以频率为基础的控制方法效果良好。
然而,在某些情况下,谐振电路的特性会随电灯负荷、母线电压、环境条件或元件的老化而改变。以频率为基础的简单控制方法可能不能适应新的扫频区从而不能维持零电压转换。
Nalbant在1995年3月的《电气与电子工程师协会应用工业电子学会议记录》第657~664页上发表的题为“新型经改进的控制技术”一文中所述的电路,通过将工作频率提高到谐振频率以上实现零电压转换。转换通过调定流经负荷匹配网路电流的阈值进行。达到其中一个这些阈值时,变流器中发生转换。这种方法的缺点是,必须选择和调定阈值,还必须采用复杂的逻辑电路。若电流值大幅度波动,可能会达不到阈值,而且可能会使转换周期不准或工作频率失调。
因此,本发明的目的是提供电源或镇流器的一种装有变流器因而消除了现有技术的上述缺陷的零电压转换线路。
因此,本发明书开端所述的镇流电路,按照本发明具有这样的特点:驱动电路还配备有相移电路,供产生相对于第一信号相移的第二信号,且驱动电路有个控制装置,供控制得使驱动信号基本上与第二信号同相。
相移电路使第一信号与驱动信号之间,从而也使负荷电路中的电流与变流器产生的交变电压之间,在相角上偏移,从而避免变流器容性运行,有效实现ZVS。
第二信号最好相对于第一信号相移预定的正相角,从而使变流器产生的交变电压导超前于第一信号预定的正相角。在这种情况下,相移电路简单。
本发明的镇流电路,在第二信号过零值时,驱动信号使开关元件导通,因而效果良好。
大家知道,制取相移电路较容易而可靠的方法是采用全通滤波器。
为抑制第一信号的低频分量,最好在镇流电路中装一个滤波器。
变流器采用半桥式变流器同样可以使本发明的镇流电路取得良好的效果。
参看附图和下面的详细说明及权利要求书可以清楚理解本发明的上述和其它目的、特点和优点。
附图中:
图1是本发明一个实施例电源的方框图;
图2是变流器和电源的原理图;
图3是电源的方框图,举例说明了驱动电路的各项功能;
图4是部分驱动电路的原理图,举例说明了高通滤波器、增益控制、相移电路和波形整形功能;
图5是部分驱动电路的半原理半逻辑的电路图,举例说明了波形整形和PWM(脉宽调制)功能;
图5A是图5计时电路和半方框半原理的电路图;
图6是说明起动流程的原理图;
图7是说明与起动有关的扫频功能的原理图;
图8是说明桥式驱动线路的原理图;
图8A是说明驱动器IC(集成电路)各功能的原理图;
图9是流经谐振电路的电流、相移信号和各开关开关顺序的时间曲线。
图1中所示的电源电路包括电压源V、变流电路A、谐振电路B和控制变流电路A的驱动电路C。电压源V是直流电压源,经线路RL1和RL2给变流电路A供电。不然也可以将交流电压源与整流电路结合起来使用,这时还包括功率校正。变流电路A取电压馈电半桥式的电路布局,由驱动电路C控制。谐振电路B接收变流电路A在线路100和102上基本上呈方波的输入。在此实施例中,负荷为多并联负荷灯系。
驱动电路C经线路104接收与流经谐振电路B的电流成正比的电压信号。相移电路在驱动电路C中使检测出的电流信号相移预定的相角。相角φref输入系统中。这个相角在明暗可调的灯系中还可用作明暗调节接口。提供给变流器的驱动信号106和108根据此相移电流信号进行零电压转换和控制变流电路A。
现在翻到图2。变流电路A有一对开关Q1和Q2呈半桥式结构配置,在驱动控制电路C的控制下,电压源V来的直流电压转换成变流器输出端两端大致呈方波的高频交流输出信号。本实施例说的是具一对开关的半桥式变流器,但这里所述的开关线路也适用于具四个开关的全桥式电路布局。在这种结构中,各开关是成对而不是逐个控制的。
开关Q1和Q2最好是MOSFET(金属氧化物半导体场效应晶体管),但也可采用BJT(双极结晶体管)作为电源开关。开关Q1与寄生二极管D1并联连接。开关Q1还可与一个缓冲电容器并联连接,这里可能包括开关Q1附带的结电容器。同样,开关Q2与寄生二极管D2并联连接,也可与一个缓冲电容器并联连接,从而可能包括开关Q2附带的结电容器。开关Q1的漏极经干线RL1接电压源V的输出端。开关Q1的源极接开关Q2的漏极。开关Q1的控制栅通过电阻器R10和二极管D10组成的并联电路经控制线路108接驱动电路C相应的栅控制端。二极管D10的正极接开关Q1的控制栅。二极管D10的作用是迅速清除控制栅的电荷从而提高转换速度。开关Q2的控制栅同样经控制线路106接驱动电路C的栅控制端。开关Q2也有类似的电阻器R12和二极管D12组成的并联电路。这个个别电路与MOSFET开关Q1和Q2配合使用。不同的栅驱动采用双极晶体管开关进行,这方面属于本发明的范围。
线路100将开关Q2的源极与开关Q1的漏极之间的中点I与隔直流电容器Cbk的一端连接起来。电容器Cbk的作用是隔离节点I处产生的变流器输出电压直流分量。线路112将中点I经电阻器R14与驱动电路C连接起来,这下面即将说明。线路102接开关Q2的漏极。线路100和线路102用作变流电路C的输出端。变流器A的输出为基本上呈方波的信号。
继续参看图2。谐振电路B的作用是对去负荷的电压和电流波形整形,负荷可以是例如并联连接的即时起动荧光灯L1,L2,L3,L4负荷,各荧光灯分别与镇流电容器CL1,CL2,CL3,CL4串联连接。
谐振电路B有一个谐振电感线圈Lr,经线路100与隔直流电容器Cbk串联连接。谐振电容器Cr与隔离变压器T1的初级线圈并联连接。
谐振电路B对变流电路A方波电压输出的滤波作用使电流大致呈正弦波形流通。此电流可由线路102上小阻值R20两端的压降检测出来。线路104上检测出的电流信号输入驱动电路C,这下面即将说明。
图3的方框图示出了驱动电路C的各组成部分。电流检测电路200检测RS1两端的压降。高通滤波器204用来滤除检测出的电流的一个频率分量。工作频率相应的频率分量可以通过,但较低的频率信号分量就受到抑制,不能存在于电流信号中。这里利用了自动增益控制206来控制信号的振幅从而防止其对电路元件的饱和作用。相移电路208使信号相移φref角。波形整形电路210由相移电流信号过零点时激发。脉宽调制器212产生开关脉冲,栅驱动器216控制各开关的开关时间和相应的工作循环。起动逻辑电路214使灯从起动过渡到稳态操作状态。
现在翻到图4。电流检测电路200是个差动放大器,其作用是检测R20两端的压降。R22,R22,R24,R26,R28和R30接操作放大器202(例如LT1122),从而在线路106上提供正比于谐振电路B中电流的输出电压信号。信号是工作频率下的信号,基本上呈正弦形,且其各频率分量较低。高通滤波器204接收检测出的电流信号。本发明同样适用于更高级的谐振电路。因此,可以有多个低频分量使滤波器204所抑制的电流信号振荡。
高通滤波器204的输出端配备有自动增益控制器206,从而避免检测出的电流使线路元件饱和。一对倒相操作放大器220和222用来调节信号的大小并提供正的增益系数。信号的调节选用操作放大器外电阻R34/R36与操作放大器222电阻器R34/R40的比值进行。鉴于流经电路的信号其振幅可能波动,因而用自动增益控制器224来维持信号使其处于给定范围内。自动增益控制器224包括操作放大器226。增益由与阻抗R42并联的压控电阻器(例如JFET T1)控制。JFET T1的栅极接阻抗R44、二极管D20、齐纳二极管D22和RC电路组成的反馈通路,RC电路则由电阻R46和电容C12组成。另一个倒相放大器226通过选择电阻器R52和R54进一步调节信号。
信号的相移由相移电路208进行,相移电路208包括串联连接的成对全通滤波器228和230。全通滤波器装有操作放大器,例如LT1122。如本技术领域所周知的那样,这类滤波器的环路增益为1,但对通过其中信号提供的相移角预定。
本发明的线路可以在驱动过程中调节相角。上面说过,检测出的电流信号采用正相角,确保用相移信号的过零点作为接通变流电路A中各开关的控制信号时零电压转换。理论上,选择任何正相角可确保零电压转换。但实际上,由于用MOSFET的结电容作为开关Q1和Q2,因而需要极小的相角。
相角可用开环或闭环为基础的线路实现。在开环线路中,相移量可通过分别选择与分别接全通滤波器228和230不倒相输入端的电容器C14和C16并联的电阻器R56和R58的数量预选。不然也可以采用压控电阻器,例如JFET(结场效应晶体管)。从本电路可以看到,采用了两个全通滤波器,但也可以考虑采用更多或更少的滤波器。最佳相移可以凭经验根据电路特性(例如,若电流中采用开关Q1和Q2则为并联于开关Q1和Q2的缓冲电容器的电容)或电流确定。
作为另一种选择,可采用闭环线路。在此情况下,输出电压的调节可通过检测负荷两端的输出电压进行。鉴于输出电压随工作频率或相角的变化而变化,因而可以通过调节相角调节输出电压,从而产生合乎要求的输出电压。这种线路可应用于调节光明暗度的镇流器中。
信号相移之后,接着是波形整形电路210对开始转换的计时,下面即将说明。装有电容器C18的滤波器对信号起整形作用,缓冲器230是个电压跟随器,加在电路之间提供低的输出阻抗并与输入端分隔开。缓冲器230的输出端在线路119上。不倒相放大器232(图5)包括操作放大器234,选择电阻器R60和R62来调节电压。滤波器236包括电阻器R64和C20。
继续参看图5,转换信号由计时电路产生,计时电路可以是例如摩托罗拉公司出品的555计时IC300,这里附带了其技术规格以供参考,如图5A所示。计时器300构成单稳态方式,即驱动信号通过相移电流信号的过零激发成“起作用”状态。比较器310将滤波器236来的大致呈正弦形的模拟电压信号转换成对应于相移电流信号过零点的方波系。比较器改变该过零点以调定转换脉冲的前沿。所加的电压V1再加上电阻器R66和R68以及二极管D30,对加到变流器I1的信号起适当的调节作用。高通滤波器238包括电容器C22和并联连接的电阻器R70和二极管D32,与变流器I2一道对线路120上的信号进一步起整形作用,线路120接计时器300的触发输入端(插脚2)。在此工作方式下,阈端子(插脚7)和放电端子(插脚6)连接在一起。插脚5处的控制电压借助于带电阻器R72和R74的分压器预调定到某一恒定值。输出端子(插脚3)的输出信号出现在线路122上。计时电路300在线路122上的输出信号和起动电路320在线路123上的输出通过用作电子开关的“或”门214。
如图6~7中所示,起动电路320起初始扫频引燃电灯的作用。起动电路210包括压控振荡器(VCO)312、图6中的单脉冲触发器314和直流电压检测和调节电路316(图7)。VCO312最好是麻萨诸塞州诺伍德模拟器件公司出品的AD654电压/频率转换器,这里附带了其技术规范以供参考,但可以考虑在此电路采用任何适当的VCO。图7中的比较器318和单脉冲触发器320。下面说明起动过程。图6中,直流母线电压V完全形成之前,线路130上的电压低,触发器314的输出端插脚Q高。VCO312开始在高频区fstart工作,从而在线路123上产生高频方波信号。谐振电路B的输出电压因高频运行和直流母线电压V较低而低。
直流母线电压增加到预调定阈值时,图7中比较器318的输出电压就调低。这反过来触发了触发器320,并使线路130上的电压调高。实际上,图6中,在VCO312的控制电压端子(插脚4)输入的电压是逐渐下降的,从而使VCO312产生的输出频率下降。这个过程完成了从高频Fstart到较低工作频率fop的扫频过程,从而使谐振电路输出到灯L1,L2,L3和L4的电压逐渐增加,直到各灯点燃起来为止。各灯工作之后,线路122中经处理的电流信号触发触发器314,“或”门322起阻挡线路123上输出信号的作用。接着,图3中的电源以预定的相角在自振荡频率下工作。
现在翻到图8。信号124在逻辑反相器16处反相。信号接着传送到门驱动器330的“输入”端子,门驱动器330可以是例如加利福尼亚州埃尔斯昆多市国际整流器公司出品的IR2111半桥式驱动器集成电路,这里附带了其技术规范,如图8A所示。继续参看图8。门驱动器330包括逻辑电路以便将单方波输入信号(例如线路124上的输入信号)转换成线路108和106上的两个独立驱动信号,分别控制开关Q1和Q2。门驱动器330可构制得得以产生信号108和106,从而存在Q1或Q2都不导通的消隐脉冲持续时间。
图9的时间曲线示出了上述电路产生的波形。流经谐振电路B的电流在曲线上以信号500表示。在驱动电路C中,该信号对应于线路114上的电压信号,与电流成正比,且由高通滤波器204(见图3-4)将其较低的频率分量滤除掉。如上所述,线路114上的信号通过自动增益控制206和相移电路208。相移信号502相当于相移电路208在线路118(见图4)上的输出。相移信号502按对应于如上所述的φref的量504相移。信号502的过零点用作控制转换过程的基准。因此,在过零点508,开关Q1截止,如线510(实线)所示,且开关Q2导通,如线512(点划线)所示。从图中可以看到,Q2在Q1截止的同时导通。消隐时间514通常由驱动器304提供,从而使Q1和Q2都截止短暂的一段时间。
上面已介绍本发明目前认为是最佳的实施例,但本技术领域的行家们都知道,在不脱离本发明在所附权利要求书中所述的范围的前提下是可以对上述实施例进行种种修改的。因此,这里公开的内容仅仅是举例而已,并不是对本发明的限制。

Claims (6)

1.一种使电灯工作的镇流电路,包括:
一个变流器,用于产生交变电压,具有至少一个开关元件;
一个负荷电路,接变流器,具有一些供接电灯用的端子;
一个驱动电路,接开关元件,供产生使开关元件交替通断的驱动信号;
一个测量电路,接负荷电路和驱动电路,供产生作为负荷电流测定结果的第一信号;其特征在于,驱动电路还包括一个相移电路,供产生相对第一信号相移的第二信号,且驱动电路包括控制装置,供控制得使驱动信号基本上与第二信号同相。
2.如权利要求1所述的镇流电路,其特征在于,第二信号相对于第一信号相移预定的正相角,从而使变流器产生的交变电压超前于第一信号预定的正相角。
3.如权利要求1或2所述的镇流电路,其特征在于,驱动信号在第二信号过零时使开关元件导通。
4.如权利要求1,2或3所述的镇流电路,其特征在于,相移电路包括一个全通滤波器。
5.如以上任一或多个权利要求所述的镇流电路,其特征在于,驱动电路有一个滤波器,供抑制第一信号的低频分量。
6.如以上任一或多个权利要求所述的镇流电路,其特征在于,变流器包括一个半桥式变流器。
CNB97193942XA 1996-12-23 1997-12-08 镇流电路 Expired - Fee Related CN1143606C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/773,243 1996-12-23
US08/773,243 US5781418A (en) 1996-12-23 1996-12-23 Switching scheme for power supply having a voltage-fed inverter

Publications (2)

Publication Number Publication Date
CN1216670A true CN1216670A (zh) 1999-05-12
CN1143606C CN1143606C (zh) 2004-03-24

Family

ID=25097638

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB97193942XA Expired - Fee Related CN1143606C (zh) 1996-12-23 1997-12-08 镇流电路

Country Status (6)

Country Link
US (1) US5781418A (zh)
EP (1) EP0893039B1 (zh)
JP (1) JP2000505945A (zh)
CN (1) CN1143606C (zh)
DE (1) DE69725974T2 (zh)
WO (1) WO1998028949A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102634B (zh) * 2006-07-04 2010-11-03 胜美达集团株式会社 逆变器驱动电路
CN102263470A (zh) * 2010-05-28 2011-11-30 通用电气公司 高速自级联电机
CN1592531B (zh) * 2003-08-26 2012-02-08 奥斯兰姆施尔凡尼亚公司 反馈电路和操作镇流器谐振逆变器的方法

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016257A (en) * 1996-12-23 2000-01-18 Philips Electronics North America Corporation Voltage regulated power supply utilizing phase shift control
GB2322019A (en) * 1997-02-07 1998-08-12 Central Research Lab Ltd Gas discharge lamp drive circuit
US6111368A (en) * 1997-09-26 2000-08-29 Lutron Electronics Co., Inc. System for preventing oscillations in a fluorescent lamp ballast
US6137353A (en) * 1998-06-29 2000-10-24 Philips Electronics North America Corporation Linearized integrated FM demodulator using a plurality of cascaded all-pass filters or a bessel filter
US6037720A (en) * 1998-10-23 2000-03-14 Philips Electronics North America Corporation Level shifter
US6285138B1 (en) 1998-12-09 2001-09-04 Matsushita Electric Industrial Co., Ltd. Apparatus for lighting fluorescent lamp
US6114814A (en) 1998-12-11 2000-09-05 Monolithic Power Systems, Inc. Apparatus for controlling a discharge lamp in a backlighted display
US6900600B2 (en) 1998-12-11 2005-05-31 Monolithic Power Systems, Inc. Method for starting a discharge lamp using high energy initial pulse
US6259615B1 (en) * 1999-07-22 2001-07-10 O2 Micro International Limited High-efficiency adaptive DC/AC converter
US6804129B2 (en) * 1999-07-22 2004-10-12 02 Micro International Limited High-efficiency adaptive DC/AC converter
US6137234A (en) * 1999-10-18 2000-10-24 U.S. Philips Corporation Circuit arrangement
AU5372901A (en) * 2000-04-20 2001-11-07 Intersil Corp Quasi-resonant converter
EP1300055B1 (en) 2000-05-12 2006-08-30 O2 Micro International Limited Integrated circuit for lamp heating and dimming control
US6407935B1 (en) 2000-05-30 2002-06-18 Koninklijke Philips Electronics N.V. High frequency electronic ballast with reactive power compensation
WO2001099476A1 (en) * 2000-06-20 2001-12-27 Koninklijke Philips Electronics N.V. Circuit device
US6362575B1 (en) 2000-11-16 2002-03-26 Philips Electronics North America Corporation Voltage regulated electronic ballast for multiple discharge lamps
US6501234B2 (en) 2001-01-09 2002-12-31 02 Micro International Limited Sequential burst mode activation circuit
US6344979B1 (en) * 2001-02-09 2002-02-05 Delta Electronics, Inc. LLC series resonant DC-to-DC converter
JP2002272122A (ja) * 2001-03-09 2002-09-20 Sony Corp 共振型電力供給装置
WO2002076152A1 (en) * 2001-03-21 2002-09-26 Koninklijke Philips Electronics N.V. Improved current control circuit
US6570344B2 (en) 2001-05-07 2003-05-27 O2Micro International Limited Lamp grounding and leakage current detection system
EP1400008A1 (en) * 2001-05-24 2004-03-24 Comair Rotron, Inc. Stator with multiple winding configurations
US6903949B2 (en) * 2001-12-12 2005-06-07 International Rectifier Corporation Resonant converter with phase delay control
US6807070B2 (en) * 2001-12-12 2004-10-19 International Rectifier Corporation Resonant converter with phase delay control
US7515446B2 (en) * 2002-04-24 2009-04-07 O2Micro International Limited High-efficiency adaptive DC/AC converter
US6856519B2 (en) 2002-05-06 2005-02-15 O2Micro International Limited Inverter controller
US6873322B2 (en) * 2002-06-07 2005-03-29 02Micro International Limited Adaptive LCD power supply circuit
US6949912B2 (en) 2002-06-20 2005-09-27 02Micro International Limited Enabling circuit for avoiding negative voltage transients
US6756769B2 (en) 2002-06-20 2004-06-29 O2Micro International Limited Enabling circuit for avoiding negative voltage transients
TW567518B (en) * 2002-08-09 2003-12-21 Benq Corp Discharge tube circuit with controllable lighting up time and over-voltage protection
US6778415B2 (en) * 2003-01-22 2004-08-17 O2Micro, Inc. Controller electrical power circuit supplying energy to a display device
US7057611B2 (en) * 2003-03-25 2006-06-06 02Micro International Limited Integrated power supply for an LCD panel
US6936975B2 (en) * 2003-04-15 2005-08-30 02Micro International Limited Power supply for an LCD panel
US6897698B1 (en) 2003-05-30 2005-05-24 O2Micro International Limited Phase shifting and PWM driving circuits and methods
TW591976B (en) * 2003-08-28 2004-06-11 Zippy Tech Corp Arc discharge protection device
US20050068795A1 (en) * 2003-09-29 2005-03-31 Konopka John G. Controlled resonant half-bridge inverter for power supplies and electronic ballasts
US6919694B2 (en) 2003-10-02 2005-07-19 Monolithic Power Systems, Inc. Fixed operating frequency inverter for cold cathode fluorescent lamp having strike frequency adjusted by voltage to current phase relationship
US7394209B2 (en) * 2004-02-11 2008-07-01 02 Micro International Limited Liquid crystal display system with lamp feedback
US7342363B2 (en) * 2004-05-06 2008-03-11 Continuum Electro•Optics, Inc. Methods and apparatus for an improved amplifier for driving a dynamic load
US7839095B2 (en) * 2004-10-16 2010-11-23 Osram Sylvania Inc. Lamp with integral voltage converter having phase-controlled dimming circuit containing a voltage controlled resistor
US7133298B2 (en) * 2004-10-25 2006-11-07 Texas Instruments Incorporated High frequency voltage regulating transformer based converter
US7944716B2 (en) * 2005-04-01 2011-05-17 Nxp B.V. Control of a resonant converter
DE102005030114A1 (de) * 2005-06-28 2007-01-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Schaltungsanordnung und Verfahren zum Betrieb mindestens einer elektrischen Lampe und mindestens einer LED
KR101556395B1 (ko) 2008-04-02 2015-09-30 페어차일드코리아반도체 주식회사 컨버터 및 그 구동 방법
US8391025B2 (en) * 2008-05-02 2013-03-05 Advanced Energy Industries, Inc. Preemptive protection for a power convertor
WO2011078425A1 (ko) * 2009-12-23 2011-06-30 부경대학교 산학협력단 부하의 세그먼테이션을 고려한 3-레벨 인버터 및 그 제어방법
US20130119762A1 (en) * 2009-12-23 2013-05-16 Seong Jeub Jeon Load-segmentation-based full bridge inverter and method for controlling same
US8508964B2 (en) 2010-12-03 2013-08-13 Solarbridge Technologies, Inc. Variable duty cycle switching with imposed delay
KR101053261B1 (ko) 2011-02-11 2011-10-31 케이디시스텍 주식회사 고주파 위상 변위 방식의 펄스 폭 변조를 통한 고주파 공진형 전력 변환 장치
JP6921085B2 (ja) * 2015-12-22 2021-08-18 サーマツール コーポレイション ワークピース加熱用の微調整された出力を有する高周波電源システム
US10298138B2 (en) 2017-08-31 2019-05-21 Google Llc Programmable power adapter
US10277140B2 (en) 2017-08-31 2019-04-30 Google Llc High-bandwith resonant power converters

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952849A (en) * 1988-07-15 1990-08-28 North American Philips Corporation Fluorescent lamp controllers
JPH02223384A (ja) * 1989-02-21 1990-09-05 Matsushita Electric Works Ltd 共振型インバータ
US5363020A (en) * 1993-02-05 1994-11-08 Systems And Service International, Inc. Electronic power controller
CA2096559C (en) * 1993-05-19 1999-03-02 Daniel Pringle Resonant unity power factor converter
KR960010713B1 (ko) * 1993-08-17 1996-08-07 삼성전자 주식회사 공진형 컨버터의 영전압 스위칭 제어장치 및 이를 이용한 전자식 안정기
US5416387A (en) * 1993-11-24 1995-05-16 California Institute Of Technology Single stage, high power factor, gas discharge lamp ballast
US5438243A (en) * 1993-12-13 1995-08-01 Kong; Oin Electronic ballast for instant start gas discharge lamps
US5583402A (en) * 1994-01-31 1996-12-10 Magnetek, Inc. Symmetry control circuit and method
JP3312369B2 (ja) * 1994-11-15 2002-08-05 ミネベア株式会社 インバータ装置
US5677602A (en) * 1995-05-26 1997-10-14 Paul; Jon D. High efficiency electronic ballast for high intensity discharge lamps

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1592531B (zh) * 2003-08-26 2012-02-08 奥斯兰姆施尔凡尼亚公司 反馈电路和操作镇流器谐振逆变器的方法
CN101102634B (zh) * 2006-07-04 2010-11-03 胜美达集团株式会社 逆变器驱动电路
CN102263470A (zh) * 2010-05-28 2011-11-30 通用电气公司 高速自级联电机
CN102263470B (zh) * 2010-05-28 2015-08-19 通用电气公司 高速自级联电机

Also Published As

Publication number Publication date
JP2000505945A (ja) 2000-05-16
US5781418A (en) 1998-07-14
DE69725974D1 (de) 2003-12-11
EP0893039A1 (en) 1999-01-27
EP0893039B1 (en) 2003-11-05
DE69725974T2 (de) 2004-09-02
WO1998028949A1 (en) 1998-07-02
CN1143606C (zh) 2004-03-24

Similar Documents

Publication Publication Date Title
CN1143606C (zh) 镇流电路
US6429604B2 (en) Power feedback power factor correction scheme for multiple lamp operation
CN1096823C (zh) 放电灯镇流器
KR0155147B1 (ko) 인버터 장치
CA2436545C (en) Ballast self oscillating inverter with phase controlled voltage feedback
CN1166260C (zh) 可调光的电子镇流器
WO1999008373A2 (en) Voltage regulation scheme for power supply having a voltage-fed inverter
US5166579A (en) Discharge lamp operating circuit
JPH07302687A (ja) ランプ動作用回路
JPH1167471A (ja) 照明装置
JPH07220889A (ja) 電子安定器
JPH08506931A (ja) 2つのトランジスタと2つのトランスを具備する電子バラスト
CN1180987A (zh) 具有动态调节灯电流的反馈电路的灯电源电路
JPH02195697A (ja) 低圧放電ランプを高い周波数で作動するための回路装置
KR100289214B1 (ko) 형광램프 점등장치
CN1222101C (zh) 交换式电源供应器
CN1559161A (zh) 可调节灯启动电流的电子镇流器
KR960002050B1 (ko) 형광램프용 전자안정저항기
CN1477774A (zh) 一种控制dc-dc转换器的方法
US6208086B1 (en) Halogen power converter with complementary switches
CN1386316A (zh) 电子换流器
EP0477587A1 (en) Power apparatus
KR20030023372A (ko) 전자식 안정기의 전력공급회로
JPH0750987B2 (ja) 共振形dc―dcコンバータの制御方法
CN1049553C (zh) 镇流电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1055697

Country of ref document: HK

C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee