CN1199827A - 涡轮/电动机(发电机)驱动的增压压缩机 - Google Patents

涡轮/电动机(发电机)驱动的增压压缩机 Download PDF

Info

Publication number
CN1199827A
CN1199827A CN98108939A CN98108939A CN1199827A CN 1199827 A CN1199827 A CN 1199827A CN 98108939 A CN98108939 A CN 98108939A CN 98108939 A CN98108939 A CN 98108939A CN 1199827 A CN1199827 A CN 1199827A
Authority
CN
China
Prior art keywords
turbine
compressor
nitrogen
stream
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98108939A
Other languages
English (en)
Other versions
CN1138961C (zh
Inventor
N·T·纳诺弗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN1199827A publication Critical patent/CN1199827A/zh
Application granted granted Critical
Publication of CN1138961C publication Critical patent/CN1138961C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/12Combinations with mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/107Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with two or more rotors connected by power transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • F25B11/04Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04024Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of purified feed air, so-called boosted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/0403Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04139Combination of different types of drivers mechanically coupled to the same compressor, possibly split on multiple compressor casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04381Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04781Pressure changing devices, e.g. for compression, expansion, liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种用于低温气体分离的压缩装置,其中该装置包括一个压缩机,一个膨胀涡轮和一个电动机,它们通过一个齿轮传动装置而连接成一个整体,以及一种使用该压缩装置的方法。

Description

涡轮/电动机(发电机)驱动的增压压缩机
本发明涉及一种涡轮/电动机(发电机)驱动的增压压缩机,更详细地说,涉及一种包括由一个电动机/发电机助力的低温膨胀涡轮所驱动的增压压缩机的联合装置,以及一种使用该装置的方法。
过去,由于发电机和相关硬设备的价格过高,功率低于100马力的涡轮很少在吹离生产中使用。许多氮(或氧)生产设备使用了一个产品压缩机来根据用户的技术要求提高产品压力。另一方面,某些氮生产设备(用废料膨胀)中没有产品压缩机并且被设计成可在较高的总压力(它由产品氮所需要的压力决定)下工作。这种废料膨胀设备要求更大的能量,该设备工作的经济性较差。但是,由于与通过省去产品压缩机相关的基本投资的节省,这种低效率已经被证明是合理的。一般说来,低温吹离设备具有一台可自持的致冷生产膨胀器(涡轮)是较理想的。
为了把气体生产设备用于液体生产,最好增加涡轮的尺寸,然后相应地改进生产过程。一般,生产工程师不会增加与其他生产要求无关的该涡轮的尺寸。因此,所生产的液体的数量以及一台设备生产产品气体的生产率常常(特别是在环境温度很高的日子里)会受到限制,部分由于致冷的限制。因此,根据一个特定系统的要求来调整所产生的致冷量将是有利的。但是通过改变涡轮功率来调整致冷量而又不影响生产过程是不切实际的,因为这种装置是不存在的。
只要把涡轮功率用在设备的其他部件(例如驱动一个用来压缩产品流或进给空气本身的增压压缩机)就可以改进小型至中型气体生产设备的效率。过去存在的问题除了基本投资以外,还有一个如何使涡轮与压缩机级两者的速度和功率相匹配的问题。增压压缩机的工作参数包括压力(头)、流量和功率都通过相应的(压缩)流要求(或产品流或进给空气流)进行管理。高效率工作通常决定了压缩机的尺寸及其最佳速度。这些增压压缩机的技术要求与涡轮的工作压头、流量和功率要求(它们取决于其他的生产目的)是无关和没有联系的。
涡轮和压缩机都必须被允许在其最佳速度下运转以达到最高效率的工作。涡轮和压缩机的速度和功率通常是不匹配的。在过去,人们首先确定涡轮的尺寸,然后调整生产过程使增压器围绕涡轮定下尺寸。通常要兼顾一个或几个过程参数,如流量、速度和效率等。在用发电机加载涡轮的情况下,基本投资和生产费用在改进吹离生产中是起决定作用的。结果,传统上一直认为涡轮功率低于100马力回收是不经济的,因而废弃不用。
如上所述,在小型至中型设备中,涡轮功率没有被利用而是在散热回路中废弃掉了。如果该功率被用来驱动压缩机将能量回收至生产中,这样做常常损害压缩机性能,因为涡轮和压缩机的功率和速度很少能够匹配。用一台发电机作为涡轮的负载,虽然在经济上可行,但仍不如直接用压缩机更有效。
然而,申请人知道目前还没有描述本发明内容的技术创造,即,一个带有一个电动机/发电机的低温涡轮和一级(或几级)压缩机通过一具齿轮箱组合成一个装置,从而可对低温涡轮和压缩机都提供最佳工作。把低温涡轮安装在暖端设备例如基本负荷空气压缩机或齿轮箱上是不切实际的,因为把低温涡轮管道的路线和绝缘设定在或靠近于该暖端设备处有不少技术困难。后者实际上通常位于与安装涡轮管道和所有低温管道的低温箱相距一定距离处。
现有技术涉及有关膨胀器设计和应用的各个方面。例如在低温生产行业中应用的压缩机加载的涡轮(压缩扩展器)以及发电机加载的低温涡轮都是本技术领域已知的。人们知道在吹离设备中压缩扩展器可用于生产低压气体氧和/或氮产品。例如在美国专利5268328中,电动机和一个暖生产空气涡轮相组合来驱动压缩机。
美国专利4817393提出了在驱动一个小型暖端空气压缩机或以该轴功率输出驱动一个发电机之间几乎没有成本上的差距。美国专利4769055提出了在暖端压缩机获得的增量压缩是很经济的,因为驱动功率是“自由”的并且压缩扩展器的基本投资同带有一些吸收发出功率的其他装置的膨胀器的基本投资几乎没有什么差距。
本发明的一个目的是提供一种由一个电动机/发电机助力的低温涡轮膨胀器所驱动的增压压缩机的组合装置,该装置可以有效地在低温生产循环中使用。
本发明的另一个目的是确认这种低温生产循环,能有效地使用该低成本的由电动机/发电机助力的涡轮膨胀器驱动的增压压缩机,其效率不亚于现有技术。
本发明的又一个目的是提供一种可靠的和坚固的低温涡轮膨胀器,该膨胀器只需要较低的基本投资和较低的维修费用。
本发明的再一个目的是提供一种能在通过低温精馏使空气分离的生产氧和/或氮的设备和循环中使用的涡轮膨胀器。
本发明的另一个目的是从一个低成本的增压压缩机增加致冷生产,但与其它生产设备不同的是与涡轮的尺寸(功率)无关联。
本发明是一种用于致冷系统的气体压缩装置。该装置包括一个电动机/发电机,一个压缩机和一个膨胀涡轮,它们通过一个齿轮传动装置连接成一个整体。该膨胀涡轮具有一个涡轮入口和一个涡轮出口,使得该压缩装置在涡轮入口中的工作温度低于约250°K。涡轮出口的工作温度低于约150°K,最好低于100°K。该致冷系统可以提供致冷作用,以便将至少一种气体成分液化,或者用于从至少一种气体混合物分离出至少一种气体成分的气体分离。一个控制装置调节至少一部分气体顺序地通过压缩机至涡轮中。
本发明还涉及一种致冷方法,该方法包括如下步骤:使一种气体混合物分离成至少一种气体产品;使一部分气体产品进入压缩装置的涡轮中,该压缩装置具有一个涡轮、一个压缩机和一个电动机/发电机,它们通过一个齿轮传动装置连接成一个整体。该涡轮具有一个涡轮入口和一个涡轮出口,使得在涡轮入口中的工作温度低于约250°K。在涡轮出口中的工作温度低于约150°K,最好低于100°K。至少一部分气体混合物通过压缩机作为至少一种压缩气体混合物出现。该低温精馏塔系统可以包括一个单个的塔和一个上冷凝器,其中至少一部分气体混合物通过该单个塔作为至少一种净化的气体产品出现。该净化气体产品包括一种纯度大于约95%的高度浓缩的气体产品以及一种纯度在约55%至约75%之间的中等浓缩的气体产品。该低温精馏塔系统可以包括一个下塔、一个上塔和一个主冷凝器,其中至少一种净化的气体产品从冷凝器通过压缩机,然后再到膨胀器中。
通过下面对最佳实施例和附图的说明,本发明的其他目的、特点和优点将出现在本领域的普通技术人员头脑中,附图中:
图1是涡轮/电动机加力的增压压缩机的横截面装配图;
图2是具有产品压缩机的废料膨胀氮设备的流程简图;
图3是具有部分进给空气流的增压压缩机的废料膨胀氮设备的流程简图;
图4是具有部分液氮/氧生产的气体氧设备的流程图;以及
图5是一个轴的密封装置的简图。
下面将参照附图对本发明进行详细描述。图1是由电动机/发电机加力,低温涡轮驱动的增压压缩机的横截面装配图。涡轮101、压缩机102和电动机/发电机103都连接在齿轮箱104上。该涡轮由支架105和涡轮壳体106组成。涡轮101的转子107在涡轮轴承108中转动,该些轴承对中并安装在齿轮箱104中。膨胀端轴封109被夹持和对中在涡轮支架105中,该支架本身对中在齿轮箱104中。
齿轮箱沿水平方向是对开的,以便于单个部件的更换和维修而不会干扰该齿轮箱的其他部件。在把齿轮箱盖取下后,就可把涡轮支架从涡轮壳体和齿轮箱中取出而不会干扰低温箱绝缘。安装着本发明涡轮、增压压缩机和电动机/发电机的齿轮箱最好位于非常靠近并与“低温箱”相邻接的位置上,即通常人们愿意放置涡轮本身的地方,见图1。
这种配置在经济上是较可取的,因为它利用了一个“普通的”涡轮级并且由于涡轮壳体被“浸没”在低温箱中以通过珍珠岩或某些其他类型的热绝缘进行热绝缘而使进入涡轮及其“冷低温”管道中的可能的热漏泄损失减至最少。最好把增压压缩机放在靠近低温箱并与涡轮本身相邻的位置。
增压压缩机级和电动机/发电机与所有暖端(增压压缩机)管道一起放在齿轮箱的(涡轮和低温箱的)对置侧。齿轮箱沿水平方向是对开的,以便单独接近每个主要部件,即涡轮、压缩机、电动机或者齿轮和轴承壳体。因此,通过取下齿轮箱盖,操作者可以方便地接近并且单独地取出这些部件中的任何一个而不会影响其他两个部件。
涡轮通过齿轮传动与压缩机相连接。在涡轮入口处的工作温度约低于250°K。在燃气通过涡轮以后,在涡轮出口处的工作温度约低于150°K,最好约低于100°K。
低温膨胀器热防护层110位于齿轮箱的暖区与冷膨胀器齿轮111之间的涡轮支架内。其所以必须这样做有两个原因:第一,为了保护在轴承中的润滑油不致发生将危及机械功能性的冻结;以及第二,为了防止热量泄漏到生产流体中,这将不必要地降低膨胀器的效率和性能。
膨胀器壳体106提供了用来把生产流体导入此处所述的涡轮膨胀器并从该膨胀器排出的装置。由电机驱动装置114或其他机构驱动的附加的压缩机级也可以利用。涡轮101通过位于齿轮箱104中的齿轮组113装有压缩机叶轮112和压缩机级102。把涡轮转子连接到电动机/发电机103上的另一个齿轮114将根据生产要求为压缩机提供附加的功率输入或者吸收多余的涡轮功率。
如果驱动压缩机级的涡轮通过齿轮传动与一个电机并联工作,如图1所示,我们就能节约设备的基本投资并且还能提高生产过程的能的效率。通过在一个低温(或任何生产过程)的涡轮上有接装上一个压缩机级要比开始就装置一个单独发电机的效率更高,因为这是一种从膨胀的流体流回收初始能量输入的更直接的方法。它避免了与来自低温涡轮的能量与电能之间的能量转换相连系的低效率。
齿转传动装置可使涡轮和压缩机都在其相应的最佳速度下独立地工作。异步电动机/发电机可以自动地补偿这两级的功率差,即如果涡轮产生的功率小于压缩机所要求的功率,那么电动机将供给该功率差。另一方面,在具有剩余功率时,电动机将作为发电机运行(差别仅在于每分钟几转,RPM),从而把剩余功率转换成电能。这些都是自动完成的,不需要进行附加的控制。
在应用于需要一个产品压缩机的设备中时,该装置能免除一台附加的增压压缩机的基本投资,因为涡轮的加载压缩机就可以是该产品增压压缩机。此处的资金节省不但包括该压缩机硬件本身的生产成本,还包括所有常常独立于产品增压压缩机之外的与滑行装置、管道。冷却(水)、电线接头、基础、控制器等有关的费用。
该装置可使压缩机和涡轮都可独立地在其最佳效率或接近其最佳效率的情况下运行。它可以允许或压缩机级或涡轮级处于最佳速度而与该两个转子的失配功率值无关。交流感应电动机将通过作为电动机或发电机运行而自动地补偿该两个转子的功率差。
一个控制装置可使压缩装置在最佳效率下运行。该控制装置可以用来调节至少一部分通过涡轮的燃气管道的压力。该控制装置可以是一个为本领域熟练技工所知的用计算机处理的机械装置。
该气体压缩装置可以使设备能为至少一种气体成分的液化提供致冷和/或为从至少一种气体混合物分离成至少一种气体成分的气体分离提供致冷。
图2示出了由本发明的一个膨胀涡轮和一个电动机/发电机所驱动的带有一个产品压缩机的废料膨胀低温氮气生产系统的一个实施例。它是为说明的目的而示出的,因而它可以使用于任何适合的低温精馏设备。它在一个废料膨胀低温氮生产循环中是特别有用的。来自精馏塔的废料流受到膨胀产生致冷作用,该膨胀的废料流以与输入的进给空气间接热交换方式从中经过,从而使进给空气冷却并且在精馏塔系统内形成致冷而产生精馏。本发明还重新确定了废料膨胀氮生产设备的适用范围,因为它们的单位气体产品的能量消耗得到了改进。图2示出了使用本发明所述的一个产品增压压缩机和一个电动机/发电机的一种应用实例。这种设备传统上没有产品压缩机,但本发明的该电动机/涡轮助力的增压器级可以用来作为多级进给空气机中的一级或者只用来压缩一部分进给空气流,如图3中所示。
现在参看图2,含有氮气和氧气的气体混合物即进给空气201在基本负荷进给空气压缩机202中受到压缩,然后穿过主热交换器203。在该主热交换器203内,该受压缩的进给空气通过与膨胀的废流体的间热热交换而受到冷却,这在下文中将要作更详细的说明。该受压缩和受冷却的进给空气(其中的高温沸腾的杂质例如水蒸气和二氧化碳已被清除)然后作为气流205进入一个低温精馏塔系统。
示于图2中的低温精馏塔系统包括单个的塔206和上冷凝器208。虽然包括一个以上的塔的设备也可以使用,但最好该低温精馏设备只包括一个塔。塔206最好在每平方英寸40磅至140磅的绝对压力(psia)范围内工作。
在塔206内该进给空气通过低温精馏被分离成氮气流209和富氧液流207。氮气流从塔206的上部排出,它通常具有约95%以上的氮气的纯度,最好其纯度范围在约98%的氮气至约99.9999%的氮气之间,或者具有更高的纯度。氮气流209的一部分226进入上冷凝器208中,并在其中靠着富氧液流而受到冷凝,然后作为回流217进入塔206中。如果需要,液氮流217的一部分220可以作为液氮产品218回收。该通常具有的氮气浓度范围为从约55%至约75%,最好从约60%至约70%的富氧液流作为富氧液流207从塔206的下部排出,通过阀234降压并且作为液流227进入上部冷凝器208中并在其中沸腾以便对氮气流226进行冷凝。
被排出的氮气流209通过主热交换器203与进给空气进行间接热交换而受到温热由此使进给空气冷却。此后,被温热的氮气流223通过由电动机270和低温膨胀器213驱动的增压产品压缩机260而受到压缩,从而形成可以回收的高压氮气产品224。
含氮的废液作为液流212从精馏搭系统的上冷凝器208中排出,然后该液流的一部分通过主热交换器203,然后再通过涡轮膨胀器213被膨胀到其范围在20 psia至大气压力之间的一个压力上。膨胀器213与一个氮气产品压缩机和一个电动机相连接。在这种直接连接的膨胀器-压缩机系统中,两个装置都通过或不通过齿轮装置进行机械连接,从而使从膨胀的气流提取的能量直接由膨胀器通过压缩机传送给受压缩的产品氮气中。一个具有适当的框架和尺寸的电动机补充该低温膨胀器来驱动产品压缩机。该电动机、膨胀器和压缩机通过位于本发明的齿轮箱中的齿轮组机械地互相连接。这种配置使得与从膨胀器通过一个中间级(例如发电)把能量间接传输给压缩机相连系的额外损失和基建费用减至最少。废液212通过并且驱动膨胀器213,然后该膨胀器再部分驱动压缩机以便压缩产品氮气。同时,该膨胀的废液由于通过涡轮膨胀器213而受到冷却。
然后受冷却的膨胀的废液214通过主热交换器203与进给空气进行间接热交换而受到温热同时使进给空气冷却,从而以该进给空气向低温精馏系统内提供致冷而产生或进行低温精馏。然后把所产生的温热的废液作为废液流216从主热交换器203中排出并且废弃掉。
图3示出了具有部分含有氮气及氧气的气体混合物(即进给空气流)的废料膨胀设备的另一个特定的实施例,该设备由本发明的涡轮/电动机驱动的增压压缩机所压缩。它是为说明的目的而示出的,因而它可以使用于任何适合的低温精馏设备。
现在参看图3,只有一部分进给空气流301旁路通过基本负荷空气压缩机302的最后级。进给空气的旁路部分340受增压压缩机350的压缩并以部分341出现,使得主进给空气机302的排出压力处于从每平方英寸40磅至140磅绝对压力(psia)的范围内。旁路部分的气流340的流量由来自低温涡轮313的有效功率输出以及用于该特定用途的一个适当框架尺寸的电动机370的有效利用率所决定。在重新组合以后,两股进给空气流通过主热交换器303。在主热交换器303内,该受压缩的进给空气通过与膨胀的废料流体的间接热交换而受到冷却,这在下文中将要作更详细的说明。该受压缩和受冷却的进给空气(它也已去除了高温沸腾的杂质例如水蒸气和二氧化碳)然后作为气流305进入一个低温精馏塔系统。
示于图3中的低温精馏塔系统包括单个的塔306和上冷凝器308。虽然包括一个以上的塔的设备也可以使用,但在本发明的实践中最好该低温精馏设备只包括一个塔。塔306最好在每平方英寸40磅至140磅的绝对压力(psia)范围内工作。
在塔306内该进给空气通过低温精馏被分离成氮气流309和富氧液流307。氮气流从塔306的上部排出,它通常具有95%以上的氮气的纯度,最好其纯度范围在约98%的氮气至约99.9999%的氮气之间,或者具有更高的纯度。氮气流309的一部分326进入上冷凝器308中,并在其中靠着富氧液流而受到冷凝,然后作为回流317进入塔306中。如果需要,液氮流317的一部分320可以作为液氮产品318回收。该富氧液流通常具有的氮气浓度范围为从约55%到约75%,最好从约60%至约70%,它作为富氧液流307从塔306的下部排出,通过阀334降压并且作为液流327进入上部冷凝器308中并在其中沸腾以便对氮气流326进行冷凝。
被排出的氮气流309通过主热交换器303与进给空气进行间接热交换而受到温热由此使进给空气冷却。此后,被温热的氮气流323可以回收。
含氮的废液作为液流312从精馏塔系统的上冷凝器308中排出,然后该液流的一部分通过主热交换器303,然后再通过涡轮膨胀器313被膨胀到其范围在20psia至大气压力之间的一个压力上。通过膨胀器313被冷却膨胀的废液314通过主热交换器303与进给空气进行间接热交换而受到温热同时冷却了进给空气,由此以该进给空气为低温精馏系统提供致冷而产生或进行进给空气的低温精馏。然后把所产生的温热的废液作为废液流316从主热交换器303中排出。
在如图3所示的该特定的应用场合中,基本负荷空气压缩机302的最后级必须被设计成能稳定地和安全地工作,远离由于部分减少主进给空气流而引起波动的地方。因此,这种配置能提供涡轮的功率利用并且使主进给压缩机驱动器的功率减小。虽然用来补充涡轮的该附加的小电动机将会稍微增加该涡轮的基本投资,但这样做在经济上还是有利的。
图4是为说明目的而示出的气态氧生产循环的一个特定实施例。本发明可以使用于任何适当的低温精馏设备。它在氧气生产设备中特别有用,该设备或者具有上塔空气膨胀,或者如图4所示具有盘架式塔氮气膨胀,其中来自精馏塔的废氮流受膨胀以便产生致冷作用。该膨胀的废料流以间接的热交换方式经过输入的进给空气从而使进给空气冷却并由此在精馏塔系统内提供致冷而产生精馏。
在图4中,该增压压缩机级可以用来在涡轮气流在涡轮中膨胀以前通过提高该涡轮气流的压力(和能量)而有效地增加该涡轮的致冷功率。已经安装就位的适当尺寸的电动机将可为这种运行模式提供附加功率(当被这样要求时)。
现在参看图4,含有氮气和氧气的气体混合物即进给空气401在基本负荷进给压缩机402中受压缩,在预净化器402中预先清除杂质,然后通过主热交换器404。在主热交换器404内,受压缩的进给空气通过与产品和其他返回冷流的间接的热交换而受到冷却。然后该受压的冷进给空气作为气流405进入低温精馏塔系统的下塔406中。
示于图4中的低温精馏塔系统包括下塔406,上塔415和主冷凝器411。下塔406最好在每平方英寸40磅至140磅的绝对压力(psia)范围内工作。在下塔406内,进给空气通过低温精馏被分离成一个氮气流410和富氧液流416。一部分氮气流410进入主冷凝器411的上部并在其中靠着上塔的沸腾的液氧而受到冷凝,然后作为回流的液氮流412返回进入下塔406中。
其含氮浓度通常在60%至70%之间的富氧液流作为液流416从下塔406的下部排出,在热交换器417中靠着产品或废氮流419而被冷却,降低了压力并且作为液流418进入上塔415中。然后废氮流419通过热交换器414、417和404作为废氮流420排出。上塔的工作压力范围最好在每平方英寸15至25磅绝对压力(psia)之间。气态氧产品作为气流421从主冷凝液排出,然后在主热交换器404中靠着进给空气而被温热并且作为气态氧产品流422排出。
氮气流作为气流407从主冷凝器411的循环的高压蒸气流中排出。然后在主热交换器404的通道中的一个通道内的受到进给空气的温热并且在增压压缩机430内受到压缩。在主热交换器404的另一个通道中把压缩和局部预冷的热量放出以后,该氮气流就进入膨胀器408中受到膨胀而产生所需要的致冷作用,以保持精馏过程的进行。然后,冷却的膨胀废液流通过主热交换器404的另外一条通道与进给空气进行间接热交换而受到温热同时使进给空气冷却,从而产生或进行低温精馏。然后把所产生的热氮流作为废料流409从主热交换器404中排出并且废弃。涡轮膨胀器408在驱动增压压缩机430时受到电动机/发电机440的援助。此处的增压压缩机级可以用来在涡轮气流407在涡轮中膨胀以前主要通过提高该涡轮气流407的压力(和能量)而有效地增加涡轮的致冷功率。已经安装就位的适当尺寸的电动机将可为这种运行模式提供附加功率(当被这样要求时)。这种涡轮和增压器级的尺寸应适合于最大负荷(即压力比)下工作。
降低涡轮功率的操作可以通过降低涡轮入口压力的同时保持其流量完全不变而达到。这可以利用位于增压压缩机入口处的吸入导流叶片来完成。吸入导流叶片的调节还将使增压器的排气压力和涡轮的输出功率(产生致冷)同时得到调节,而不会对涡轮流量及生产循环产生严重影响。
另一股液氮流413从来自主冷凝器的返回液氮(氮气冷凝物)流412中排出并且通过在热交换器414中的局部冷却以后作为回流引入上塔的帽中。这种回流对于起动低压的上部精馏塔以便生产出高纯度的氮和氧气产品是必需的。
对低温涡轮膨胀器的附加功率可以在气流在该涡轮膨胀器中膨胀以前通过增压压缩机的自举电路(boot-strapped)从电动机获得。这样当需要时立即可以给出附加的致冷而不会影响生产循环。如果需要,一部分液氮流412可以作为液氮产品424回收。同样,一部分氧也可以作为液氧产品423从位于上塔415的底部位置的沸腾的液氧中回收。通常,气态氧产品流422和液氧产品423所具有的氧的纯度均大于95%。最好,该含氧纯度超过99.5%。
轴承润滑剂向低温生产流体移动由膨胀器轴密封装置通过把温热的缓冲密封气体导入膨胀器端轴密封中而阻止,如图5中所示。该密封装置是任何一种可将缓冲密封气体容纳在轴-转子周围的装置。通常,可以用迷宫550来容纳一个轴封,该迷宫可以沿轴507建立一系列的局部压力增加,从而阻止了润滑剂从轴承508向涡轮膨胀器501的叶轮511的流动和低温生产气体从膨胀器叶轮511向轴承和齿轮箱104的流动。这样就有效地把轴承和齿轮箱同该生产液流隔离开来,由此保证了涡轮膨胀器的可靠工作而不会发生油在轴承中冻结或者生产液流受到轴承润滑剂污染的情况。
温热的密封气体通常在40°F至150°F的温度范围内通过供给阀551供应到密封装置中。该密封气体最好与生产液流相同,例如氮气或过给空气。为了使膨胀器效率降低减至最小,流入膨胀器壳体中的高压暖密封气体的数量可通过压力调节器552保持为最小,即把该气体以略高于生产液流压力的一个压力在其注入地点导入至生产液流中。低压密封气体也可以通过背压调节器553设定在近似每平方英寸15磅表压力(psig)下供入该装置中。该低压的密封气体供应可保证生产液流绝对不会被油所污染。基本上所有的密封气体都在涡轮起动和关闭时供入该密封装置中。
如本领域的普通技术人员能理解的那样,该密封气体装置只是在低温涡轮膨胀器转子的膨胀器端处才是需要的。在该涡轮转子的另一个暖端以及在压缩机级转子的任一端都不需要有密封气体。而是该压缩机的循环生产气体例如空气或氮可以通过一个位于压缩机叶轮与压缩机部轴承之间的类似的迷宫式轴密封逸出。
本发明在经济方面的优点可以概述如下:
对于需要增压的产品压缩机的小型气体设备(50至200吨/日),这种压缩机的相应的基本投资(包括滑行装置、管道、基础、冷却水、电气接头、控制装置等)约为25万美元。其次,还有涡轮及其加载装置(压缩机制动器、油压制动器、或者电动机)。
本发明的涡轮/电动机/发电机驱动的增压压缩机将能以费用稍贵的涡轮为代价令人满意地取代产品压缩机,由此可以节省与其有关的所有基本投资。用这种方法,人们至少每台设备(50至200吨/日)可以节省10万至20万美元再加上在生产用电力方面的其他节省。
以下的实例说明了本发明的经济效益:
一台每日100吨生产能力的低温氧/氮气体生产设备将需要50SHP(轴马力)的产生致冷的低温涡轮,该涡轮以近似10000RPM(每分钟转数)的转速转动以获得最高效率。此外,为了提高产品氮气流的压力,比方说提高到30psia(每平英寸磅绝对压力),我们将需要一台以约27000RPM的转速转动(以使它在最佳效率下运行)的约100SHP的产品氮增压压缩机。使用本发明的低温涡轮/电动机驱动的增压压缩机,我们只需要购买在压缩机功率需求与涡轮功率输出值之间的50SHP的欠缺额的电动机。
如果没有本发明的效益,人们将必须购买175SHP(它超出了125SHP),因为现在需要购买的不但是产品压缩机的100SHP,而且还要负担(在基本负荷进给空气压缩机的情况下)由于两种机械即进给空气压缩机和低温涡轮的低效率组合而引起的低温涡轮的损耗功率(在低温涡轮处的50SHP现在就变成了在基本负荷空气压缩机轴处的75SHP)。此外,在后一种情况下,还必须承担整个一台新的增压压缩机的安装和运行费用,包括滑行装置、管道、基础、冷却水、电气接头、控制装置等方面的费用。
使用本发明,人们将可以节省约10万美元的资金,因为该特定的增压压缩机的单台安装费约为15万美元,该单台低温涡轮的费用约为10万美元,而本发明的涡轮/电动机/发电机驱动的增压压缩机的较高的费用约为15万美元。以每瓦小时0.05美元计算,每年在运转动力费用方法的费用约可再节省5万美元。
为了实现上述经济利益,该装置需要具有一个专用的齿轮箱,以便使生产气体涡轮,电动机/发电机和增压压缩机互相连接。安装着本发明的涡轮、增压压缩机和电动机/发电机的齿轮箱最好位于非常靠近“低温箱”并与其相邻接的位置上,即人们通常愿意放置的涡轮本身的地方。
这种配置在经济上是较可取的,因为它利用了一个“普通的”涡轮级并且由于涡轮壳体被“浸没”在低温箱中以及通过珍珠岩或某些其他类型的热绝缘而使进入涡轮及其(冷低温)管道中的可能的热泄漏损失减至最少。把增压压缩机放在靠近低温箱并与涡轮相邻接的位置与在相反情况下,如果涡轮是放在例如与基本负荷空气源设备或某个其他压缩机相邻接的位置处,把冷(低温)涡轮气流用管子输送到该设备的暖端装置内相比,将是很容易而且在费用上也较为合算的。
增压压缩机级和电动机/发电机与所有暖端(增压压缩机)管道一起放在齿轮箱的(低温箱的)对置侧。齿轮箱沿水平方向是对开的,以便单独接近3个主要部件中的每个部件,即涡轮、压缩机、电动机或者齿轮和轴承壳体。因此,通过取下齿轮箱盖,操作者可以方便地接近并且单独取出这些部件中的任何一个而不会影响其他两个部件。
如上所述并如图4中所示,该增压压缩机级可以用来在涡轮气流在涡轮中膨胀以前通过提高涡轮气流的压力而有效地增加低温涡轮的致冷功率。在该过程中,膨胀(在该涡轮中)气流通过一个增压压缩机级受到压缩,然后它又对涡轮进行加载。
传统上,在一个典型的气体设备中,液体的生产通常通过改变涡轮流量来调节。但是,在某个时刻,进一步增加涡轮流量将导致回收量的显著降低和基本负荷空气压缩机的较大的总功率损失。这就是生产循环不能经济地制出更多液体产品的关键。
对于本发明的由涡轮驱动,电动机助力的增压器,附加功率(例如用来提高涡轮气流的压力)是通过正常尺寸的电动机和增压压缩机提供的。在这种情况下,涡轮和增压器级的尺寸是以最大的负荷(即压力比)而定的。附加的功率将通过电动机提供。
降低涡轮功率的操作可以在保持其流量相当稳定的同时通过降低涡轮入口压力而达到。这可以利用位于增压压缩机入口处的吸入导流叶片来完成。吸入导流叶片的调节也使增压器的排气压力和涡轮的输出功率(产生制冷)同时得到调整,但不会对涡轮流量及生产循环本身产生严重影响。
在上述的100TPD设备的特定情况中,本发明被用于通过示于图4中的电动机来自动提高在该自举增压压缩机中的涡轮气流的入口能量,这样只要购得该电动机的附加功率该气体设备就可以生产出额外的液体产品。例如,通过增压压缩机的入口导流叶片或者其他装置使作用在涡轮上的负荷从50SHP增加到75SHP,额外的4%的产品氮就可以作为液体生产出来并且不会影响生产循环本身。如果没有本发明的由涡轮驱动电动机助力的增压压缩机,这是很难完成的。
压缩机级和低温膨胀器级的工作效率不会因为把两者组合在一台设备中而受到损害。它适合于用废料膨胀或空气膨胀的氮生产设备。在某些应用中,例如氧生产空气分离设备或者甚至是较小的氮生产设备中,该设备可以通过利用电动机的帮助(由于附加制冷)而获得额外的液体产品。该设备尤其适合通过利用废料膨胀或空气膨胀循环的低温蒸馏来使空气分离的氮生产设备。它也可以用在其他的低温生产中,例如氢、天然气体或者需要低生产成本和现有技术性能的膨胀器与压缩机级组合的类似的化学产品生产。
通过利用本发明的低温涡轮驱动电动机/发电机助力的增压压缩机,可以以较低的总生产费用(并且不致发生较大的基本投资损失)使用低温精馏生产出氮或氧产品。在一个或多个附图中所示出的本发明的特征只是为了方便起见,因为每个特征可以与本发明的其他特征相结合。本技术领域的普通技术人员将可认识到另外的各种实施例并且这些实施例都应包括在本权利要求书的范围内。

Claims (10)

1.一种用于致冷系统的气体压缩装置,该压缩装置包括一个电动机/发电机,一个压缩机和一个具有一个涡轮入口和一个涡轮出口的膨胀涡轮,其中所述压缩机,涡轮和电动机/发电机通过一个齿轮传动装置连接成一个整体以及所述压缩装置在所述涡轮入口中的工作温度低于约250°K。
2.如权利要求1所述的压缩装置,其特征在于,所述系统提供致冷作用以使至少一种气体成分液化。
3.如权利要求1所述的压缩装置,其特征在于,所述系统提供致冷作用,用于从至少一种气体混合物分离出至少一种气体成分的气体分离。
4.如权利要求1所述的压缩装置,其特征在于,该装置包括一根用于把至少一部分气体顺序地通过所述压缩机至所述涡轮的输送管。
5.一种致冷方法,包括:
a)使一种气体混合物通过一个低温精馏塔系统,以把所述混合物分离成至少一种气体的产品;以及
b)使一部分所述气体产品进入一个压缩装置的膨胀涡轮中,该压缩装置包括一个涡轮、一个压缩机和一个电动机/发电机,这些部件通过一具齿轮传动装置连接成一个整体,其中所述涡轮具有一个涡轮入口和一个涡轮出口,而所述压缩装置在所述涡轮入口中的工作温度低于约250°K。
6.如权利要求5所述的方法,其特征在于,该方法还包括至少一部分所述气体混合物通过所述压缩机,以作为至少一种压缩气体混合物排出。
7.如权利要求5所述的方法,其特征在于,该方法还包括先使一部分所述气体混合物通过一个进给压缩机受压缩,然后再使该气体混合物通过所述的压缩装置,以及把从所述装置所产生的气体混合物同来自所述进给压缩机的所述气体混合物的该剩余部分重新组合。
8.如权利要求5所述的方法,其特征在于,所述低温精馏塔系统包括一个单个的塔和一个上冷凝器,其中至少一部分所述气体混合物通过所述单个塔以作为至少一种净化的气体产品排出。
9.如权利要求5所述的方法,其特征在于,所述低温精馏塔系统包括一个下塔,一个上塔和一个主冷凝器,其中至少一种气体产品通过所述压缩机。
10.如权利要求5所述的方法,其特征在于,该方法包括:
a)使一种含有氮气和氧的气体混合物通过一个包括一个单个塔的低温精馏设备,以作为至少一种氮气流和一种富氧液流排出;
b)使用所述富氧液流进行冷凝,从而从所述氮气流产生一种液氮流,使得一种氮废料流从所述富氧液流中排出;
c)一部分所述液氮流作为一种液氮产品从中回收;
d)使另一部分所述液氮流作为回流进入所述塔中进行再循环;
e)使另一部分所述氮气流通过一个压缩装置的一个压缩机,该压缩装置包括所述压缩机,一个涡轮膨胀器和一个电动机/发电机,这些部件通过一个齿轮传动装置连接成一个整体,其中所述涡轮的入口工作温度低于约250°K,以及其中产品氮从其中回收;以及
f)使至少一部分所述氮废料流通过所述涡轮膨胀。
CNB981089399A 1997-05-19 1998-05-18 涡轮/电动机(发电机)驱动的增压压缩机 Expired - Fee Related CN1138961C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US858632 1997-05-19
US08/858,632 US5924307A (en) 1997-05-19 1997-05-19 Turbine/motor (generator) driven booster compressor

Publications (2)

Publication Number Publication Date
CN1199827A true CN1199827A (zh) 1998-11-25
CN1138961C CN1138961C (zh) 2004-02-18

Family

ID=25328772

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB981089399A Expired - Fee Related CN1138961C (zh) 1997-05-19 1998-05-18 涡轮/电动机(发电机)驱动的增压压缩机

Country Status (7)

Country Link
US (1) US5924307A (zh)
EP (1) EP0880000A3 (zh)
KR (1) KR19980087144A (zh)
CN (1) CN1138961C (zh)
BR (1) BR9801656A (zh)
CA (1) CA2237830C (zh)
ID (1) ID20444A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018891A (zh) * 2014-05-23 2014-09-03 武汉船用机械有限责任公司 一种蒸汽透平机
CN112066643A (zh) * 2020-07-28 2020-12-11 上海加力气体有限公司 降低能耗的空气分离工艺
CN113898597A (zh) * 2021-09-24 2022-01-07 李媛 一种压缩减压一体机

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5901579A (en) * 1998-04-03 1999-05-11 Praxair Technology, Inc. Cryogenic air separation system with integrated machine compression
TW392058B (en) * 1998-07-08 2000-06-01 Nippon Oxygen Co Ltd System and method for producing and supplying highly clean dry air
US6393865B1 (en) * 2000-09-27 2002-05-28 Air Products And Chemicals, Inc. Combined service main air/product compressor
US6484533B1 (en) 2000-11-02 2002-11-26 Air Products And Chemicals, Inc. Method and apparatus for the production of a liquid cryogen
FR2860576A1 (fr) * 2003-10-01 2005-04-08 Air Liquide Appareil et procede de separation d'un melange gazeux par distillation cryogenique
US20070101756A1 (en) 2004-07-30 2007-05-10 Mitsubishi Heavy Industries, Ltd. Air-refrigerant cooling apparatus
WO2006011248A1 (ja) * 2004-07-30 2006-02-02 Mitsubishi Heavy Industries, Ltd. 空気冷媒式冷却装置および空気冷媒式冷却装置を用いた空気冷媒冷熱システム
US20070169503A1 (en) * 2004-07-30 2007-07-26 Mitsubishi Heavy Industries, Ltd Cooling warehouse and air refrigerant type cooling system
JP4468379B2 (ja) * 2004-11-29 2010-05-26 三菱重工業株式会社 空気冷媒式冷凍加熱装置
ATE391274T1 (de) * 2004-12-20 2008-04-15 Angelantoni Ind Spa Energie sparende klimaprüfkammer und betriebsverfahren
US7225637B2 (en) * 2004-12-27 2007-06-05 L'Air Liquide Société Anonyme á´ Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude Integrated air compression, cooling, and purification unit and process
US8375719B2 (en) * 2005-05-12 2013-02-19 Recurrent Engineering, Llc Gland leakage seal system
US8161771B2 (en) * 2007-09-20 2012-04-24 Praxair Technology, Inc. Method and apparatus for separating air
BRPI0820165A2 (pt) * 2007-11-12 2015-06-16 Exxonmobil Upstream Res Co Método e sistema para tratar uma corrente de alimentação gasosa, e, método para tratar uma corrente gasosa rica em nitrogênio.
US8429933B2 (en) * 2007-11-14 2013-04-30 Praxair Technology, Inc. Method for varying liquid production in an air separation plant with use of a variable speed turboexpander
AU2009241530C1 (en) 2008-04-30 2016-12-01 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
US8004102B2 (en) * 2009-04-03 2011-08-23 Praxair Technology, Inc. Refrigeration generation method and system
KR101603218B1 (ko) * 2010-03-16 2016-03-15 한화테크윈 주식회사 터빈 시스템
JP5889288B2 (ja) 2010-05-28 2016-03-22 エクソンモービル アップストリーム リサーチ カンパニー 一体型吸着器ヘッド及び弁設計及びこれと関連したスイング吸着法
TWI495501B (zh) 2010-11-15 2015-08-11 Exxonmobil Upstream Res Co 動力分餾器及用於氣體混合物之分餾的循環法
US9017457B2 (en) 2011-03-01 2015-04-28 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
EP2680947A4 (en) 2011-03-01 2015-04-29 Exxonmobil Upstream Res Co APPARATUS AND SYSTEMS HAVING MULTI-MODULATED ADSORPTION BEDS WITH COMPACT CONFIGURATION AND RELATED METHODS
WO2012161828A1 (en) 2011-03-01 2012-11-29 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
EA026118B1 (ru) 2011-03-01 2017-03-31 Эксонмобил Апстрим Рисерч Компани Способ удаления загрязняющих примесей из потока углеводородов в циклическом адсорбционном процессе и связанные с этим способом устройство и система
BR112013017622A2 (pt) 2011-03-01 2016-10-11 Exxonmobil Upstream Res Co aparelho e sistema que tem uma montagem de válvula giratória e processos de absorção de oscilação relacionados à mesma
MY173802A (en) 2011-03-01 2020-02-24 Exxonmobil Upstream Res Co Apparatus and systems having an encased adsorbent contractor and swing adsorption processes related thereto
EP2680949B1 (en) 2011-03-01 2017-09-27 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by pressure swing adsorption
WO2013188956A1 (en) * 2012-06-20 2013-12-27 Daniel Pomerleau Cryogenic fuel combustion engines
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US9118226B2 (en) * 2012-10-12 2015-08-25 Echogen Power Systems, Llc Heat engine system with a supercritical working fluid and processes thereof
US9518778B2 (en) 2012-12-26 2016-12-13 Praxair Technology, Inc. Air separation method and apparatus
BR112016027427B1 (pt) 2014-06-02 2022-07-05 Praxair Technology, Inc Sistema e método de separação de ar
WO2016014232A1 (en) 2014-07-25 2016-01-28 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
EP3218326B1 (en) 2014-11-11 2020-03-04 ExxonMobil Upstream Research Company High capacity structures and monoliths via paste imprinting
EP3229938A1 (en) 2014-12-10 2017-10-18 ExxonMobil Research and Engineering Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
WO2016105870A1 (en) 2014-12-23 2016-06-30 Exxonmobil Research And Engineering Company Structured adsorbent beds, methods of producing the same and uses thereof
SG11201707069QA (en) 2015-05-15 2017-11-29 Exxonmobil Upstream Res Co Apparatus and system for swing adsorption processes related thereto comprising mid-bed purge systems
WO2016186726A1 (en) 2015-05-15 2016-11-24 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
CN107847851B (zh) 2015-09-02 2021-05-18 埃克森美孚上游研究公司 使用脱甲烷塔顶部流作为清扫气体的变化吸附方法和系统
US10124286B2 (en) 2015-09-02 2018-11-13 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
KR102119378B1 (ko) 2015-10-27 2020-06-08 엑손모빌 업스트림 리서치 캄파니 능동 제어식 공급물 포핏 밸브 및 수동 제어식 생성물 밸브를 갖는 관련 스윙 흡착 공정용 장치 및 시스템
US10322365B2 (en) 2015-10-27 2019-06-18 Exxonmobil Upstream Reseach Company Apparatus and system for swing adsorption processes related thereto
EA201891029A1 (ru) 2015-10-27 2018-10-31 Эксонмобил Апстрим Рисерч Компани Устройство и система для процессов короткоцикловой адсорбции, имеющие множество клапанов
CA3005448A1 (en) 2015-11-16 2017-05-26 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
CA3017612C (en) 2016-03-18 2021-06-22 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
EP3463620A1 (en) 2016-05-31 2019-04-10 ExxonMobil Upstream Research Company Apparatus and system for swing adsorption processes
CA3025615A1 (en) 2016-05-31 2017-12-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
AU2017320837B2 (en) 2016-09-01 2020-07-23 Exxonmobil Upstream Research Company Swing adsorption processes for removing water using 3A zeolite structures
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
EP3558487A1 (en) 2016-12-21 2019-10-30 ExxonMobil Upstream Research Company Self-supporting structures having active materials
RU2019120009A (ru) 2016-12-21 2021-01-22 Эксонмобил Апстрим Рисерч Компани Самоподдерживающиеся структуры, имеющие структуры с геометрией пены и активные материалы
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
WO2019168628A1 (en) 2018-02-28 2019-09-06 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
WO2020131496A1 (en) 2018-12-21 2020-06-25 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
BE1027529B1 (nl) * 2019-08-29 2021-03-30 Atlas Copco Airpower Nv Inrichting voor het gasdicht afdichten van een beweegbare as en compressor- of expanderinrichting waarin dergelijke inrichting wordt toegepast.
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
EP4045173A1 (en) 2019-10-16 2022-08-24 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Dehydration processes utilizing cationic zeolite rho
KR102268313B1 (ko) * 2019-11-22 2021-06-23 (주)테크니컬코리아 압축기 시스템 및 이를 이용한 보일오프 가스 재액화 시스템
US20230125267A1 (en) * 2020-03-10 2023-04-27 Cryostar Sas Cryogenic Air Separation Method and Air Separation Unit
CN112112689B (zh) * 2020-09-22 2021-09-21 联优机械(常熟)有限公司 Orc余热发电透平膨胀机与高速电机配合结构
WO2023140891A2 (en) 2021-07-09 2023-07-27 Raytheon Technologies Corporation Turbine engines having hydrogen fuel systems
CN113865909A (zh) * 2021-10-11 2021-12-31 江苏国富氢能技术装备股份有限公司 一种制冷膨胀机性能测试装置
US11987377B2 (en) * 2022-07-08 2024-05-21 Rtx Corporation Turbo expanders for turbine engines having hydrogen fuel systems
US12103699B2 (en) 2022-07-08 2024-10-01 Rtx Corporation Hybrid electric power for turbine engines having hydrogen fuel systems

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3477239A (en) * 1967-05-16 1969-11-11 Messer Griesheim Gmbh Multistage compression drive in gas separation
FR2122307B1 (zh) * 1971-01-19 1975-01-17 Denis Louis
FR2165729B1 (zh) * 1971-12-27 1976-02-13 Technigaz Fr
DE2557453C2 (de) * 1975-12-19 1982-08-12 Linde Ag, 6200 Wiesbaden Verfahren zur Gewinnung von gasförmigem Sauerstoff
US4670031A (en) * 1985-04-29 1987-06-02 Erickson Donald C Increased argon recovery from air distillation
US4817393A (en) * 1986-04-18 1989-04-04 Erickson Donald C Companded total condensation loxboil air distillation
US4769055A (en) * 1987-02-03 1988-09-06 Erickson Donald C Companded total condensation reboil cryogenic air separation
DE4109945A1 (de) * 1991-03-26 1992-10-01 Linde Ag Verfahren zur tieftemperaturzerlegung von luft
US5402631A (en) * 1991-05-10 1995-04-04 Praxair Technology, Inc. Integration of combustor-turbine units and integral-gear pressure processors
US5289688A (en) * 1991-11-15 1994-03-01 Air Products And Chemicals, Inc. Inter-column heat integration for multi-column distillation system
FR2702040B1 (fr) * 1993-02-25 1995-05-19 Air Liquide Procédé et installation de production d'oxygène et/ou d'azote sous pression.
US5363657A (en) * 1993-05-13 1994-11-15 The Boc Group, Inc. Single column process and apparatus for producing oxygen at above-atmospheric pressure
GB9404991D0 (en) * 1994-03-15 1994-04-27 Boc Group Plc Cryogenic air separation
US5467613A (en) * 1994-04-05 1995-11-21 Carrier Corporation Two phase flow turbine
US5460003A (en) * 1994-06-14 1995-10-24 Praxair Technology, Inc. Expansion turbine for cryogenic rectification system
US5711167A (en) * 1995-03-02 1998-01-27 Air Liquide Process & Construction High efficiency nitrogen generator
US5582034A (en) * 1995-11-07 1996-12-10 The Boc Group, Inc. Air separation method and apparatus for producing nitrogen
US5582033A (en) * 1996-03-21 1996-12-10 Praxair Technology, Inc. Cryogenic rectification system for producing nitrogen having a low argon content
US5689973A (en) * 1996-05-14 1997-11-25 The Boc Group, Inc. Air separation method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104018891A (zh) * 2014-05-23 2014-09-03 武汉船用机械有限责任公司 一种蒸汽透平机
CN104018891B (zh) * 2014-05-23 2016-03-09 武汉船用机械有限责任公司 一种蒸汽透平机
CN112066643A (zh) * 2020-07-28 2020-12-11 上海加力气体有限公司 降低能耗的空气分离工艺
CN113898597A (zh) * 2021-09-24 2022-01-07 李媛 一种压缩减压一体机

Also Published As

Publication number Publication date
BR9801656A (pt) 1999-09-14
CA2237830A1 (en) 1998-11-19
EP0880000A2 (en) 1998-11-25
KR19980087144A (ko) 1998-12-05
CA2237830C (en) 2002-10-22
EP0880000A3 (en) 1998-12-16
ID20444A (id) 1998-12-17
US5924307A (en) 1999-07-20
CN1138961C (zh) 2004-02-18

Similar Documents

Publication Publication Date Title
CN1138961C (zh) 涡轮/电动机(发电机)驱动的增压压缩机
CN1135352C (zh) 具有一体化机械压缩的低温空气分离系统
US5402631A (en) Integration of combustor-turbine units and integral-gear pressure processors
US9733013B2 (en) Low temperature air separation process for producing pressurized gaseous product
CN1064125C (zh) 空气的低温分离方法
CN1124405C (zh) 内设气化器的联合循环/空气分离装置发电系统及操作
US6581411B2 (en) Plant for producing high pressure oxygen by air distillation
CN1158941A (zh) 高压燃气轮机和空气分离系统综合
EP0687808A2 (en) Expansion turbine for cryogenic rectification system
CN101044366A (zh) 紧急备用供给压力气体的方法和设备
CN1081781C (zh) 加压分馏空气生产气态氧和/或气态氮的方法和装置
US4192662A (en) Process for liquefying and rectifying air
CN1784580A (zh) 用于空气分离的低温蒸馏方法和系统
CN1229185A (zh) 利用废气膨胀来压缩生产气流的升压空气分离法
CN100582623C (zh) 用于空气压缩、冷却和净化的集成方法以及设备
KR19990029611A (ko) 저순도 산소를 개선된 효율로 생성시키는 고압의 극저온 정류시스템
EP0979983B1 (en) Feed gas pretreatment in synthesis gas production
US4947649A (en) Cryogenic process for producing low-purity oxygen
US6122932A (en) Combined installation of a furnace and an air distillation apparatus and process for using the same
FR2774159A1 (fr) Installation combinee d'un four et d'un appareil de distillation d'air et procede de mise en oeuvre
EP0932006A1 (fr) Installation combinée d'un four et d'un appareil de distillation d'air et procédé de mise en oeuvre
US7010919B2 (en) Method and installation for steam production and air distillation
CN1878999A (zh) 用于富集气体流中的一种成分的方法和设备
CA1076470A (en) Process for liquefying and rectifying air
EP4323704A1 (en) System and method to produce liquefied natural gas using two distinct refrigeration cycles with an integral gear machine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040218