CN1214754A - 测定井下事件和状态的方法 - Google Patents

测定井下事件和状态的方法 Download PDF

Info

Publication number
CN1214754A
CN1214754A CN97193385A CN97193385A CN1214754A CN 1214754 A CN1214754 A CN 1214754A CN 97193385 A CN97193385 A CN 97193385A CN 97193385 A CN97193385 A CN 97193385A CN 1214754 A CN1214754 A CN 1214754A
Authority
CN
China
Prior art keywords
signal
increment
drill bit
telecommunication
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN97193385A
Other languages
English (en)
Other versions
CN1082128C (zh
Inventor
李·摩根·史密斯
威廉姆·A·古德曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holeybeton Energy Source Service Co.
Original Assignee
DECORATION INDUSTRY Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DECORATION INDUSTRY Co filed Critical DECORATION INDUSTRY Co
Publication of CN1214754A publication Critical patent/CN1214754A/zh
Application granted granted Critical
Publication of CN1082128C publication Critical patent/CN1082128C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B12/00Accessories for drilling tools
    • E21B12/02Wear indicators
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/005Below-ground automatic control systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/003Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by analysing drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/22Fuzzy logic, artificial intelligence, neural networks or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Numerical Control (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

测定给定尺寸和结构的钻头(10)所做功的方法,包括从起点(I)到终点(T)用钻头(10)钻一井孔并记录起点和终点之间距离的步骤。产生出实际增量力的电信号(18),每个电信号对应于钻头(10)在起点和终点之间距离的各增量段。还产生出增量距离电信号(14),每个对应于各实际增量力电信号(18)所在增量段的长度。对实际增量力信号和增量距离信号进行处理,从而产生一值对应于该钻头从起点到终点钻孔所做的总功。使用这种功测定方法,大量其他井下状况和/或事件能被测定。

Description

测定井下事件和状态的方法
本发明的背景
从石油和天然气井钻井工业最初开始,正如我们所知,其最大挑战之一一直是这样一个事实,即要实际看见井下在进行什么那是不可能的。有任意多的井下状态和/或事件在确定如何进行操作时有极大的重要性。不言而喻,试图测定这些井下状态和/或事件的所有方法都是间接的。在这种程度上,它们全都不够理想,但在工业界人们一直在努力去发展更简单和/或更精确的方法。
通常,其技术途径一直集中于特定的井下状态或事件,并发展测定这一特定对象的方法。例如,美国专利5,305,836号公开一种方法,借助该方法,能够根据钻头钻孔岩性来电子模拟当前所用钻头的磨损情况。这帮助操作者知道何时该更换钻头。
确定在给定地层的给定部分中使用何种钻头的过程,在传统上最好的情况是仅仅根据很广泛的一般性的考虑,而且最坏的情况则不是科学而更是技巧和猜想。
对于其他种类的状态和/或事件,能给出其他例子。
再有,现在仍有其他一些状态和/或事件,如果知道它们会有帮助。然而,因为它们不太重要,而且考虑到要优先发展更好的方法去测定那些更重要的东西,所以对于测定这些其他状态的方法一直是很少注意或没有给予注意。
本发明概要
令人惊讶的是,就申请人所知,对于一个钻头在钻孔过程中从起始点到终止点所做的功的测定方法尚未予以明显的重视。本发明则提供了这样做的一种很有实效的方法。本发明的具体方法是比较容易实现的,而且也许更重要的是,这项功的测定为发展对许多其他状态和事件的测定奠定了共同基础。
更具体地说,由一个所考虑的尺寸和结构的钻头从一起点到一终点钻一个孔。如这里所使用的那样,“起点”不需要(但能够)代表该钻头在孔中首先被放入工作的那一点。类似地,“终点”也不需要(但能够)代表该钻头被拉出或被替换的点。起点和终点可以是要了解的钻头在其间钻孔的任何两点,而且在这两点之间能产生为其后的步骤所必须的数据。
在任何情况下,在起点和终点之间的距离被记录下来,而且该距离被分成若干个增量段(最好是小增量)。多个实际增量力电信号被产生出来,每个电信号对应于在起点和终点之间距离的各增量段上该钻头所产生的力。还产生出多个增量距离电信号,每个信号对应于产生每个实际增量力电信号的相应增量段的长度,这些实际增量力电信号和增量距离电信号由计算机进行处理,以产生与钻头在钻井过程中从起点到终点所做的全部功相对应的值。
在本发明的最佳实施例中,对于功的测定在其后可被用于发展对钻头机械效率的测定以及对于所考虑的有一定尺寸和结构的钻头做功和磨损之间的连续的额定功关系(rated work relationship)的测定。这些又能被用来发展许多其他东西。
例如,额定功关系包括最大磨损-最大功点,这里有时称作“功额定值(work rating)”,它代表钻头被磨损到实际上不能再使用的一点之前它所能做的功的总量。这个功额定值及其关系(功额定值是这种关系的一部分)能和其他效率测定一起,用于确定是否一个所考虑的一定尺寸和结构的钻头能钻透地层中的给定间隔的过程中。其他钻头结构也能被类似地作出评价,然后便能做出有依据的、科学的选择,以确定哪种钻头或钻头系列能用于钻透那个间隔。
使用这种额定功关系的本发明的另一最佳实施例,包括确定在井孔的给定部分中被钻孔岩石磨蚀性的测定。这又能被用于调整根据本发明的各个方面所测定的其他状态,例如前面提到的钻头选择过程。
额定功关系还能被用于在远处模拟当前用于一井孔中的钻头的磨损情况,而且对磨蚀性的确定能被用于调整这种模拟,如果钻头所钻的间距被确信(例如由于对附近的“移位井孔”的经验)包含磨蚀性较强的岩石的话。
附图简述
图1概括表示根据本发明所能完成的各种处理过程、
图2是额定功关系的图示。
图3是由于地层磨蚀性造成功损失的图示。
图4是岩石抗压强度和钻头效率之间关系的图示。
图5是钻头所做累积功和由于磨损所造成的效率降低之间关系的图示。
图6为概括表示钻头选择过程图。
图7是功率限制的图示。
详细描述
参见图1,本发明的最基本方面涉及一给定尺寸和结构的钻井钻头10所做功的测定。一井口或者孔12至少有一部分是由钻头10钻的。更具体地说,钻头10将在起点I和终点T之间钻出井孔12。在图示的这个实施例中,起点I是钻头10在井孔12中开始投入工作的一点,而终点T是钻头10被拔出的一点。然而,就测定所做的功本身而言,点I和T可以是钻头10已钻的距离上的任何两个能识别的点,而且在这两点之间能产生如下文所描述的必要的数据。
基本原理是利用众所周知的关系去测定所做的功:
Ωb=FbD    (1)
式中:
Ωb=钻头所做的功
Fb=钻头处的总力
D=所钻的距离
井孔12在点I和T之间的间距长度可作为若干钻井数据之一被确定和记录下来,它能在钻这井12时产生出来,如图中由线14所指示的那样。为了把它变成合适的形式以供输入计算机16和进行处理,最好把这个长度(即I和T两点之间的距离)分成若干个小的距离增量,例如约为每个半英尺的增量。对于每个这样的增量距离值,有相应的增量距离电信号产生并被输入到计算机16中,如线18所示。如这里所使用的那样,在引用数值值和电信号时,术语“相应的”意思是“函数相关的”,其将被理解为要了解的函数能够是(但不必要是)一个简单的等价关系。“精确地对应于”的意思是该信号直接转换成要了解的参数本身的值。
为了确定功,还要产生多个实际增量力电信号,每个对应于在点I和T之间距离的各个增量上钻头的作用力。然而,由于直接确定总的钻头力时的固有困难,对距离的每个增量,对应于钻井数据14当中其他参数的信号被输入,如18处所指示的那样。这些参数在理论上能决定真实的总钻头力,它包括所施加的轴向力、扭转力以及任何所加的横向力。然而,除非有目的地施加横向力(在这种情况下它是已知的),即除非在井底组合件中没有稳定器,否则横向力是如此之小,以至可以被忽略。
在一个实施例中,用于产生实际增量力信号的钻井数据是:
-钻头上的重量(W),例如以lb(磅)为单位;
-钻孔液的流体压力(Fi),例如以lb(磅)为单位;
-转速(N),以rpm(转/分)为单位;
-转动力矩(T),例如以ft.*lb(英尺*磅)为单位;
-生产率(R),例如以ft./hr(英尺/小时)为单位;以及
-横向力(如果可以加的话)(F1),例如以lb(磅)为单位。
将每个增量段的这些数据分别转换成相应的信号在18处所示输入,计算机16被编程或被配置成处理这些信号,以产生实际增量力信号,完成电子等效求解下列方程:
Ωb=[(W+Fi)+120πNT/R+F1]D(2)
当横向力F1可忽略时,那一项及相应的电信号取消。
令人吃惊的是,已经发现,该力的扭转分量是最主要的和最重要的,所以在本发明的稍逊最佳实施例中可以只使用这个力分量来完成功的测定,在这种情况下,相应的方程式变为:
Ωb=[120πNT/R]D    (3)
在另一个实施例中,在产生实际增量力时,计算机16可以使用如下电子等效方程式:
Ωb=2πT/dcD        (4)
这里d代表每转的切割深度,而它又是由如下关系定义的:
dc=R/60N    (5)
然后,计算机16被编程或被配置成处理这些实际增量力信号和各自的增量距离信号,以产生一电信号,它对应于在I和T两点之间钻孔过程中由钻头10所做的总功,如方框34所示。这个信号可以被容易地转换成人们能理解的数字值,以众所周知的方式由计算机16输出,如线36所示。
可以以多种不同的方式完成对实际增量力信号和增量距离信号的处理,以产生总功34。例如:
在一个版本中,计算机处理实际增量力信号和增量距离信号,以产生一加权平均力电信号,它对应于钻头在起点和终点之间所施加的力的加权平均。“加权平均”的意思是每个对应于一或多个实际增量力信号的力值以施加该力的距离增量数进行“加权”。然后,计算机简单地完成加权平均力与I和T两点间总距离的电子等效乘法,以产生一对应于总功值的信号。
在另一版本中,对每个增量分别处理其实际增量力信号和增量距离信号,以产生各实际增量功电信号,然后将实际增量功信号累加以产生对应于该总功值的总功电信号。
在又一个版本中,计算机可以由实际增量力信号和增量距离信号发展出一个力/距离函数,然后完成对那个函数的电子等效积分。
这三种方式不仅是作为处理这些信号以产生等效总功信号的三种方式,而且它们是各种不同处理方式的示例,这些处理被认为是与构成本发明各部分的其他处理相连系的等效处理,并且在下文中描述。
现有技术能确定在钻孔过程中何时钻头激烈振动。如果确定在I和T两点间的间隔的至少一部分上已经发生了这种振动,那么最好是适当地编程和输入计算机16,从而对需要了解的各增量段产生各自的实际增量力信号。这可以对用于确定实际增量力的每个变量采用平均值(均值)。
钻头磨损在函数关系上与该钻头所做的累积功相关联。按照本发明的又一方面,除了确定钻头10在I和T两点间钻孔过程中所做的功之外,还测量在钻这一间隔过程中钻头10的磨损。一相应的磨损电信号被产生出来并作为历史数据15、18的一部分输入计算机。(这样,为了这一目的,I点应是钻头10第一次放入井孔12开始工作的点,而T点应是钻头10被取出的那一点。)对于附加的井24和26及它们各自的钻头28和30,可以作同样的处理。
图2展示出对于与这些数据相对应的信号,在电子技术方面计算机16能做什么。图2表示钻头磨损与做功的关系图。使用前述数据,计算机16能处理相应的信号以把各个功和磨损信号关联起来,并对于井孔12、24和26中的每个井孔及其各自的钻头,完成把一点放在这张图上的电子等效工作。例如,点10′可以代表与钻头10相关联的功和磨损,点28′可以代表与钻头28相关联的功和磨损,而且点30′可以代表与钻头30相关联的功和磨损。其他一些点P1、P2和P3代表有同样结构和尺寸的另一些钻头(图1中未画出)所做的功和磨损。
通过处理对应于这些点的信号,计算机16能产生一个由适当的电信号来定义的函数,当用图形来表示这个函数时,它通常采取曲线C1形式的那种光滑曲线形式;将会理解,由于感兴趣的是产生一个光滑和连续的曲线,这种曲线可能不会精确地通过对应于具体经验数据的全部单个点。这个连续的“额定功关系”可以是在它自己右边的输出39,而且还能用于本发明的各其他方面(见下文的描述)。
确定一个终点Pmax是有帮助的,点Pmax代表在钻头不再能实际使用之前所能承受的最大钻头磨损,而且根据此额定功关系可确定相应做功的大小。这样,点Pmax代表最大磨损-最大功点,这里有时把它称作要了解的钻头类型的“功额定值(work rating)”。建立一种由曲线C1的镜象所代表的关系也会是有帮助的,曲线C1的镜象,即曲线C2,其根据前述信号画出了剩余的可用钻头寿命与所做功之间的关系。
在计算机中的对应于由曲线C1和C2所代表的函数的那些电信号,当在39处被输出时,最好转换成视觉可接受的形式,如图2所示的曲线,
如在前面另一段叙述中所提到的那样,钻头振动可以引起单个增量段上钻头力的显著变化。在建立额定功关系时,在这些情况下,最好是产生对应于每个这样的增量段上最大力的各个峰值力信号。如下文解释的那样,还能确定那个增量段的岩石强度允许的最大力所对应的一个极限。对于任何可能被考虑用于建立曲线C1的钻头,都应把一个对应于峰值力信号的值和该极限进行比较,如果这个值大于或等于这个极限,则这个钻头应当从产生该额定功关系信号的那些钻头中排除。当然,这种比较能由计算机16以电子技术实现,它利用一个对应于前述极限的电极限信号。
确定前述极限的原理是基于对钻头功率的分析。由于功与磨损有函数关系,而功率是做功的速率,所以功率与磨损率有函数关系(因而是磨损率的指标)。
因为功率P=FbD/t    (6)
         =FbR      (6a)
这里t=时间
    R=穿透速率,所以在穿透速率和功率之间也存在一个基本关系。
对于转动机器部件的粘附和研磨磨损来说,已发表的研究结果指出,在达到一临界功率极限之前其磨损率与功率成正比,而在该极限之上其磨损率急速增大而且变得严重或灾难性的。转动机器部件的磨损还与较软材料的强度成反比。钻孔过程与被润滑的转动机械的本质差别在于所加的力总是与较软材料的强度成正比。
在图7中,分别以曲线C5和C6绘出在高和低岩石抗压强度情况下要了解的钻头结构的磨损率作为功率的函数。可以看出,在每种情况下,在达到各自临界点PH或PL之前磨损率随功率呈线性增大,而在超过临界点之后呈指数增大。这种严重的磨损是由于增加的磨擦力、升高的温度以及增大的振动强度(脉冲加载)。在稳定状态条件下是在eH和eL端发生灾难性磨损,而在由于强烈振动造成高冲击加载的情况下则可能在PH和eH之间(或PL和eL之间)发生。在超过临界点PH、PL的功率水平上操作使钻头的磨损率加速增长,它不再与功率成正比,而且显著地增加了造成灾难性磨损的危险性。极限功率曲线C7,可以由连接各岩石抗压强度曲线上的临界点得到。应该指出,这个功率曲线也是切割器(或齿)冶金和金刚石质量(diamond quality)的函数,但从实践上考虑,这些因素是可以忽略的。曲线C7确定了极限功率,其避免钻头暴露于严重磨损率的情况面前。
一旦这样确定了对于适当岩石强度的极限功率,通过简单地用穿透速率除这个功率,便可以外推出相应的最大力极限。
另一种做法是:可以把实际钻头功率与该功率极限直接进行比较。
当然,上述全部工作,包括产生对应于曲线C5、C6和C7的信号、外推出对应于最大力极限的信号、以及与该极限信号进行比较,都可以在向计算机16输入对应于适当历史数据的信号之后由计算机16以电子技术来完成。
其他因素也能影响振动强度,这些因素也可在最佳实施例中予以考虑。这些其他因素包括:钻头上的重量与转动速率之比、钻杆几何形状与刚度、井孔几何形状、以及在钻杆中中性点以下的底孔组件(bottomhole assembly)质量。
产生峰值力信号的方式,可以与前述的在没有振动问题的情况下对各增量段产生实际增量力信号的方式相同,即:使用方程(2)、(3),或(4)+(5)的电子等效处理,只是对于每个变量(例如W),将使用要了解的那个间隔上该变量的最大值或者说峰值(但对于R,应使用其最小值)。
额定功关系的一种应用是进一步获得关于磨蚀性的信息,如48处所指出的那样。磨蚀性反过来能增强本发明的若干其他方面(见下文)。
至于磨蚀性本身,必须有附加的历史数据,更具体地说是磨蚀性数据50,这些数据来自附加的井或孔52,它是已钻透一磨蚀性地层例如“硬梁(hard stringer)”54的井孔,以及来自用于钻孔这个包括硬梁54的间隔的钻头56。
应该指出,如这里所使用的那样,说一段地层是“磨蚀性”的是指那段要了解的岩石是磨蚀性较强的,例如石英或沙岩,这是和页岩比较的结果。岩石磨蚀性实质上是岩石表面结构和岩石强度的函数。该结构因素不一定与颗粒大小有关,而是更与颗粒的棱角或“尖锐度”有关。
再回到图1,磨蚀性数据50包括与数据14同类的来自井52的数据58,即为确定钻头56做功和磨损测量结果60所必须的那些钻井数据。此外,磨蚀性数据包括由钻头56钻孔的磨蚀性介质54的体积62。这后者能以公知的方式通过分析井孔62的测井数据来确定,如黑盒子64所概括指出的那样。
利用本发明的其他方面,这些数据被转换成各自的电信号并输入计算机16,如66处所示。计算机16通过处理这些信号来完成求解下列方程的电子等效处理,从而使磨蚀性定量化:
λ=(Ωratedb)/Vabr(7)
这里:
λ=磨蚀性
Ωb=实际钻头做功(对于钻头56钻头的磨损量)
Ωrated=额定功(对于同一磨损量)
Vabr=被钻孔的磨蚀性介质体积
例如,假定一钻头已做了1000顿-英里的功,而且在钻了200立方英尺磨蚀性介质之后被磨损掉50%。而且假定对于这类具体钻头的历史额定功关系表明,在做功为1000顿-英里处的磨损只应为40%,而在做功为1200顿-英里处的磨损只应为50%(如图3所示)。换句话说,这额外的10%磨蚀性磨损对应于额外的200顿-英里功。磨蚀性被定量化为每钻200立方英尺磨蚀性介质或1(顿·英里/立方英尺),则钻头寿命减少200顿-英里。顿·英里/立方英尺这个测量单位在量纲上等价于实验室的磨蚀性测试。磨蚀介质的体积百分比可由测井数据确定,这些测井数据定量给出岩石组成份额。被钻磨蚀介质的体积,可以由所钻岩石总体积乘以磨蚀组分的体积份额来确定。另一种做法是:岩石数据可以通过由黑盒子64指示的钻孔同时测量技术从孔52的测井数据中取得。
额定功关系38以及磨蚀性48(如果合适的话)能进一步被用于远距离模拟钻头68的磨损,它与钻头10、28、30及56有同样的大小和结构但当前用于钻井孔70。在图1所示的示例性实施例中,由钻头68钻的孔70的钻孔间隔从地表向下延伸穿过硬梁54。
利用钻孔同时测量技术以及其他可用技术,对于井70能在当时产生如在14处产生的那类数据,如72处所指示的那样。因为这些数据是在当时产生的,故在此把它称作“实时数据”。实时数据被转换成各自的电信号并输入计算机16,如74处所示。使用对历史数据同样的处理(即如34处所示的处理),计算机能对钻头68所钻的每个增量段产生实际增量力信号和相应的增量距离信号。再有,计算机能对于钻头68处理实际增量力信号和增量距离信号,以对钻头68所钻的每个增量段产生各自的实际增量功电信号,并周期性地累积这些实际增量功信号。这又产生了对应于钻头68当前已做功的当前功电信号。于是,使用对应于额定功关系38的信号,计算机能周期性地把当前功信号转换成指示对所用的钻头(即钻头68)磨损的当前磨损电信号。
即使不相信钻头68钻透硬梁54或其他磨蚀性地层,这些基本步骤也能完成。最好是,当当前的磨损信号达到一预先确定的极限(该极限对应于要了解的钻头尺寸和结构的功额定值或低于该值)时,即把钻头68取出。
因为井70靠近井52,所以得出钻头68正在钻透硬梁54的结论是合乎逻辑的,在48处产生的磨蚀信号被处理,以校正在74处产生的当前磨损信号,如在前面磨蚀性例子中所解释的那样。
再说明一下,监视所用钻头68的过度振动也是会有帮助的。如果检测到这种振动,则如前所述,对受到这种过度振动的每个增量段就产生出各自的峰值力信号。再有,与每个这样的增量段的岩石强度所允许的最大力相对应的极限也被确定,并产生出相应的信号。计算机16用电子技术将每个这样的峰值力信号与各自的极限信号进行比较,以测定可能的超过与当前磨损信号相对应的磨损的过度磨损。于是可以采取补救行动。例如,可以降低操作功率水平,即减小加在钻头上的重量和/或转动速率。
在任何情况下,最好是把当前磨损信号以某种视觉可接受的形式输出出来,如76处所示。
如所指出的那样,最佳实施例包括根据在钻孔操作本身的过程中产生的至少一部分数据来对当前所用钻头进行实时磨损的模拟。然而,将会理解,在次佳实施例中,由本发明产生的功54、额定功关系66、和/或磨蚀性68仍将是有用的,至少是在估计何时钻头应被取出;是否钻孔状态(如钻头上的重量、转动速度等)应随时改变;以及其他类似方面这些数据是有用的。对于效率78(下文中将更充分地描述)也有同样情况,它能类似地用于产生磨损模型74,对此也将在下文中更充分地描述。
除了额定功关系38以外,在34处产生的功信号也能被用于测定钻头尺寸和类型10的机械效率,如78处所示。
具体地说,对于已由钻头10钻的一个井中间隔(例如I至T)的每个增量段产生出各自的增量最小力电信号。计算机16通过处理适当的信号来实现求解下列方程的电子等效操作便能完成:
FminiAb    (8)
这里:
Fmin=为钻该增量段所需的最小力
σi=现场岩石抗压强度
Ab=钻头的总截面面积
抵抗总钻孔力的现场岩石总强度可以表示为:
σi=ftσit+faσia+flσil    (9)
而且
I=ft+fa+fl                      (10)
这里:
σi=抵抗钻头总力的现场岩石强度
ft=钻头总力的扭转部分(被施加力)
σit=抵抗钻头扭转力的现场岩石强度
fa=钻头总力的轴向部分(被施加力)
σia=抵抗钻头轴向力的现场岩强度
fl=钻头总力的横向部分(反作用力,常有零平均值,以BHA平衡可以忽略不计)
σil=抵抗钻头横向力的现场岩石强度
由于扭转部分占总钻孔力的主要部分(即ft近似等于1),所以现场岩石强度基本上等于扭转岩石强度,或者说σiit
在本发明人的题为“测定岩石抗压强度的方法”的共同未决申请(序列号______,与本申请同时受理,并在这里被引用作为参考)中解释了模拟σi的一种最佳方法。
在理论上,最小力信号对应于在每个增量段上使岩石破坏所需要的最小力,即假定钻头具有理想效率。
其次,利用结合方框34所描述的相同处理方法,对这些增量最小力信号和各自的增量距离信号进行处理,以对每个增量段产生各自的增量最小功信号。
最后,对于间隔I-T的每个增量段(或者对于其后进行如此评估的任何其他井增量段),对于实际增量功信号和增量最小功信号进行处理,以产生各自的实际增量效率电信号。这最后一步可以通过对上述信号进行简单的处理来完成,即完成对每个增量段求最小功信号和实际功信号之比的电子等效操作。
将会理解,在这一处理当中以及在本说明书中描述的许多其他处理部分当中,某些步骤能由计算机16加以组合。例如,在这后一种情况中,计算机能直接从已被描述为用于产生力信号并进而依次产生功信号的那些数据信号中进行处理,以产生效率信号,而任何这种“捷径”处理都将被认为是这里为说明清楚而提出并在权利要求中并列的多个步骤的等效操作,这最后提到的情况只是一个例子而已。
在实践中,计算机16能通过处理已在这里定义的其他信号来产生每个实际增量效率信号,其处理过程是完成求解如下方程的电子等效操作:
Eb=(σitftiafailfl)Ab/(2πT/dc+W+Fi+fl)    (11)
然而,虽然方程11是完全的和精确的,但它代表了某种程度的过份(overkill),在实践中这里的某些变量是可以忽略的。所以,可以通过去掉横向效率来使处理简化,从而得到方程:
Eb=(σitftiafa)Ab/(2πT/dc+W+Fi)       (12)甚至还可以去掉轴向效率和其他可忽略项,从而进一步简化,得到方程:
Ebit(dc/T)(Ab/2π)(13)
对方程(11)的其他等效表达式包括:
Eb=Abitft 2/Ftiafa 2/Failfl 2/Fl)(14)
效率信号可以以可视化形式输出,如80处所示。
如线82所示,效率模型也能被用于修饰前述实时磨损模型74。更具体地说,对于由钻头68所钻的增量段的实际的或实时的功信号可以与来自参考井孔52的各增量最小功信号一起处理,以对井孔70的每个这种增量段产生出各自的实时增量效率电信号,其处理过程如前文所述。本领域的技术熟练人员将会理解,(作为这里所指的有多组信号的情况),不必使用参考井孔52的数据,或者除了来自参考井孔52的数据外,基于来自井孔70的实时数据能够产生最小功信号。
这些实时增量效率信号与根据先前的钻头和井孔数据的各自“实际”增量效率信号进行比较,最好是用计算机16以电子技术方式进行比较。如果这两组效率信号在一系列增量段上发生偏离,则此偏离率可被用来确定这种偏离是否表明出现了钻井问题,例如一方面是否是灾难性的钻头故障或滚成球形(balling up),或者另一方面是否是由于岩石的磨蚀性增大。这对于确定以下情况可能是尤其有用的:例如钻头68是否如预期的那样穿过了硬梁54和/或是否钻头68穿过了任何其他硬梁。具体地说,如果偏离率高,即如果有一个相对急剧的变化,则表明出现了钻孔问题。另一方面,如果偏离率是逐渐增高的,则表明是岩石磨蚀性增大。
如果穿透速率下降(而且功率或岩石强度都没有变化),则表明这种效率偏离已经开始。所以,在钻头68钻孔过程中监视穿透速度,并使用穿透速度的任何降低作为进行这种实时和实际效率信号对比的触发因子,这种作法是有帮助的。
效率78还能被用于其他目的,如图4和图5中图示的那样。首先参见图4,多个抗压强度电信号可以产生出来,它们对应于钻头实际受到的不同岩石抗压强度。然后使这些抗压强度信号中的每一个与实际增量效率信号之一相关,这些实际增量效率信号对应于在具有各自岩石抗压强度的增量段中该钻头的实际效率。这些相关信号在图4中由点S1至S5代表。通过处理这些信号,计算机16能为要了解的钻头尺寸和结构外推出一系列电信号,其对应于一连续的效率一强度关系,在图中用曲线C3表示。为了外推出一条光滑和连续的函数曲线C3,曲线C3可能并不精确地穿过用于外推出该曲线的每个点,即这一系列电信号并不包括每对相关信号S1至S5的精确对应值。
通过已知的工程技术,有可能确定岩石抗压强度值,图中用L1代表,超过此值时要了解的这个钻头设计便不能钻孔,即不能进行明显的钻孔动作和/或在这种情况下将发生钻头失效。由这些相关信号外推出的函数C3可以被终止于由L1代表的值。此外,再用众所周知的工程技术确定一第二极限或由L2(其代表经济截止)表示的截止信号(即一抗压强度)可能是有帮助的,当超过这个极限时进行钻孔在经济上是不实际的(例如,因为钻头能完成的掘进量将不能证明其磨损量是合理的)。再参照图5,还可能由计算机16从实际增量效率信号和由曲线C3代表的一系列信号外推出另外一系列电信号,在图5中由曲线C4代表,这些电信号对应于给定岩石强度下所做的累积功和由于磨损造成的效率下降之间的连续关系。这种关系也可由历史数据来建立。代表钻头失效前所能做的,最大功量的终点Pmax,与图2中有同样标记的点相同。对于图4中复盖的范围内的其他岩石强度,也能建立起与C4类似的其他曲线。
再参见图1,还可能由计算机16处理前面已描述的信号以产生一与穿透速率对应的信号,缩写为“ROP”,并通常用81表示。如前所述,在穿透速率和功率之间有一基本关系。更具体地说,这个关系由如下方程定义:
R=PlimEbiAb(15)可以理解,在确定穿透速率R的这个方程式中的所有变量都已经定义过,此外,这些变量将被转换成相应的电信号输入到计算机16中。所以,计算机16能通过处理这些信号来完成求解方程15的电子等效操作,从而确定穿透速率。
这一点的最基本的实际应用在于预测穿透速率,因为已经知道有手段能在钻孔过程中实际测量穿透速率。这种预测的应用之一是把它与钻孔过程中测量的实际穿透速率进行比较,如果比较表明出现了显著差异,则要检查以找出钻孔问题。
额定功关系38、效率78及其推论以及ROP 81的一个特别有意义的应用,在于确定一要了解其设计的钻头是否能在一给定的地层间隔中钻入一显著的距离,如果能的话,那么能钻多远和/或能钻多快。这一点能被扩展到在这方面评估多个不同的钻头设计,对于所考虑的一个或多个能钻通这个间隔的钻头所具有的那些钻头设计,便能在每单位长度钻孔地层所需费用的基础上进行有根据的钻头选择42。在确定一钻头能否在一给定地层中钻孔或能钻多远等方面所涉及的信号电子处理部分,在图1中用钻头选择方框42来概括表示。这些处理利用了额定功关系38、效率78和ROP 81这一事实,分别由线44、83和82指示。而线46表明这些处理会造成输出这一事实。
图6对于本发明这方面的一个最佳实施例显示出决策树(decisiontree)图,它与计算机16在42处所能完成的处理相衔接。图1中的线H指出了感兴趣的间隔,由于它与井孔52和70靠近,故假定它穿过硬梁54。
首先,如方框90所指出的那样,对于要评估的第一钻头设计,将感兴趣的间隔H的最大岩石抗压强度与一适当的极限(最好是图4中L2处之值)进行比较。计算机16能通过比较相应的信号来完成这一点。如果在间隔H中的岩石强度超过了这一极限,则要了解的这个钻头设计被排除考虑。否则,该钻头有“O.K”(认可)状态,于是我们进入方框92。所考虑的间隔H将被分割成许多很小的增量段,而且相应的电信号将被输入计算机16。为了本讨论方便,我们将从最初的这样两个增量段开始。通过先前结合图1中的方框78所描述的处理,对于间隔H中的最新增量段(在此开始阶段这个增量段将是前述两个增量段中的第二个)的岩石强度,选择第一类新钻头的效率信号。
最好是使计算机16被编程,从而能识别出间隔H中假定会穿过硬梁54的那些增量段。在图中用方框94表示的处理中,由计算机确定这最新增量段(这里是第二增量段)是否是磨蚀性的。因为这第二增量段很接近地面或者说间隔H的上端,所以在这一轮的回答将是“否”。
这样,处理过程直接进入方框98。如果通过这一循环的开始一轮是第一轮,那么对于先前增量中所做的累积功而言,其值将是零。另一方面,如果第一轮只对一个增量段进行,则对于那个第一增量段中所做的功而言,可能会有一个值,于是可能利用图5中所示的信号,在方框98对效率信号进行调整,这是由于因先前的功使效率降低所造成的可能调整。然而,即使在这后一种情况中,由于这些增量段如此之小,故由第一增量段得到的功和效率降低将是可以忽略的,而且所做的任何调整都是无意义的。
如方框99所示,计算机然后将处理功率极限、效率、现场岩石强度、以及钻头截面积信号,以模拟头两个增量段(如果这是通过循环的最初一轮的话)或第二增量段(如果只用第一增量段完成了第一轮的话)的穿透速率。在任何情况下,每个增量ROP信号可以被存储起来。另一种做法是,每个增量ROP信号可以被转换以对所考虑的增量钻孔时间产生一相应的时间信号,而且该时间信号可以被存储起来。应该理解,这一步不需要刚好在步骤方框98之后完成,而可以在例如下文所述步骤块102和104之间完成。
接下来,如方框100所示,计算机将对这头两个增量段(或者对第二增量段,如果在前一轮中第一增量段已被处理过的话)的效率信号进行处理,以产生各增量预测功电信号,其对应于钻孔各增量段过程中钻头会做的功。实质上,这可由图1中从方框34到方框78所进行的处理的逆过程来完成。
如方框102所示,计算机然后对这头两个增量段的增量预测功信号进行累加,以产生累积预测功信号。
如方框104所示,对应于这头两个增量段长度的信号也被累加并与间隔H的长度以电子技术方式进行比较。对于头两个增量段,这个和将不会大于或等于间隔H的长度,于是处理进入方框106。计算机将以电子技术方式把方框102处确定的累积功信号与对应于先前在图1中方框38处确定的功额定值(即图2中对Pmax点的功值)的信号进行比较。对于这头两个增量段,累积功将是可忽略不计的,而且肯定不大于功额定值。所以,如线109所示,我们留在了主循环中并返回到方框92,在那里,根据下一个(即第三个)增量段的岩石强度产生出另一个效率信号。这第三个增量段将还不会进入硬梁54,所以处理过程仍将直接从方框94进到方框98。这里,计算机将根据先前通过该循环时在方框102产生的先前累积功信号,来对第三增量段调整其效率信号,即调整如果钻头已钻透头两个增量段所应该做的功。然后处理如以前那样进行。
然而,对于后面的那些确实处在硬梁54之间的增量段,计算机16的程序将在进入调整步骤98之前,在由方框94所示的点处,根据与前面结合图1中方框图48所描述的数据相对应的信号,触发对磨蚀性的调整。
如果在某一点,由方框106所示的处理部分显示出累积功信号大于或等于功额定值信号,那么我们便知道为钻透间隔H将需要不只一个第一类设计的钻头。在最佳实施例中,在这一点处,如步骤方框107所示,所存储的ROP信号将被平均然后被处理以产生一个信号,其对应于第一钻头钻到所考虑点应该用掉的时间。(当然,如果增量ROP信号已被转换成增量时间信号,则可以简单地对增量时间信号求和。)在任何情况下,我们将假定,我们现在开始使用具有这第一类设计的另一个钻头,于是如方框108所示,在处理返回循环中的方框92之前,累积功信号将被复位为零。
另一方面,不论是第一类设计的第一钻头或是具有第一类设计的其他钻头,都将在方框104处得到一个指示,表明增量段之和大于或等于间隔H的长度,即该钻头或一组钻头已经假想地钻透了感兴趣的间隔。在这种情况下,计算机16的程序将造成一个适当的指示,并使处理进入方框110,它以图形表示产生了一个信号,用以指明那种设计的最后一个钻头的剩余寿命。这可由图2中曲线C2所代表的一系列信号来确定。
接下来,如步骤方框111所示,计算机完成结合步骤方框107所描述的同样功能,即产生指明(在这一设计的)这一系列中的最后一个钻头的钻孔时间的信号。
接下来,如方框112所示,操作员将确定是否对所希望的设计范围都已评估过。如到此为止所描述过的那样,只有第一类设计已经评估过。所以,如方框114所示,操作员将选择第二类设计。这样,不仅在方框108对累积功复位为零,而且要针对第二设计输入对应于不同的效率数据、额定功关系、磨蚀性数据等的信号,用于代表第一设计所用的数据和用于重新开始处理过程。再有,如115所示,只有当第二设计的抗压强度截断值不被间隔H内的岩石强度超过时,评估这第二设计的处理过程才将进入主循环。
在某一点,在方框112处,操作员将决定已有适当范围的钻头设计被评估过。然后我们进入方框116,即选择将以最小费用/英尺钻透间隔H的那个钻头。应该指出,这不一定意味着要选择那个在被替换前能钻孔最快的钻头。例如,可能有一个钻头能钻透整个间隔H,但它非常昂贵,而对于第二种钻头设计,会需要二个钻头来钻透这一问题,但这两个钻头的总费用低于第一种设计的一个钻头的费用。在这种情况下将会选择第二类设计。
当相当地肯定在间隔的不同部分中的相对磨蚀性不同的情况下,也可能有更复杂的替换。例如,如果需要用任何设计的至少三个钻头去钻间隔H,有可能是选择第一种设计去钻到接近硬梁54的地方,而用第二种但更昂贵的设计去钻透硬梁54,再用第三种设计去钻硬梁54以下的地方。
上述本发明的各个方面可以一起工作以构成一整个系统。然而,在某些情况中,本发明的各单个部分(如图1中计算机16内各方框所概括表示的各方面)可以更有利地使用而不必使用所有其他方面。再有,关于本发明的这些不同方面的每一个,进行改变和简化是可能的,特别是对于稍逊于最佳实施例的情况更是如此。
因此,本发明的范围只应由下文中的权利要求限定。

Claims (47)

1.一种测定给定尺寸和结构的地下钻头所做功的方法,包括如下步骤:
用该钻头从一起点到一终点钻一井孔;
记录该起点和终点之间的距离;
产生多个实际增量力电信号,其中每个对应于起点和终点间距离的各个增量段上该钻头的力;
产生多个增量距离信号,其中每个对应于所述各实际增量力信号所对应的增量段的长度;以及
处理这些实际增量力信号和增量距离信号,以产生一个值,其对应于从起点到终点钻孔过程中该钻头所做的总功。
2.如权利要求1的方法,包括以下步骤:
处理实际增量力信号和增量距离信号,以产生一个加权平均力电信号,其对应于钻头在起点和终点之间所加力的加权平均;以及
以起点和终点之间的距离乘加权平均力,从而产生所述总功值。
3.如权利要求1的方法,包括以下步骤:
处理实际增量力信号和增量距离信号,以对每个所述增量段产生各自的增量功电信号;以及
累积所述实际增量功信号,以产生一对应于所述总功值的总功电信号。
4.如权利要求1的方法,包括以下步骤:
通过处理实际增量力信号和增量距离信号来建立一个力/距离函数,并且积分这个函数。
5.如权利要求1的方法,其中钻头振动引起钻头力在增量段上变化,而且每个实际增量力信号对应于各增量段上的钻头平均力。
6.如权利要求1的方法,其中每个实际增量力信号,是从分别对应于钻头转动速度、钻头转动力矩以及钻头穿透速率的各电信号产生的。
7.如权利要求6的方法,其中每个实际增量力信号,还由分别对应于钻头上的重量和流体冲击力的电信号产生。
8.如权利要求7的方法,其中每个实际增量力信号还由对应于钻各增量段过程中施于钻头上的横向力的电信号产生。
9.如权利要求1的方法,其中每个实际增量力信号由分别对应于钻头转动力矩和每转切削深度的电信号产生。
10.如权利要求1的方法,进一步包含评估所述尺寸和结构的钻头的磨损,其中分别用这种钻头钻多个这类的孔,并对每个钻头确定各自的总功,该方法进一步包括以下步骤:
对所述每个钻头产生对应于各总功的各总功信号;
在每个钻头已达到各自终点之后从各自井孔中取出各钻头;
在取出之后测量钻头的磨损并产生各自的磨损信号;
对每个钻头把总功信号与磨损信号相关;
以及从相关的总功和磨损信号外推,以产生一系列电信号,这些电信号对应于该钻头尺寸和结构的功和磨损之间的连续的额定功关系。
11.如权利要求10的方法,其中所述一系列信号被转换成可视化形式。
12.如权利要求10的方法,其中钻头振动使钻头力在增量段上变化,而且每个实际增量力信号对应于各增量段上的钻头平均力。
13.如权利要求12的方法,进一步包括:
产生对应于各增量段上钻头最大力的各峰值力信号;
确定对于各增量段的岩石强度所允许的最大力对应的极限;以及
将对应于该峰值力信号的值与该极限进行比较,以测定可能的过度磨损。
14.如权利要求13的方法,其中,如果对应于峰值力信号的值大于或等于该极限,则把该钻头从产生额定功关系信号的那些钻头中排除。
15.如权利要求13的方法,包括产生一对应于该极限的极限电信号,并以电子技术方式比较该极限和峰值力信号。
16.如权利要求10的方法,其中如此产生的额定功关系,包括相关的最大磨损-最大功点。
17.如权利要求16的方法,包括确定所述尺寸和结构的第一钻头是否能钻透地层的给定间隔,进一步包括以下步骤:
产生至少两个钻头效率电信号,其对应于所述间隔中各相继增量段的岩石强度;
处理这些效率信号,以产生各增量预测功电信号,其对应于该钻头在钻透各增量段时将会做的功;
处理增量预测功信号,以产生一累积预测功信号,其对应于该钻头钻透各增量段时将会做的功;
将增量段长度之和与该间隔的长度进行比较;
如果增量段长度之和小于该间隔的长度,则把累积预测功信号与一电信号进行比较,该电信号对应于最大磨损-最大功点的功分量。
18.如权利要求17的方法,其中累积预测功信号小于对应于最大磨损-最大功点的功分量的电信号,还包括:
对下一个接续的间隔,如此再产生至少一个效率信号;
根据由于先前增量段中做功造成的效率降低,调整这又一个效率信号;
如此处理被调整的这又一个效率信号,以产生各又一个增量预测功信号;
如此处理所有增量预测功信号,以产生新的累积预测功信号,其对应于该钻头在钻透所有这些增量段过程中将会做的功;
如此比较增量段长度之和与该间隔的长度。
19.如权利要求18的方法,其中增量段长度之和小于该间隔的长度,并进一步包括:
将新的累积预测功信号与对应于最大磨损-最大功点的功分量进行比较。
20.如权利要求19的方法,其中新的累积预测功信号小于对应于最大磨损-最大功点的功分量的信号,并进一步包括重复权利要求18的各步骤。
21.如权利要求19的方法,其中新的累积预测功信号大于或等于对应于最大磨损-最大功点的功分量的信号,进一步包括对具有同样尺寸和结构的一个新钻头,但是是对一个新间隔重复权利要求17的各步骤,这个新间隔比原始间隔小,其差值是第一个钻头的增量段长度之和。
22.如权利要求18的方法,其中增量段长度和大于或等于该间隔的长度,并且进一步包括对不同结构的第一钻头重复权利要求17的各步骤。
23.如权利要求22的方法,进一步包括:对每个增量段,通过处理分别对应于所考虑的岩石强度的极限功率、对所考虑增量段的效率、所考虑的增量段中的岩石强度以及该钻头横截面面积的各信号,来产生对应于该增量段上穿透速率的信号;并且对每个钻头,处理该增量穿透速率信号,以产生一对应于该钻头钻孔时间的信号。
24.如权利要求23的方法,进一步包括从能钻所考虑间隔的钻头设计中,选择具有最小费用/英尺的钻头设计。
25.如权利要求22的方法,进一步包括处理这新的累积预测功信号和对应于最大磨损-最大功点的功分量的信号,以产生对应于该钻头剩余可用寿命的信号。
26.如权利要求18的方法,对于第一钻头尺寸和结构的至少一个参考钻头,在权利要求17各步骤之前包括:
产生各增量最小力电信号,其对应于在每个所述增量段中破坏岩石所需的理论最小力;
对参考钻头处理增量最小力信号和增量距离信号,以产生参考钻头的每个所述增量段的各增量最小功信号;
处理实际增量力信号和增量距离信号,以产生参考钻头的每个所述增量段的各实际增量功信号;
处理实际增量功信号和增量最小功信号,以对每个增量段产生各自的实际增量效率电信号;
产生多个对应于不同岩石抗压强度的抗压强度电信号;把每个抗压强度信号与所述实际增量效率信号之一相关联,所述实际增量效率信号之一对应于具有各自岩石抗压强度的增量段中该参考钻头的效率;以及
从相关联的抗压强度和参考钻头的实际增量效率信号外推,产生出一系列电信号,它们对应于该钻头尺寸和结构的连续效率-强度关系;
然后,在完成权利要求17和18的各步骤时,利用所述的一系列电信号来确定如此产生的钻头效率信号的大小
27.如权利要求26的方法,其在权利要求17的步骤之前还包括:
由所述效率-强度关系确定一抗压强度截止值,对于超过此值的情况,该钻头设计不应试图去钻孔,以及
将此截止值与所述给定间隔的岩石强度作比较,而且
如果在所述给定间隔中的岩石强度小于或等于所述截止值,则只对所述第一钻头进行权利要求17的各步骤。
28.如权利要求26的方法,其在权利要求17的各步骤之前进一步包括:
由参考钻头的所述实际增量效率信号和所述一系列信号,外推出至少一个其他电信号系列,它对应于在所述给定间隔中对于各个岩石强度所做的累积功和由于磨损造成的效率降低之间的连续关系;而且
在完成权利要求17和18的各步骤时,使用所述其他系列以如此调整效率信号。
29.如权利要求17的方法,进一步包括:
测定在该间隔中岩石的磨蚀性;以及
针对因磨蚀造成的磨损增加,进一步调整增量预测功信号。
30.如权利要求10的方法,其中每个所述井孔是钻透一个相对无磨蚀的介质,并且进一步包括借助以下步骤确定以另一这类钻头在另一井孔的给定部分中所钻岩石的磨蚀性:
测定所述另一钻头在钻所述另一井孔的所述部分之后的磨损;
从所述额定功关系中选择一对应于这另一钻头的磨损的值,并产生相应的额定功电信号;
确定在所述另一井孔的所述部分中所钻磨蚀性岩石的体积,并产生相应的磨蚀体积电信号;
产生一实际功电信号,它对应于由所述另一钻头在钻所述另一井孔的所述部分过程中做的功;以及
处理所述另一钻头的实际功信号,所述另一钻头的额定功信号、以及磨蚀体积信号,以产生一磨蚀性电信号。
31.如权利要求30的方法,其中在所述另一井孔中所钻的磨蚀岩石的体积是通过处理对应于岩石学数据的电信号确定的。
32.如权利要求31的方法,其中的岩石学数据是从附近井的测井资料中取得的。
33.如权利要求31的方法,其中的岩石学数据是通过钻井同时测量技术从所述其他井孔取得的。
34.如权利要求10的方法,进一步包括借助以下步骤在远处模拟当前被钻井孔中所用这种钻头的磨损:
对于被所述在用钻头钻的每个增量段,如此产生出各自的实际增量力信号和增量距离信号;
处理该所用的钻头的实际增量力信号和增量距离信号,以对所述在用钻头钻的每个增量段产生出各自的实际增量功电信号;
周期性累积所述实际增量功信号以产生出一当前功电信号,其对应于在用钻头当前已经做的功;以及
利用所述额定功关系,周期性地把所述当前功信号转换成指示对该在用钻头磨损状况的当前磨损电信号。
35.如权利要求34的方法,进一步包括:当所述当前磨损信号达到一预先确定的极限时,取出所述在用钻头。
36.如权利要求34的方法,其中,如果由一参考钻头所钻的一参考井孔(邻近所述当前井孔)的一参考部分包含相对磨蚀性的材料;则:
测量该参考钻头的磨损;
从所述额定功关系中选出对应于该参考钻头磨损的值,并产生相应的额定功电信号;
确定在所述参考部分中钻出的磨蚀性岩石的体积,并产生相应的磨蚀体积电信号;
产生对应于该参考钻头所做功的实际功电信号;以及
处理所述参考钻头的实际功信号、所述参考钻头的额定功信号、以及磨蚀体积信号,以产生一磨蚀性电信号;以及
处理该磨蚀性信号以调整当前磨损信号。
37.如权利要求34的方法,其中在用钻头的振动造成在增量段上钻头力的变化,并且进一步包括:
产生对应于各增量段上钻头最大力的各自的峰值力信号;
确定对应于各增量段岩石强度所允许的最大力的极限;
将对应于峰值力信号的值与各自极限进行比较,以测定可能超过当前磨损信号对应值的磨损。
38.如权利要求1的方法,进一步包括测定钻头的机械效率。
39.如权利要求35的方法,包括对每个增量段产生各自的实际增量效率电信号,其对应于在正常钻孔条件下该钻头的效率。
40.如权利要求39的方法,包括:
产生各个增量最小力电信号,其对应于在每个所述增量段中破坏岩石在理论上所需的最小力;
处理增量最小力信号和增量距离信号,以对所述每个增量段产生各自的增量最小功信号;
处理实际增量力信号和增量距离信号,以对每个所述增量段产生各自的实际增量功信号;以及
处理实际增量功信号和增量最小功信号,以对每个增量段产生各自的实际增量效率电信号。
41.如权利要求40的方法,进一步包括:
对于当前被一附加的这种钻头所钻的一附加井孔,产生实时增量距离和力的电信号,并如此处理这些信号以产生一系列实时增量功电信号;
处理这些实时增量功信号及各增量最小功信号,以对每个增量段产生各自的实时增量效率电信号;
将实时增量效率信号与各实际增量效率信号进行比较;
如果在一系列所述增量段上的增量实时效率信号和实际增量效率信号偏离,则利用偏离率来确定是否这种偏离表明钻孔过程的问题或者岩石磨蚀性增大。
42.如权利要求41的方法,进一步包括:在钻孔过程中监视穿透速率,并使用穿透速率的降低作为触发因子,以便起动如此比较实时增量效率和实际增量效率。
43.如权利要求40的方法,进一步包括:
产生多个抗压强度电信号对应于不同的岩石抗压强度;将每个抗压强度信号与所述实际增量效率信号之一相关,这些实际增量效率信号对应于具有各自岩石抗压强度的增量段中该钻头的实际效率;以及
由相关的抗压强度和实际增量效率信号外推,产生出一系列电信号,其对应于该钻头尺寸和结构的连续效率强度关系。
44.如权利要求43的方法,进一步包括:
由所述效率-强度关系,确定一抗压强度截止值,对于超过该截止值的情况,该钻头设计不应试图去钻。
45.如权利要求43的方法,进一步包括:
由所述实际增量效率信号和所述一系列信号,外推出至少另一系列电信号,它们对应于在所述给定间隔中对各岩石强度之一所做累积功和由于磨损造成的效率降低之间的连续关系。
46.如权利要求39的方法,包括通过处理电信号来产生实际效率信号,这些被处理的电信号分别对应于:
-钻头切削深度;
-钻头轴向接触面积;
-钻头上的重量;
-转动力矩;
-抵抗转动钻头力的现场岩石强度;
-抵抗轴向钻头力的现场岩石强度;以及
-钻头的总横截面面积;所有这些都是对各增量段给出的。
47.如权利要求39的方法,包括通过处理电信号来产生实际效率信号,这些被处理的电信号分别对应于:
-抵抗转动钻头力的现场岩石强度;
-钻头的切削深度;
-转动力矩;以及
-钻头的总横截面面积;所有这些都是对各增量段给出的。
CN97193385A 1996-03-25 1997-03-21 测定地下钻头所做功的方法 Expired - Fee Related CN1082128C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/621,411 1996-03-25
US08/621,411 US5794720A (en) 1996-03-25 1996-03-25 Method of assaying downhole occurrences and conditions

Publications (2)

Publication Number Publication Date
CN1214754A true CN1214754A (zh) 1999-04-21
CN1082128C CN1082128C (zh) 2002-04-03

Family

ID=24490072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97193385A Expired - Fee Related CN1082128C (zh) 1996-03-25 1997-03-21 测定地下钻头所做功的方法

Country Status (9)

Country Link
US (6) US5794720A (zh)
JP (1) JP2000507658A (zh)
CN (1) CN1082128C (zh)
AU (1) AU709128B2 (zh)
BR (1) BR9708257A (zh)
CA (1) CA2250030C (zh)
GB (1) GB2328467B (zh)
NO (1) NO324161B1 (zh)
WO (1) WO1997036084A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103892A (zh) * 2014-02-07 2016-11-09 哈里伯顿能源服务公司 用于估计钻井工具磨损的模型

Families Citing this family (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6612382B2 (en) * 1996-03-25 2003-09-02 Halliburton Energy Services, Inc. Iterative drilling simulation process for enhanced economic decision making
US7032689B2 (en) * 1996-03-25 2006-04-25 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system of a given formation
US5794720A (en) * 1996-03-25 1998-08-18 Dresser Industries, Inc. Method of assaying downhole occurrences and conditions
US6052649A (en) * 1998-05-18 2000-04-18 Dresser Industries, Inc. Method and apparatus for quantifying shale plasticity from well logs
GB2341916B (en) * 1998-08-17 2002-11-06 Varco Internat Inc Operator workstation for use on a drilling rig including integrated control and information
US20040045742A1 (en) * 2001-04-10 2004-03-11 Halliburton Energy Services, Inc. Force-balanced roller-cone bits, systems, drilling methods, and design methods
WO2000012859A2 (en) * 1998-08-31 2000-03-09 Halliburton Energy Services, Inc. Force-balanced roller-cone bits, systems, drilling methods, and design methods
US20040140130A1 (en) * 1998-08-31 2004-07-22 Halliburton Energy Services, Inc., A Delaware Corporation Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US8437995B2 (en) * 1998-08-31 2013-05-07 Halliburton Energy Services, Inc. Drill bit and design method for optimizing distribution of individual cutter forces, torque, work, or power
US6412577B1 (en) * 1998-08-31 2002-07-02 Halliburton Energy Services Inc. Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US6095262A (en) * 1998-08-31 2000-08-01 Halliburton Energy Services, Inc. Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US20030051917A1 (en) * 1998-08-31 2003-03-20 Halliburton Energy Services, Inc. Roller cone bits, methods, and systems with anti-tracking variation in tooth orientation
US20040236553A1 (en) * 1998-08-31 2004-11-25 Shilin Chen Three-dimensional tooth orientation for roller cone bits
WO2000012860A2 (en) * 1998-08-31 2000-03-09 Halliburton Energy Services, Inc. Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US20040230413A1 (en) * 1998-08-31 2004-11-18 Shilin Chen Roller cone bit design using multi-objective optimization
US7334652B2 (en) * 1998-08-31 2008-02-26 Halliburton Energy Services, Inc. Roller cone drill bits with enhanced cutting elements and cutting structures
US6269892B1 (en) 1998-12-21 2001-08-07 Dresser Industries, Inc. Steerable drilling system and method
US6386297B1 (en) * 1999-02-24 2002-05-14 Baker Hughes Incorporated Method and apparatus for determining potential abrasivity in a wellbore
US6353799B1 (en) 1999-02-24 2002-03-05 Baker Hughes Incorporated Method and apparatus for determining potential interfacial severity for a formation
US6276465B1 (en) 1999-02-24 2001-08-21 Baker Hughes Incorporated Method and apparatus for determining potential for drill bit performance
US6349595B1 (en) 1999-10-04 2002-02-26 Smith International, Inc. Method for optimizing drill bit design parameters
JP2001117909A (ja) * 1999-10-21 2001-04-27 Oki Electric Ind Co Ltd マトリクス形式データの転置回路
US7693695B2 (en) * 2000-03-13 2010-04-06 Smith International, Inc. Methods for modeling, displaying, designing, and optimizing fixed cutter bits
US7020597B2 (en) * 2000-10-11 2006-03-28 Smith International, Inc. Methods for evaluating and improving drilling operations
US7464013B2 (en) * 2000-03-13 2008-12-09 Smith International, Inc. Dynamically balanced cutting tool system
US6785641B1 (en) * 2000-10-11 2004-08-31 Smith International, Inc. Simulating the dynamic response of a drilling tool assembly and its application to drilling tool assembly design optimization and drilling performance optimization
US7251590B2 (en) * 2000-03-13 2007-07-31 Smith International, Inc. Dynamic vibrational control
US9482055B2 (en) 2000-10-11 2016-11-01 Smith International, Inc. Methods for modeling, designing, and optimizing the performance of drilling tool assemblies
US20050273304A1 (en) * 2000-03-13 2005-12-08 Smith International, Inc. Methods for evaluating and improving drilling operations
US8036866B1 (en) 2000-06-16 2011-10-11 Baker Hughes Incorporated Case-based drilling knowledge management system
US6424919B1 (en) 2000-06-26 2002-07-23 Smith International, Inc. Method for determining preferred drill bit design parameters and drilling parameters using a trained artificial neural network, and methods for training the artificial neural network
US8589124B2 (en) * 2000-08-09 2013-11-19 Smith International, Inc. Methods for modeling wear of fixed cutter bits and for designing and optimizing fixed cutter bits
US6634441B2 (en) 2000-08-21 2003-10-21 Halliburton Energy Services, Inc. System and method for detecting roller bit bearing wear through cessation of roller element rotation
US6631772B2 (en) 2000-08-21 2003-10-14 Halliburton Energy Services, Inc. Roller bit rearing wear detection system and method
GB2371366B (en) * 2000-08-28 2004-05-26 Halliburton Energy Serv Inc Method and system for predicting performance of a drilling system for a given formation
US9765571B2 (en) * 2000-10-11 2017-09-19 Smith International, Inc. Methods for selecting bits and drilling tool assemblies
US7357197B2 (en) 2000-11-07 2008-04-15 Halliburton Energy Services, Inc. Method and apparatus for monitoring the condition of a downhole drill bit, and communicating the condition to the surface
US6722450B2 (en) 2000-11-07 2004-04-20 Halliburton Energy Svcs. Inc. Adaptive filter prediction method and system for detecting drill bit failure and signaling surface operator
US6712160B1 (en) 2000-11-07 2004-03-30 Halliburton Energy Services Inc. Leadless sub assembly for downhole detection system
US6648082B2 (en) 2000-11-07 2003-11-18 Halliburton Energy Services, Inc. Differential sensor measurement method and apparatus to detect a drill bit failure and signal surface operator
US6817425B2 (en) 2000-11-07 2004-11-16 Halliburton Energy Serv Inc Mean strain ratio analysis method and system for detecting drill bit failure and signaling surface operator
US7003439B2 (en) * 2001-01-30 2006-02-21 Schlumberger Technology Corporation Interactive method for real-time displaying, querying and forecasting drilling event and hazard information
US6619411B2 (en) * 2001-01-31 2003-09-16 Smith International, Inc. Design of wear compensated roller cone drill bits
US7066284B2 (en) * 2001-11-14 2006-06-27 Halliburton Energy Services, Inc. Method and apparatus for a monodiameter wellbore, monodiameter casing, monobore, and/or monowell
US6838963B2 (en) * 2002-04-01 2005-01-04 Med-El Elektromedizinische Geraete Gmbh Reducing effects of magnetic and electromagnetic fields on an implant's magnet and/or electronics
DE10254942B3 (de) * 2002-11-25 2004-08-12 Siemens Ag Verfahren zur automatischen Ermittlung der Koordinaten von Abbildern von Marken in einem Volumendatensatz und medizinische Vorrichtung
WO2005008021A1 (en) * 2003-07-09 2005-01-27 Smith International, Inc. Methods for modeling wear of fixed cutter bits and for designing and optimizing fixed cutter bits
US7195086B2 (en) * 2004-01-30 2007-03-27 Anna Victorovna Aaron Anti-tracking earth boring bit with selected varied pitch for overbreak optimization and vibration reduction
US7434632B2 (en) * 2004-03-02 2008-10-14 Halliburton Energy Services, Inc. Roller cone drill bits with enhanced drilling stability and extended life of associated bearings and seals
US7548873B2 (en) * 2004-03-17 2009-06-16 Schlumberger Technology Corporation Method system and program storage device for automatically calculating and displaying time and cost data in a well planning system using a Monte Carlo simulation software
US7546884B2 (en) * 2004-03-17 2009-06-16 Schlumberger Technology Corporation Method and apparatus and program storage device adapted for automatic drill string design based on wellbore geometry and trajectory requirements
US7258175B2 (en) * 2004-03-17 2007-08-21 Schlumberger Technology Corporation Method and apparatus and program storage device adapted for automatic drill bit selection based on earth properties and wellbore geometry
US7946356B2 (en) * 2004-04-15 2011-05-24 National Oilwell Varco L.P. Systems and methods for monitored drilling
GB2413403B (en) 2004-04-19 2008-01-09 Halliburton Energy Serv Inc Field synthesis system and method for optimizing drilling operations
GB2417966A (en) 2004-08-16 2006-03-15 Halliburton Energy Serv Inc Roller cone drill bits with optimized bearing structure
US7636671B2 (en) * 2004-08-30 2009-12-22 Halliburton Energy Services, Inc. Determining, pricing, and/or providing well servicing treatments and data processing systems therefor
US20060100836A1 (en) * 2004-11-09 2006-05-11 Amardeep Singh Performance forecasting and bit selection tool for drill bits
US7555414B2 (en) * 2004-12-16 2009-06-30 Chevron U.S.A. Inc. Method for estimating confined compressive strength for rock formations utilizing skempton theory
US7412331B2 (en) * 2004-12-16 2008-08-12 Chevron U.S.A. Inc. Method for predicting rate of penetration using bit-specific coefficient of sliding friction and mechanical efficiency as a function of confined compressive strength
US7243735B2 (en) * 2005-01-26 2007-07-17 Varco I/P, Inc. Wellbore operations monitoring and control systems and methods
US7142986B2 (en) * 2005-02-01 2006-11-28 Smith International, Inc. System for optimizing drilling in real time
US7954559B2 (en) * 2005-04-06 2011-06-07 Smith International, Inc. Method for optimizing the location of a secondary cutting structure component in a drill string
US7860693B2 (en) 2005-08-08 2010-12-28 Halliburton Energy Services, Inc. Methods and systems for designing and/or selecting drilling equipment using predictions of rotary drill bit walk
US7860696B2 (en) 2005-08-08 2010-12-28 Halliburton Energy Services, Inc. Methods and systems to predict rotary drill bit walk and to design rotary drill bits and other downhole tools
CA2625012C (en) 2005-08-08 2016-05-03 Halliburton Energy Services, Inc. Methods and systems for design and/or selection of drilling equipment based on wellbore drilling simulations
US20070093996A1 (en) * 2005-10-25 2007-04-26 Smith International, Inc. Formation prioritization optimization
US20070185696A1 (en) * 2006-02-06 2007-08-09 Smith International, Inc. Method of real-time drilling simulation
US7464771B2 (en) * 2006-06-30 2008-12-16 Baker Hughes Incorporated Downhole abrading tool having taggants for indicating excessive wear
US7484571B2 (en) * 2006-06-30 2009-02-03 Baker Hughes Incorporated Downhole abrading tools having excessive wear indicator
US7424910B2 (en) * 2006-06-30 2008-09-16 Baker Hughes Incorporated Downhole abrading tools having a hydrostatic chamber and uses therefor
US7404457B2 (en) * 2006-06-30 2008-07-29 Baker Huges Incorporated Downhole abrading tools having fusible material and methods of detecting tool wear
US7472022B2 (en) * 2006-08-31 2008-12-30 Schlumberger Technology Corporation Method and system for managing a drilling operation in a multicomponent particulate system
US7857047B2 (en) * 2006-11-02 2010-12-28 Exxonmobil Upstream Research Company Method of drilling and producing hydrocarbons from subsurface formations
CA2675572C (en) * 2007-01-31 2015-06-23 Halliburton Energy Services, Inc. Rotary drill bits with protected cutting elements and methods
GB2454701B (en) * 2007-11-15 2012-02-29 Schlumberger Holdings Methods of drilling with a downhole drilling machine
US8274399B2 (en) * 2007-11-30 2012-09-25 Halliburton Energy Services Inc. Method and system for predicting performance of a drilling system having multiple cutting structures
US8269501B2 (en) * 2008-01-08 2012-09-18 William Marsh Rice University Methods for magnetic imaging of geological structures
US8301383B2 (en) * 2008-06-02 2012-10-30 Schlumberger Technology Corporation Estimating in situ mechanical properties of sediments containing gas hydrates
US20100078216A1 (en) * 2008-09-25 2010-04-01 Baker Hughes Incorporated Downhole vibration monitoring for reaming tools
CA2680942C (en) * 2008-09-30 2013-06-25 Precision Energy Services, Inc. Downhole drilling vibration analysis
AU2009300240B2 (en) * 2008-10-03 2013-02-21 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system
US8016050B2 (en) * 2008-11-03 2011-09-13 Baker Hughes Incorporated Methods and apparatuses for estimating drill bit cutting effectiveness
US8082104B2 (en) * 2009-01-23 2011-12-20 Varel International Ind., L.P. Method to determine rock properties from drilling logs
US8028764B2 (en) * 2009-02-24 2011-10-04 Baker Hughes Incorporated Methods and apparatuses for estimating drill bit condition
US8336649B2 (en) * 2009-02-27 2012-12-25 Atlas Copco Secoroc Llc Drill bit for earth boring
US8498853B2 (en) * 2009-07-20 2013-07-30 Exxonmobil Upstream Research Company Petrophysical method for predicting plastic mechanical properties in rock formations
US11157883B2 (en) * 2009-09-29 2021-10-26 The Boeing Company Step analysis process steps within a fleet performance optimization tool
CN101789190B (zh) * 2009-11-03 2011-08-17 成都盛特石油装备模拟技术开发有限公司 分布式钻井模拟系统
CN101702273B (zh) * 2009-11-10 2011-08-17 成都盛特石油装备模拟技术开发有限公司 便携式钻井模拟系统
US20110108325A1 (en) * 2009-11-11 2011-05-12 Baker Hughes Incorporated Integrating Multiple Data Sources for Drilling Applications
WO2011083501A1 (en) * 2010-01-05 2011-07-14 Halliburton Energy Services, Inc. Reamer and bit interaction model system and method
US8899350B2 (en) * 2010-12-16 2014-12-02 Caterpillar Inc. Method and apparatus for detection of drill bit wear
US20120272174A1 (en) * 2011-04-21 2012-10-25 National Oilwell Varco, L.P. System and method for drilling a borehole using streaming reference data
US9133667B2 (en) 2011-04-25 2015-09-15 Atlas Copco Secoroc Llc Drill bit for boring earth and other hard materials
US9222350B2 (en) 2011-06-21 2015-12-29 Diamond Innovations, Inc. Cutter tool insert having sensing device
US9593567B2 (en) 2011-12-01 2017-03-14 National Oilwell Varco, L.P. Automated drilling system
US9359881B2 (en) 2011-12-08 2016-06-07 Marathon Oil Company Processes and systems for drilling a borehole
US8596385B2 (en) 2011-12-22 2013-12-03 Hunt Advanced Drilling Technologies, L.L.C. System and method for determining incremental progression between survey points while drilling
US11085283B2 (en) * 2011-12-22 2021-08-10 Motive Drilling Technologies, Inc. System and method for surface steerable drilling using tactical tracking
US8210283B1 (en) 2011-12-22 2012-07-03 Hunt Energy Enterprises, L.L.C. System and method for surface steerable drilling
US9297205B2 (en) 2011-12-22 2016-03-29 Hunt Advanced Drilling Technologies, LLC System and method for controlling a drilling path based on drift estimates
US9169697B2 (en) 2012-03-27 2015-10-27 Baker Hughes Incorporated Identification emitters for determining mill life of a downhole tool and methods of using same
US9465140B2 (en) 2012-06-22 2016-10-11 Exxonmobil Upstream Research Company Petrophysical method for predicting shear strength anisotropy in fine-grained rock formations
WO2014031098A1 (en) * 2012-08-20 2014-02-27 Halliburton Energy Services, Inc. Slow drilling assembly and method
US9411071B2 (en) 2012-08-31 2016-08-09 Exxonmobil Upstream Research Company Method of estimating rock mechanical properties
US9022140B2 (en) 2012-10-31 2015-05-05 Resource Energy Solutions Inc. Methods and systems for improved drilling operations using real-time and historical drilling data
US10048403B2 (en) 2013-06-20 2018-08-14 Exxonmobil Upstream Research Company Method and system for generation of upscaled mechanical stratigraphy from petrophysical measurements
US8996396B2 (en) 2013-06-26 2015-03-31 Hunt Advanced Drilling Technologies, LLC System and method for defining a drilling path based on cost
US10094210B2 (en) 2013-10-01 2018-10-09 Rocsol Technologies Inc. Drilling system
WO2015051027A1 (en) * 2013-10-01 2015-04-09 Geir Hareland Drilling system
EP3055716B1 (en) 2013-10-08 2018-06-06 Exxonmobil Upstream Research Company Automatic dip picking from wellbore azimuthal image logs
GB2535893A (en) 2013-11-08 2016-08-31 Halliburton Energy Services Inc Dynamic wear prediction for fixed cutter drill bits background
US9957781B2 (en) 2014-03-31 2018-05-01 Hitachi, Ltd. Oil and gas rig data aggregation and modeling system
US11106185B2 (en) 2014-06-25 2021-08-31 Motive Drilling Technologies, Inc. System and method for surface steerable drilling to provide formation mechanical analysis
US10450842B2 (en) 2014-08-26 2019-10-22 Halliburton Energy Services, Inc. Shape-based modeling of interactions between downhole drilling tools and rock formation
US10280731B2 (en) 2014-12-03 2019-05-07 Baker Hughes, A Ge Company, Llc Energy industry operation characterization and/or optimization
CN104766523B (zh) * 2015-01-22 2017-12-26 中国石油技术开发公司 一种用于模拟陆地钻机井架及底座的起升下放操作的方法
CN104851352B (zh) * 2015-01-22 2017-12-26 中国石油技术开发公司 一种钻机安装模拟系统的plc控制系统
CN104766522B (zh) * 2015-01-22 2017-12-26 中国石油技术开发公司 一种钻井模拟设备的事故模拟方法
EP3059385A1 (en) * 2015-02-23 2016-08-24 Geoservices Equipements Systems and methods for determining and/or using estimate of drilling efficiency
US10280729B2 (en) * 2015-04-24 2019-05-07 Baker Hughes, A Ge Company, Llc Energy industry operation prediction and analysis based on downhole conditions
CA2985339A1 (en) 2015-06-18 2016-12-22 Halliburton Energy Services, Inc. Drill bit cutter having shaped cutting element
CA2990033C (en) * 2015-07-09 2023-08-29 Conocophillips Company Rock strength and in-situ stresses from drilling response
AU2015402206A1 (en) * 2015-07-13 2017-12-21 Landmark Graphics Corporation Underbalanced drilling through formations with varying lithologies
US10135779B2 (en) * 2016-03-18 2018-11-20 Adobe Systems Incorporated Levels of competency in an online community
US11933158B2 (en) 2016-09-02 2024-03-19 Motive Drilling Technologies, Inc. System and method for mag ranging drilling control
US10605054B2 (en) 2017-02-15 2020-03-31 General Electric Co. System and method for generating a schedule to extract a resource from a reservoir
WO2019216867A2 (en) * 2017-05-15 2019-11-14 Landmark Graphics Corporation Method and system to drill a wellbore and identify drill bit failure by deconvoluting sensor data
US10794150B2 (en) * 2017-06-16 2020-10-06 Forum Us, Inc. Predicting and optimizing drilling equipment operating life using condition based maintenance
US10968730B2 (en) * 2017-07-25 2021-04-06 Exxonmobil Upstream Research Company Method of optimizing drilling ramp-up
WO2019036122A1 (en) 2017-08-14 2019-02-21 Exxonmobil Upstream Research Company METHODS OF DRILLING A WELLBORE IN A SUBTERRANEAN AREA AND DRILLING CONTROL SYSTEMS THAT IMPLEMENT THE METHODS
US20190138970A1 (en) * 2017-11-07 2019-05-09 General Electric Company Contextual digital twin
WO2019147689A1 (en) 2018-01-23 2019-08-01 Baker Hughes, A Ge Company, Llc Methods of evaluating drilling performance, methods of improving drilling performance, and related systems for drilling using such methods
US11307324B2 (en) 2018-03-21 2022-04-19 Massachusetts Institute Of Technology Systems and methods for detecting seismo-electromagnetic conversion
WO2019217653A1 (en) 2018-05-09 2019-11-14 Massachusetts Institute Of Technology Systems and methods for focused blind deconvolution
WO2019226149A1 (en) 2018-05-21 2019-11-28 Newpark Drilling Fluids Llc System for simulating in situ downhole drilling conditions and testing of core samples
RU2703359C1 (ru) * 2018-12-13 2019-10-16 Общество с ограниченной ответственностью (ООО) "ЛУКОЙЛ-ПЕРМЬ" Инженерный симулятор процесса добычи и транспортировки продукции скважин
US10808517B2 (en) 2018-12-17 2020-10-20 Baker Hughes Holdings Llc Earth-boring systems and methods for controlling earth-boring systems
US11085293B2 (en) 2019-06-06 2021-08-10 Massachusetts Institute Of Technology Sequential estimation while drilling
NO20211055A1 (en) 2019-06-30 2021-09-03 Halliburton Energy Services Inc Integrated collar sensor for a downhole tool
WO2021002834A1 (en) 2019-06-30 2021-01-07 Halliburton Energy Services, Inc. Integrated collar sensor for measuring mechanical impedance of the downhole tool
US11680478B2 (en) 2019-06-30 2023-06-20 Halliburton Energy Services, Inc. Integrated collar sensor for measuring performance characteristics of a drill motor
WO2021002832A1 (en) 2019-06-30 2021-01-07 Halliburton Energy Services, Inc. Integrated collar sensor for measuring health of a downhole tool
SE544076C2 (en) 2019-07-05 2021-12-14 Epiroc Rock Drills Ab Method and system for estimating wear of a drill bit
CN110851991B (zh) * 2019-11-18 2023-07-14 核工业二〇八大队 一种地下水流数值模拟方法
CN110821459A (zh) * 2019-11-19 2020-02-21 西南石油大学 一种简易的耐高温高压可视化缝洞物理模型
CN112922589B (zh) * 2021-02-03 2023-08-22 中国石油天然气股份有限公司 尖灭线确定方法、装置、终端及存储介质
CN113009592B (zh) * 2021-03-03 2022-02-25 中国石油大学(北京) 一种砾岩地层岩石研磨性参数的评价方法和校正方法
US11753926B2 (en) * 2021-07-01 2023-09-12 Saudi Arabian Oil Company Method and system for predicting caliper log data for descaled wells
CN114233268B (zh) * 2021-11-30 2023-05-26 中国地质大学(武汉) 一种基于水平定向钻探勘察孔的隧道开挖涌水量预测方法
CN117952328B (zh) * 2024-03-27 2024-06-25 江苏端木软件技术有限公司 一种基于数据分析的自动化测试系统及方法
CN118195425B (zh) * 2024-05-14 2024-08-09 成都工业职业技术学院 基于三维建模的教学任务评分方法及系统

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US536570A (en) * 1895-03-26 Raisin-seeder
US126802A (en) * 1872-05-14 Improvement in bolt-threading machines
US530836A (en) * 1894-12-11 Friedrich adolf gottsch
US1209299A (en) 1914-12-30 1916-12-19 Sharp Hughes Tool Company Rotary boring-drill.
US1263802A (en) 1917-08-13 1918-04-23 Clarence Edw Reed Boring-drill.
US1394769A (en) 1920-05-18 1921-10-25 C E Reed Drill-head for oil-wells
US1485642A (en) * 1922-04-11 1924-03-04 Diamond Drill Contracting Comp Expanding rotary reamer
US3593807A (en) 1969-12-11 1971-07-20 Frank J Klima Drilling apparatus
US3660649A (en) 1970-09-28 1972-05-02 Tenneco Oil Co Apparatus and method for computing drilling costs
US3742966A (en) * 1971-03-10 1973-07-03 E Franzen Collapsible shelter for mounting on a transportation vehicle
US3752966A (en) * 1971-05-28 1973-08-14 Santa Fe Int Corp Drill bit utilization optimizer
US3761701A (en) 1971-07-14 1973-09-25 Amoco Prod Co Drilling cost indicator
US4354233A (en) 1972-05-03 1982-10-12 Zhukovsky Alexei A Rotary drill automatic control system
CA1009669A (en) 1973-10-09 1977-05-03 Roger Nylund Procedure for controlling a rock drill and rock drill for carrying out the procedure
US4056153A (en) 1975-05-29 1977-11-01 Dresser Industries, Inc. Rotary rock bit with multiple row coverage for very hard formations
GB1515092A (en) 1976-02-25 1978-06-21 Schlumberger Ltd Shaly sand evaluation by gamma ray spectrometry
US4064749A (en) * 1976-11-11 1977-12-27 Texaco Inc. Method and system for determining formation porosity
US4195699A (en) 1978-06-29 1980-04-01 United States Steel Corporation Drilling optimization searching and control method
SU1055863A1 (ru) 1978-09-06 1983-11-23 Предприятие П/Я М-5973 Способ управлени буровым агрегатом и устройство дл его осуществлени
AU554337B2 (en) 1981-03-11 1986-08-14 Metalogic Control Ltd. Adaptive control of a dynamic system
FR2520882A1 (fr) 1982-02-02 1983-08-05 Schlumberger Prospection Procede pour la production d'un enregistrement caracteristique notamment du facies des formations geologiques traversees par un sondage
DE3207012C2 (de) 1982-02-26 1984-08-30 Valentin V. Malachovka Moskovskaja oblast' Žilikov Verfahren zum Steuern des Bohrvorgangs beim Bohren in Gestein und Einrichtung zur Durchführung des Verfahrens
US4718011A (en) 1982-11-01 1988-01-05 Western Atlas International, Inc. Well logging data acquisition, telemetry and control method and system
US4903527A (en) 1984-01-26 1990-02-27 Schlumberger Technology Corp. Quantitative clay typing and lithological evaluation of subsurface formations
GB8411361D0 (en) * 1984-05-03 1984-06-06 Schlumberger Cambridge Researc Assessment of drilling conditions
US4694686A (en) * 1984-06-18 1987-09-22 Borg-Warner Corporation Cutting tool wear monitor
US4627276A (en) * 1984-12-27 1986-12-09 Schlumberger Technology Corporation Method for measuring bit wear during drilling
US4794534A (en) 1985-08-08 1988-12-27 Amoco Corporation Method of drilling a well utilizing predictive simulation with real time data
US4617825A (en) 1985-09-12 1986-10-21 Halliburton Company Well logging analysis methods for use in complex lithology reservoirs
US4733733A (en) 1986-02-11 1988-03-29 Nl Industries, Inc. Method of controlling the direction of a drill bit in a borehole
GB2188354B (en) * 1986-03-27 1989-11-22 Shell Int Research Rotary drill bit
US4793421A (en) 1986-04-08 1988-12-27 Becor Western Inc. Programmed automatic drill control
US4758956A (en) * 1986-04-25 1988-07-19 Amoco Corporation System for replacing defective portions of log data
US4981037A (en) * 1986-05-28 1991-01-01 Baroid Technology, Inc. Method for determining pore pressure and horizontal effective stress from overburden and effective vertical stresses
US4845628A (en) * 1986-08-18 1989-07-04 Automated Decisions, Inc. Method for optimization of drilling costs
US4794535A (en) 1986-08-18 1988-12-27 Automated Decisions, Inc. Method for determining economic drill bit utilization
US4916616A (en) 1986-12-08 1990-04-10 Bp Exploration, Inc. Self-consistent log interpretation method
FR2611804B1 (fr) 1987-02-27 1989-06-16 Forex Neptune Sa Procede de controle des operations de forage d'un puits
FR2620819B1 (fr) * 1987-09-17 1993-06-18 Inst Francais Du Petrole Methode de determination de l'usure d'un trepan en cours de forage
US4875530A (en) 1987-09-24 1989-10-24 Parker Technology, Inc. Automatic drilling system
US4914591A (en) * 1988-03-25 1990-04-03 Amoco Corporation Method of determining rock compressive strength
SU1654515A1 (ru) 1988-03-29 1991-06-07 Специальное конструкторское бюро по долотам Производственного объединения "Куйбышевбурмаш" Буровое шарошечное долото
US4876886A (en) * 1988-04-04 1989-10-31 Anadrill, Inc. Method for detecting drilling events from measurement while drilling sensors
GB2217012B (en) * 1988-04-05 1992-03-25 Forex Neptune Sa Method of determining drill bit wear
SU1691497A1 (ru) 1988-05-30 1991-11-15 Производственное Объединение "Грознефть" Буровое трехшарошечное долото
US4852399A (en) * 1988-07-13 1989-08-01 Anadrill, Inc. Method for determining drilling conditions while drilling
US5012674A (en) * 1988-10-31 1991-05-07 Amoco Corporation Method of exploration for hydrocarbons
US5010789A (en) 1989-02-21 1991-04-30 Amoco Corporation Method of making imbalanced compensated drill bit
CA1333282C (en) 1989-02-21 1994-11-29 J. Ford Brett Imbalance compensated drill bit
US5042596A (en) * 1989-02-21 1991-08-27 Amoco Corporation Imbalance compensated drill bit
US5660239A (en) 1989-08-31 1997-08-26 Union Oil Company Of California Drag analysis method
GB2241266A (en) 1990-02-27 1991-08-28 Dresser Ind Intersection solution method for drill bit design
GB9004952D0 (en) * 1990-03-06 1990-05-02 Univ Nottingham Drilling process and apparatus
US5239467A (en) 1990-05-21 1993-08-24 Amoco Corporation Method for enhancing geophysical data by nonlinear compression of the dynamic range
GB9015433D0 (en) * 1990-07-13 1990-08-29 Anadrill Int Sa Method of determining the drilling conditions associated with the drilling of a formation with a drag bit
US5216612A (en) 1990-07-16 1993-06-01 R. J. Reynolds Tobacco Company Intelligent computer integrated maintenance system and method
US5205164A (en) 1990-08-31 1993-04-27 Exxon Production Research Company Methods for determining in situ shale strengths, elastic properties, pore pressures, formation stresses, and drilling fluid parameters
FI88744C (fi) 1991-04-25 1993-06-28 Tamrock Oy Foerfarande och anordning foer reglering av bergborrning
US5334833A (en) 1991-06-14 1994-08-02 Schlumberger Technology Corporation Sensitivity function technique for modeling nuclear tools
DE69217816D1 (de) 1991-10-21 1997-04-10 Schlumberger Technology Bv Verfahren und Gerät zum Feststellen und Quantifizieren von kohlwasserstoffenthaltende geschichtete Behälter in einer Verarbeitungsstation
US5369570A (en) 1991-11-14 1994-11-29 Parad; Harvey A. Method and system for continuous integrated resource management
NO930044L (no) * 1992-01-09 1993-07-12 Baker Hughes Inc Fremgangsmaate til vurdering av formasjoner og borkronetilstander
US5251286A (en) 1992-03-16 1993-10-05 Texaco, Inc. Method for estimating formation permeability from wireline logs using neural networks
US5305836A (en) * 1992-04-08 1994-04-26 Baroid Technology, Inc. System and method for controlling drill bit usage and well plan
US5416697A (en) 1992-07-31 1995-05-16 Chevron Research And Technology Company Method for determining rock mechanical properties using electrical log data
US5282384A (en) * 1992-10-05 1994-02-01 Baroid Technology, Inc. Method for calculating sedimentary rock pore pressure
US5474142A (en) * 1993-04-19 1995-12-12 Bowden; Bobbie J. Automatic drilling system
US5693910A (en) * 1993-04-30 1997-12-02 Arlington Industries, Inc. Easy-insertion integrally hinged C-shaped connector
US5330016A (en) 1993-05-07 1994-07-19 Barold Technology, Inc. Drill bit and other downhole tools having electro-negative surfaces and sacrificial anodes to reduce mud balling
US5442950A (en) * 1993-10-18 1995-08-22 Saudi Arabian Oil Company Method and apparatus for determining properties of reservoir rock
US5456141A (en) * 1993-11-12 1995-10-10 Ho; Hwa-Shan Method and system of trajectory prediction and control using PDC bits
US5605198A (en) 1993-12-09 1997-02-25 Baker Hughes Incorporated Stress related placement of engineered superabrasive cutting elements on rotary drag bits
US5449047A (en) * 1994-09-07 1995-09-12 Ingersoll-Rand Company Automatic control of drilling system
US5552891A (en) * 1994-10-31 1996-09-03 International Business Machines Corporation Automated mask alignment for UV projection expose system
US5845258A (en) 1995-06-16 1998-12-01 I2 Technologies, Inc. Strategy driven planning system and method of operation
US5539704A (en) 1995-06-23 1996-07-23 Western Atlas International, Inc. Bayesian sequential Gaussian simulation of lithology with non-linear data
US5704436A (en) 1996-03-25 1998-01-06 Dresser Industries, Inc. Method of regulating drilling conditions applied to a well bit
US5767399A (en) 1996-03-25 1998-06-16 Dresser Industries, Inc. Method of assaying compressive strength of rock
US6109368A (en) 1996-03-25 2000-08-29 Dresser Industries, Inc. Method and system for predicting performance of a drilling system for a given formation
US6408953B1 (en) 1996-03-25 2002-06-25 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system for a given formation
US7032689B2 (en) * 1996-03-25 2006-04-25 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system of a given formation
US6612382B2 (en) 1996-03-25 2003-09-02 Halliburton Energy Services, Inc. Iterative drilling simulation process for enhanced economic decision making
US5794720A (en) 1996-03-25 1998-08-18 Dresser Industries, Inc. Method of assaying downhole occurrences and conditions
US5654938A (en) * 1996-05-31 1997-08-05 Western Atlas International, Inc. Method for identifying alteration of earth formations using dipole acoustic logging
US5963910A (en) 1996-09-20 1999-10-05 Ulwick; Anthony W. Computer based process for strategy evaluation and optimization based on customer desired outcomes and predictive metrics
US5862513A (en) 1996-11-01 1999-01-19 Western Atlas International, Inc. Systems and methods for forward modeling of well logging tool responses
US5870690A (en) * 1997-02-05 1999-02-09 Western Atlas International, Inc. Joint inversion processing method for resistivity and acoustic well log data
US5878372A (en) * 1997-03-04 1999-03-02 Western Atlas International, Inc. Method for simultaneous inversion processing of well log data using a plurality of earth models
US5784333A (en) * 1997-05-21 1998-07-21 Western Atlas International, Inc. Method for estimating permeability of earth formations by processing stoneley waves from an acoustic wellbore logging instrument
CA2246466A1 (en) 1997-09-04 1999-03-04 Smith International, Inc. Cutter element with expanded crest geometry
US6155357A (en) 1997-09-23 2000-12-05 Noble Drilling Services, Inc. Method of and system for optimizing rate of penetration in drilling operations
US6026912A (en) 1998-04-02 2000-02-22 Noble Drilling Services, Inc. Method of and system for optimizing rate of penetration in drilling operations
US6044327A (en) 1997-11-13 2000-03-28 Dresser Industries, Inc. Method for quantifying the lithologic composition of formations surrounding earth boreholes
US6233498B1 (en) 1998-03-05 2001-05-15 Noble Drilling Services, Inc. Method of and system for increasing drilling efficiency
US5965810A (en) 1998-05-01 1999-10-12 Baroid Technology, Inc. Method for determining sedimentary rock pore pressure caused by effective stress unloading
US6052649A (en) 1998-05-18 2000-04-18 Dresser Industries, Inc. Method and apparatus for quantifying shale plasticity from well logs
WO2000012860A2 (en) 1998-08-31 2000-03-09 Halliburton Energy Services, Inc. Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
WO2000012859A2 (en) 1998-08-31 2000-03-09 Halliburton Energy Services, Inc. Force-balanced roller-cone bits, systems, drilling methods, and design methods
US6169967B1 (en) 1998-09-04 2001-01-02 Dresser Industries, Inc. Cascade method and apparatus for providing engineered solutions for a well programming process
US6345673B1 (en) 1998-11-20 2002-02-12 Smith International, Inc. High offset bits with super-abrasive cutters
EP1153194B1 (en) 1999-01-13 2003-11-19 Vermeer Manufacturing Company Automated bore planning method and apparatus for horizontal directional drilling
US6276465B1 (en) 1999-02-24 2001-08-21 Baker Hughes Incorporated Method and apparatus for determining potential for drill bit performance
GB2332227B (en) 1999-03-03 1999-11-10 Peter Richard Paul Cunningham Optimising well numbers in oil and gas fields
GB2354852B (en) 1999-10-01 2001-11-28 Schlumberger Holdings Method for updating an earth model using measurements gathered during borehole construction
US6349595B1 (en) * 1999-10-04 2002-02-26 Smith International, Inc. Method for optimizing drill bit design parameters
WO2001033027A2 (en) * 1999-11-03 2001-05-10 Halliburton Energy Services, Inc. Method for optimizing the bit design for a well bore
CA2340547C (en) 2000-03-13 2005-12-13 Smith International, Inc. Method for simulating drilling of roller cone bits and its application to roller cone bit design and performance
US6516293B1 (en) * 2000-03-13 2003-02-04 Smith International, Inc. Method for simulating drilling of roller cone bits and its application to roller cone bit design and performance
GB2370060B (en) 2000-03-13 2002-12-11 Smith International Method for simulating drilling of roller cone bits and its application to roller cone bit design and performance
US6785641B1 (en) * 2000-10-11 2004-08-31 Smith International, Inc. Simulating the dynamic response of a drilling tool assembly and its application to drilling tool assembly design optimization and drilling performance optimization
US6637527B1 (en) 2000-06-08 2003-10-28 Smith International, Inc. Cutting structure for roller cone drill bits
US6601660B1 (en) 2000-06-08 2003-08-05 Smith International, Inc. Cutting structure for roller cone drill bits
GB2371321B (en) 2000-06-08 2002-12-11 Smith International Cutting structure for roller cone drill bits
US6612384B1 (en) 2000-06-08 2003-09-02 Smith International, Inc. Cutting structure for roller cone drill bits
US6424919B1 (en) 2000-06-26 2002-07-23 Smith International, Inc. Method for determining preferred drill bit design parameters and drilling parameters using a trained artificial neural network, and methods for training the artificial neural network
US6530441B1 (en) 2000-06-27 2003-03-11 Smith International, Inc. Cutting element geometry for roller cone drill bit
US6527068B1 (en) 2000-08-16 2003-03-04 Smith International, Inc. Roller cone drill bit having non-axisymmetric cutting elements oriented to optimize drilling performance
GB2371366B (en) 2000-08-28 2004-05-26 Halliburton Energy Serv Inc Method and system for predicting performance of a drilling system for a given formation
NO325151B1 (no) 2000-09-29 2008-02-11 Baker Hughes Inc Fremgangsmate og apparat for dynamisk prediksjonsstyring ved boring ved bruk av neurale nettverk
WO2002050571A2 (en) 2000-12-19 2002-06-27 Halliburton Energy Services, Inc. Processing well logging data with neural network
US7003439B2 (en) * 2001-01-30 2006-02-21 Schlumberger Technology Corporation Interactive method for real-time displaying, querying and forecasting drilling event and hazard information
US7184991B1 (en) * 2002-07-12 2007-02-27 Chroma Energy, Inc. Pattern recognition applied to oil exploration and production
GB0419588D0 (en) 2004-09-03 2004-10-06 Virtual Well Engineer Ltd "Design and control of oil well formation"

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106103892A (zh) * 2014-02-07 2016-11-09 哈里伯顿能源服务公司 用于估计钻井工具磨损的模型
US10282497B2 (en) 2014-02-07 2019-05-07 Halliburton Energy Services, Inc. Model for estimating drilling tool wear

Also Published As

Publication number Publication date
CA2250030A1 (en) 1997-10-02
US7035778B2 (en) 2006-04-25
US8949098B2 (en) 2015-02-03
CA2250030C (en) 2006-10-17
AU2338997A (en) 1997-10-17
AU709128B2 (en) 1999-08-19
CN1082128C (zh) 2002-04-03
US5794720A (en) 1998-08-18
GB2328467B (en) 1999-10-13
WO1997036084A1 (en) 1997-10-02
US20040059554A1 (en) 2004-03-25
NO984454L (no) 1998-11-12
GB9820642D0 (en) 1998-11-18
JP2000507658A (ja) 2000-06-20
US6131673A (en) 2000-10-17
NO984454D0 (no) 1998-09-24
NO324161B1 (no) 2007-09-03
GB2328467A (en) 1999-02-24
BR9708257A (pt) 1999-08-03
US20030187582A1 (en) 2003-10-02
US6374926B1 (en) 2002-04-23
US20090006058A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
CN1082128C (zh) 测定地下钻头所做功的方法
CN1214755A (zh) 调整用于钻井钻头的钻探条件的方法
CA2857707C (en) Method for assessing the performance of a drill bit configuration, and for comparing the performance of different drill bit configurations for drilling similar rock formations
US6109368A (en) Method and system for predicting performance of a drilling system for a given formation
CN1341803A (zh) 针对给定地层预测钻井系统的性能的方法及系统
RU98119444A (ru) Способ регулирования условий бурения, влияющих на режим эксплуатации бура
CN1292495A (zh) 一种在连接过程中利用井下压力测量值确定当量静态泥浆密度的方法
CN103975125A (zh) 检测和缓解钻探效率低下的方法
CN1038697A (zh) 透平转子无损检查受力后剩余及寿命评估
CN1289890A (zh) 等效密度的液压校准
CN1239921C (zh) 利用地震记录预测井眼待钻井段坍塌压力和破裂压力的方法
JP2015067957A (ja) 岩盤探査方法および岩盤探査システム、並びに岩盤探査用穿孔データ補正装置
Khentout et al. TAGUCHI OPTIMIZATION AND EXPERIMENTAL INVESTIGATION OF THE PENETRATION RATE OF COMPACT POLYCRYSTALLINE DIAMOND DRILLING BITS IN CALCAREOUS ROCKS.
KR100755351B1 (ko) 구동모터의 전류 측정값을 이용한 표준관입시험 타격수n값 도출방법 및 n값 산출장치
RU49844U1 (ru) Винтовой бур для проходки скважин в прочных и мерзлых грунтах
Alattar et al. New Positive Displacement Motor Technology Significantly Improves the Drilling Performance through Challenging and Abrasive Strata in Northern Kuwait
Ramdani et al. Enhancing sustainability through drilling machine efficiency: A comparative analysis of TOPSIS and VIKOR methods for energy optimization
CN114086949A (zh) 一种利用液压引导的地质勘探取样方法
WO2021053005A1 (en) A method for determination of properties of cuttings from rock drilling
RU2508447C1 (ru) Способ контроля режима работы гидравлического забойного двигателя в забойных условиях
CA2009654A1 (en) Method of predicting drill bit performance
CN115749730B (zh) 一种随钻岩石力学参数预测方法和系统
Tantussi et al. Diamond wire cutting of marble: state of the art, modeling and experiments with a new testing machine
MXPA98007857A (es) Metodo de ensayar ocurrencias y condiciones dentro de un agujero
Khan et al. Analysis of muscles and gripping activities of human hand during drilling operation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: HOLYBEDON ENERGY SERVICE CORPORATION

Free format text: FORMER OWNER: DRESSER INDUSTRIES INC.

Effective date: 20030905

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20030905

Address after: Texas USA

Patentee after: Holeybeton Energy Source Service Co.

Address before: texas

Patentee before: Decoration Industry Co.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020403

Termination date: 20150321

EXPY Termination of patent right or utility model