CN1185247A - 全双工极宽带通信系统及方法 - Google Patents

全双工极宽带通信系统及方法 Download PDF

Info

Publication number
CN1185247A
CN1185247A CN96194156A CN96194156A CN1185247A CN 1185247 A CN1185247 A CN 1185247A CN 96194156 A CN96194156 A CN 96194156A CN 96194156 A CN96194156 A CN 96194156A CN 1185247 A CN1185247 A CN 1185247A
Authority
CN
China
Prior art keywords
pulse
wireless
signal
wireless signal
pulse wireless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN96194156A
Other languages
English (en)
Inventor
拉里·W·富勒顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIME CATEGORY CORP
Original Assignee
TIME CATEGORY CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIME CATEGORY CORP filed Critical TIME CATEGORY CORP
Publication of CN1185247A publication Critical patent/CN1185247A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication
    • H04B1/56Circuits using the same frequency for two directions of communication with provision for simultaneous communication in two directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/70751Synchronisation aspects with code phase acquisition using partial detection
    • H04B1/70753Partial phase search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/71632Signal aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/026Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using pulse time characteristics modulation, e.g. width, position, interval
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7075Synchronisation aspects with code phase acquisition
    • H04B1/708Parallel implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/7183Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/719Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B2001/6908Spread spectrum techniques using time hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70707Efficiency-related aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Dc Digital Transmission (AREA)
  • Bidirectional Digital Transmission (AREA)
  • Noise Elimination (AREA)

Abstract

一全双工极宽带通信用的脉冲无线收发器,含一脉冲的脉冲无线发送器,一脉冲无线接收器,及与脉冲无线发送器和脉冲无线接收器之一或两者相联的装置,它用于同步脉冲无线信号脉冲的发送与接收。脉冲交织避免了发送脉冲无线信号脉冲与接收脉冲无线信号脉冲自干扰。另外,还可以交织方式在两收发器间发送突发脉冲,及用两不同脉冲重复率来同时发送与接收,还可用将接收或发送脉冲中所选脉冲变为空的空白方式来避免干扰。

Description

全双工极宽带通信系统及方法
本发明涉及通信领域,尤其涉及采用几乎同时发送与接收信息的全双工模式的极宽带脉冲通信收发系统及方法。
传统的窄带收发机一般使用相同天线发射与接收信号。发送、接收信号的频率一般相同或极接近。根据每一数据包的密度,可高速切换发送与接收模式。
传统的全双工工作由频域或时域复用(FDMA或TDMA)实现。为隔离发送与接收,FDMA使用频率滤波器和混合电路而TDMA采用发送器与接收器交替工作的占空工作原理。
-FDMA全双工声音通信系统的例子是发射接收采用不同频率的业余无线收发机。如不同的频率可为144MHz与436MHz。这种系统中天线是不同的,接收器须用滤波器以消除邻近发射天线来的发射噪声。否则接收器极易被它的发射器引起过载。
另一方面脉冲无线技术原理上是超宽带的可在本发明者的几个美国专利中找到脉冲无线技术的最先描述。其中三个是美国专利4,641,317(1987年2月3日授权),4,813,057(1989年3月14日授权),4,979,186(1990年12月18日授权)。由于脉冲无线技术的超宽带特点,很难使脉冲无线使用传统的双工原理。
为实现脉冲无线技术的双工,手持式收发器需要独立的发射、接收天线。这是由于把接收器从天线断开的速度不能快到允许使用同一天线进行发射。因此脉冲无线天线的尺寸须较小。
有许多相互通信的脉冲无线系统要求他们的天线尺寸相同。此外,对同一带宽内的脉冲无线系统,发射、接收天线的尺寸也相同。由于发射器、接收器均需工作于相同的超宽频带,这些使脉冲无线技术的全双工实现更复杂。
脉冲无线技术的工作如此之快以致在下一脉冲被发射之前信号还未到达指定接收器。这使得在两收发单元的空间有几个脉冲,这不可避免地使发射器与接收器同时工作。
为了在移动中实现全双工方式,无论何时只要接收器和发送器之间距离增加或减少了C/R倍,发送器、接收器须同时工作,其中C为光速,R为重复率。如若R=每秒1百万脉冲,区间将为300米,等等。尽管全双工方式很吸引人,但该效应使它不能实际应用。
问题很清楚:在存在由与自己相邻的发射天线发射的更强脉冲无线信号时,脉冲无线接收器怎样鉴别其它脉冲无线发射器的发射信号?所需的答案是一实用于脉冲无线技术的技术,它避免了发射、接收信号的串扰。
本发明的目标是全双工极宽带通信的脉冲无线收发器。收发器含一发射脉冲无线信号脉冲的脉冲无线发射器,接收脉冲无线信号脉冲的脉冲无线接收器,与脉冲无线发射器与脉冲无线接收器中两个或之一相联的装置,以同步脉冲交织通信中脉冲无线信号脉冲的发送与接收。脉冲交织避免了发射脉冲信号脉冲与接收脉冲信号脉冲之间的自串扰。除交织脉冲通信外,可在两收发器间以交织方式发射突发脉冲。
另外,本发明通过以不同重复率避免了同时操作,它使得以一与空间分布无关的固定速率发生相重的情形。为克服相重情形,脉冲无线接收器采用一在每秒的几个重叠脉冲时使接收器停止工作的逻辑。
这样本发明提供了一系统及方法,使脉冲无线通信中可用相同天线在相同时间发送与接收信息。
本发明的一实施方式允许通信中的两收发器单元间的距离可连续变化,而不需任一单元发送一单周期然后在一段长时间内控制它的相关接收器,在这段时间内将会产生不希望的串话。这可以这样来实现,在每一发送和接收方向采用稍微不同的重复率,并在两重复率的拍频会导致发射正好发生在接收含信息的脉冲信号的前面或同时的一段时间内关掉发射器。
图1A,1B分别是根据本发明时域、频域中的中心频率为2GHz的单周期脉冲。
图2A,2B分别是根据本发明时域、频域中1ns脉冲的1mpps系统。
图3是根据本发明的与调制成比例地改变脉冲重复间隔(PRI)的调制信号。
图4是根据本发明的伪随机抖动对频域上能量分布的影响的图。
图5是根据本发明的一窄带正弦(串扰)信号覆盖一脉冲无线信号的结果。
图6是根据本发明的脉冲无线接收器的互相关器转移函数。
图7是根据本发明的脉冲无线多路径效应。
图8是根据本发明多路径脉冲的相位。
图9是根据本发明一全双工脉冲无线系统的示意性框图。
图10是收发器中发送与接收脉冲的时序。
图11是脉冲无线发射器、接收器的争用区。
图12是根据本发明一实施方式,一减少脉冲无线接收器与发送器争用区的影响的延迟发送技术。
图13是根据本发明一实施方式,用于全双工脉冲无线通信的脉冲交叉技术的流图。
图14是根据本发明一实施方式,用于全双工脉冲无线通信的突发脉冲交织技术的流图。
图15是两个通信的收发器采用不同重复率的本发明另一实施的脉冲示意。
图16是根据本发明的互相关过程。
图17是根据本发明一实施方式,全双工通信的脉冲无线收发器的示例。
图18是根据本发明另一实施方式,全双工通信的脉冲无线收发器的示例。
图19是根据本发明优选实施方式,一同步脉冲交织的收发器的示例框图。
图20为实现脉冲交织通信的延迟的流图。
图中,类似标号指一致或功能相似的元件。此外,标号中最左端数字指首先出现它的图。
            优选实施方式的详述
                  目录I.概述                                    …4II.技术基础                               …5
A.高斯单周期                          …6
B.脉冲串                              …6
C.调制                                …7
D.能量平滑及信道化的编码              …7
E.接收与解调                          …8
F.抑制(Jam)防止                       …8
G.处理增益                            …9
H.容量                                …9
I.多径及传输                          …10III.脉冲无线通信系统的全双工              …11
A.抖动窗宽度对系统性能的影响          …15IV.示例收发器硬件                         …15
A.发送器                              …1
B.接收器                              …16
C.时间切换(hand-off)                  …17
D.差率双工                            …17V.其它考虑                                …18VI.结论                                   …18I.概述
根据本发明的脉冲无线技术在无线通信中有广泛的应用。由于脉冲无线不是连续波(CW)载波系统,使用副载波对时域脉冲无线设计而言只要加一个直观的计数器就行了。因此与非副载波脉冲无线传输相比,信噪比显著增加。
脉冲无线系统通常有:短延迟脉冲;一般在50MHz和10吉赫兹(GHz)之间的中心频率;100%中心频率的超宽频带;即使用低增益天线,亚毫瓦的功率的范围为几英里;极低功率谱密度;比其它复杂无线设计,尤其是扩频系统的花费少;对其它系统的压制与多径衰减极不敏感。
脉冲无线技术有抗多径性且建设简单,费用较少,尤其是与扩频无线相比。脉冲无线系统比已有传统系统的功耗少。此外,脉冲无线系统比已有便携式电信收发机的尺寸小。由于这些优点,对很多应用,含个人通信系统及建筑物内(in-building)通信系统而言脉冲无线是最优的技术。
共同悬而未决(copending)并共同转让的美国专利申请No.08/309,973(1994年9月20日申请,题为“极宽带通信系统及方法”:此处作参考引用并称为’973申请)描述了下述脉冲无线的特点:脉冲无线副载波的使用;用于编码时延及副载波时延的时间调制器;时间调制器的线性化;使用脉冲无线通信的数字数据调制的伪曼彻斯特编码;脉冲无线接收器获得并保持脉冲无线信号锁定的锁定获得原理。
下面的II、III部分详述了本发明。
部分II主要是技术基础,并给读者介绍了脉冲无线的概念及其它相关通信理论。部分III是脉冲无线通信系统的全双工。该部分的各小节是关于脉冲无线收发器全双工工作的理论。II.技术基础
如上述,该部分是技术基础并给读者介绍了脉冲无线的概念及其它相关通信理论。该部分的各小节涉及高斯单周期脉冲,高斯单周期脉冲串,调制,编码和这些概念的定性与定量特点。
脉冲无线发送器发送其平均脉冲-脉冲间隔被严格控制的短高斯单周期脉冲。脉冲无线发送器的脉宽为20~0.1纳秒(ns),脉冲间隔为2~5000ns。这些窄单周期脉冲的固有带宽极宽。
脉冲无线系统使用脉冲位置调制,其实际脉冲间隔在脉冲接脉冲的基础上根据下列两分量改变信息分量及伪随机码分量。不象扩频系统,这里的伪随机码不是为了能量扩展(因为脉冲本身是宽带的),而是为了信道化,频域能量平滑及防止抑制。
脉冲无线接收器是带互相关前端的直接转换接收器。前端在一级将电磁脉冲串转为一基带信号。脉冲无线接收器积分多个脉冲以恢复所传输信息的每一比特。A.高斯单周期
脉冲无线技术的最基本的组成部分是高斯单周期的实际实现,此处也称为高斯单周期脉冲。高斯单周期脉冲是高斯函数的一次导数。图1A,1B分别为时域,频域的2GHz中心频率(即0.5ns宽)单周期脉冲(分别看102,104)。(实际应用中不可能传输真正的高斯单周期。这在频域中表现为信号带宽轻微变小)。这些单周期,有时称脉冲,不是被门限的正弦波。
高斯单周期波形自然是一宽带信号,其中心频率与带宽均完全依赖于脉冲宽度。时域中高斯单周期数学上表示为: Vc ( t ) = A 2 e τ t e - ( t τ ) - - - - ( 1 )
其中A为脉冲幅度
t为时间
τ(tau)为时间衰减常数频域中高斯单周期包络为: V ( ω ) = Aω τ 2 2 πe e - ω 2 τ 2 2 - - - - ( 3 ) 中心频率则为: f c = 1 2 πτ Hz - - - - ( 4 ) 相对于中心频率,3dB(功率)下降点:
    flower=0.319c;fupper=1.922c             (5)
这样带宽近似为中心频率的160%。由于τ(tau)也定义了脉宽,则脉宽确定了中心频率及脉宽。实际中,单周期脉冲的中心频率近似为它长度的倒数,其带宽近似等于1.6倍中心频率。这样对于图1A,1B所示“0.5ns”脉冲:
    fc=2.0GHz;Δfc=3.2GHz                   (7)B.脉冲串
脉冲无线系统使用脉冲串,而不是单脉冲来通信。如下述节III详述,脉冲无线发送器为每一比特信息产生并输出一串脉冲。
发明者建立的原型的脉冲重复率为每秒0.7~10兆脉冲(mpps,其中兆是106)。图2A,2B是时域、频域(分别见102,104)中1ns脉冲的1mpps系统(未编码,未调制)。频域中,该高规则脉冲串以1兆赫兹间隔产生能量峰(梳形线204);这样,已有低功率在梳形线204中展开。这种脉冲串不携带信息,且由于能量峰的规则性,可在短范围内与传统无线系统发生串扰。
脉冲无线系统的占空比极低,因而时域的平均功率大大低于时域的峰值功率。如图2A,2B例中,脉冲发送器工作了0.1%时间(即每微秒(μs)中占1ns)。
需要其它处理来调制脉冲串以使脉冲无线系统能实际交流信息。该处理也平滑了频域的能量分布以使脉冲无线传输(即信号)与传统无线系统的干扰最小。C.调制
幅度及频率/相位调制不适于这种特殊的脉冲通信;唯一合适的选择是脉冲位置调制,它允许接收器使用一匹配滤波器(即互相关器(crosscorrelator))。如图3所示,一调制信号按调制比例改变脉冲重复间隔(PRI)。
若调制信号有三种电平,第一电平将在时间上比指定值(nominal)提前皮秒(ps)产生脉冲;第二电平根本不偏离指定值;第三电平延迟脉冲ps。这是数字调制原理。模拟调制则为PRI-至PRI+间的连续偏移。脉冲无线系统中的最大值为t/4,其中t为脉冲时间。时间的测量认为是指测量连续单周期的单周期波形的同一部分。
频域中,脉冲位置调制将能量分布到更多的频率。如1mpps系统中,调制抖动(d)为100ps,PRI为1,000,000赫兹(Hz),附加的频率分量为:999,800.04Hz,999,900.01Hz,1,000,100.01Hz,1,000,200.04Hz。(抖动是脉冲时域位置移动的通信术语)。传输能量现在分布于频域多个峰中(梳形线)。若总传输能量恒定,则每一频率峰上的能量则随脉冲位置数增加而减少。这样,频域中能量分布被平滑。D.能量平滑与信道化的编码
由于接收器是一互相关器,100%调制所需的时间位置调制量由fc/4(fc为中心频率)的倒数来计算。如中心频率为1.3GHz的单周期,这相应于±157(ps)的时间位置调制。在该量级的时间抖动上频谱平滑效应是可忽略的。
通过给每一脉冲加一比调制抖动大得多的PN码抖动可使脉冲无线的平滑最优。图4是一伪随机抖动对频域能量分布的影响。与图2B相比,图4表示采用了256位置PN码相对于无编码信号的作用。
PN抖动也提供信道化(信道化是将一通信路径分为一定数量信道的过程)。在不编码系统中,区分不同发送器是很困难的。若PN码是相互正交的,则PN码产生了信道(即在所用码中相关和/或串扰低)。E.接收与解调
明显地,若给定区内有大量脉冲无线用户,将产生相互干扰。另外,虽然PN编码使串扰最小,当用户数增加时,同时从一用户序列和另一用户序列中接收脉冲的可能性增加。幸运地,根据本发明实现的脉冲无线不依赖于单个脉冲的接收。脉冲无线接收器执行相关、同步接收功能(在RF级),使用许多脉冲的统计抽样来恢复传输的信息。
脉冲无线接收器通常积分200或更多脉冲来实现解调输出。接收器积分的最佳脉冲数目决定于许多变量,包括脉冲率,比特率,抑制量级及范围等。F.抑制防止
除了信道化与能量平滑,PN编码也使脉冲无线对包括其它脉冲无线发送器等所有无线通信系统引起的抑制具有高阻止作用。这是很关键的,因为脉冲信号所用频带内的信号都将成为脉冲无线的干扰源。由于没有未分配的1GHz以上的频带为脉冲系统所用,它们需与其它传统的及脉冲无线通信共享频谱而不产生负面影响PN码使脉冲系统能区分指定脉冲发送与其它的发送。
图5是覆盖了一脉冲无线信号504的窄带正弦抑制(串扰)信号502。在脉冲无线接收器,至互相关器的输入将含窄带信号502,及接收到的极宽带脉冲无线信号504。若没有PN编码,互相关器将规则地采样抑制信号502从而使抑制信号严重地干扰脉冲无线接收器。然而当用PN抖动来编码传输的脉冲信号(并且脉冲无线接收器与该一致的PN码抖动同步)时,它随机地采样抑制信号。根据本发明,积分许多脉冲后将抵消抑制的影响。
统计上,接收处理时的伪随机化将产生均值为零的随机分布数据流(对抑制信号)。因此消除抑制信号的影响只需采样足够的脉冲(即积分足够多的脉冲)使抑制信号的影响变为零。G.处理增益
由于大的处理增益,脉冲无线是抗抑制的。扩频系统中,处理增益的定义是信道带宽与信息信号带宽之比,在宽带通信中它是信道串扰减少的量化。如一直接序列扩频系统,有10KHz信息带宽,16MHz信道带宽,则处理增益为1600或32dB。然而对信息带宽为10KHz,2GHz的信道带宽的脉冲无线系统能得到更大的处理增益,处理增益是200,000或53dB。
占空比(duty cycle)(如0.5%)产生28.3dB的处理增益。(处理增益一般为接收信号的带宽与接收信息信号的带宽之比)。为恢复信息而对多个脉冲的积分(如积分200个脉冲)的有效过抽样产生28.3dB的处理增益。这样分成传送50千比特每秒(kbps)的10mpps链路的2GHz将有49dB增益(即分成100ns脉冲重复间隔的0.5ns脉宽的占空比为0.5%,分成50,000bps的10mpps有每比特200个脉冲)。H.容量
理论分析表明脉冲无线系统每个单元(cell)有上千个声音信道。为理解脉冲无线系统的容量,须仔细检查互相关器的性能。图6示出了“互相关器转移函数”602。它表示对任何给定接收脉冲的脉冲无线接收器互相关器的输出。如图604示,若脉冲在互相关窗606之外时互相关器的输出为0伏。当一接收脉冲608滑过窗口时,互相关器的输出改变。当脉冲超前窗口中心τ/4时它为最大值(如1伏)(610所示),在窗口中心时为0伏(612所示);落后中心τ/4时达到最小(如-1伏)(未示)。
当接收系统与指定发送器同步时,互相关器的输出在±1伏间摆动(为发送器调制的函数)。其它带内传送将改变互相关器的输出。该变化为随机变量并可视为均值为0的高斯白噪声。当干扰数增加时,变化也线性增加。通过积分大量脉冲,接收器得出传输信号的调制估计。数学上:
Figure A9619415600141
其中N=干扰数
σ是所有干扰对单一互相关的变化
Z是接收器积分以恢复调制的脉冲个数
由于当同时用户增加时链路质量下降缓慢(不是突变),它对通信系统而言是一个好的关系。I.多径及传输
与传统无线系统相比,正弦系统中有害的多径衰减对脉冲系统而言远不成问题(即幅度量级减少)。实际上,蜂窝系统中常见的瑞利衰减是连续波现象,而不是脉冲通信现象。
脉冲无线系统中为产生多径效应需满足特殊的条件。首先,散射脉冲的行进长度需小于脉宽乘光速。第二,忽略了时间编码的去相关好处时,发送器连续发送的脉冲可同时到达接收器。
对前者(一纳秒脉冲),它为0.3米或约1英尺(即1ns×300,000,000米/秒)。(见图7,走“路径1”的脉冲比直接路径脉冲后到半个脉冲)。
对后者(每秒1兆脉冲系统),它为多走300,600,900等米。然而,由于每个独立脉冲受到了伪随机抖动,这些脉冲是不相关的。
这些间隔中行进的脉冲不产生自串扰(图7中,由行进路径2所示)。然而走掠射路径的脉冲,如图7中最窄椭球所示,产生脉冲无线多径效应。
如图8的802所示,若多径脉冲还走半个脉宽,它增加了接收信号的功率(反射面将改变多径脉冲的相位)。若脉冲再走的路程少于半个脉宽,它产生804示的破坏性干扰。如对1ns脉冲,若多径脉冲行走在0~15cm(0到6英寸)间将产生破坏性干扰。
脉冲无线系统的测试(含脉冲雷达测试)表明实际运行中多径不引起任何大问题。此外,也期望有短脉冲,它将进一步减少破坏性干扰的可能性(这是由于破坏性干扰所需的反射路径长度将减小)。III.脉冲无线通信系统的全双工
全双工脉冲无线通信系统的示意框图示于图9。第一收发器(A)902含一发送器(T1)904及一接收器(R1)906。第二收发器(B)908含一发送器(T2)910及一接收器(R2)912。收发器902与908由一传输介质914,如空气,空间,或其它能传送极宽带信号的媒质隔开。发送的脉冲无线信号916经T1 904与R2 912,及T2 910与R1 906间的传输介质914传播。
极宽带脉冲无线系统中的全双工传输的目的是与步谈机(即按键通话的单工操作)相对,提供与电话相似的双向信息传输。由于极宽带信号利用了全部电磁谱,或至少大部分,需用不同于传统的频域双工的方式。本发明者因此发展了用于全双工脉冲无线通信的脉冲交织技术。
如参见图10,若发送器T1 904发出一串调制脉冲1002,接收器R1 906需在T1发射的脉冲1002之间的时期内接收发送器T2 910来的脉冲1004。
该实施的一个复杂在于在发送器/接收器对1(即收发器1与收发器2)间的某一特定积分范围时,一个或另一个需精确地同时发射与接收。然而,同时发射与接收需要接收器的动态范围太大以致不能实现。这意味着在一定离散位置需每个收发器同时发射与接收这些位置由脉冲重复率决定。如图11所示,T1 904发射的脉冲1102与T2 910发送的脉冲1104在称为争用区的地方相互精确地头对头通过。有一系列实际中不能去掉的这类争用区。即使两收发器之一或两个移动,当它们相对移动时,它们仍产生争用区。
根据本发明的一实施方式,设置T1 904使得它在R1 906接收了一来自T2 910的脉冲1204 10纳秒(ns)后发射一脉冲1202。该发射延迟在图12中描述。例如,它减少了收发器1中接收器与发送器间的干扰。若T1 904在接收了一脉冲后发送,这些脉冲不干扰。由于发射前T1 904已等了超过一整个周期(一周期约5ns),发送当前脉冲前,前一脉冲的大部分噪声已消逝。然而,两发送器间仍有一些争用区1206。
解决这些争用区1206的最简单的方法是接收一脉冲后允许第一收发器可在发射前选择10ns或100ns延迟。如通过使脉冲1210推至(时间位置)点1212以避免自干扰,它消除了1208点处的干扰。
此外,应记住的是在所有情况下,每个脉冲被如上述的时间抖动编码。此处为简便示出了未被时间抖动编码。这样时间抖动编码还省掉了接口1208。
脉冲交织中获得信号所需的步骤示于图B的流图。运行中,T1 904将开始至R2 912的发射,如步1302示。R2 912进行检测扫描并经它的扫描机制获得锁定(lock)(见步1304)。一旦它获得锁定(见步1306),它的伴随发送器(T2 910)开始发送,如步1308所示。步1310时R1 906开始检测扫描。若R1 906碰巧在一争用区中,则它决不会获得至910 T2的锁定。因此在消息的量级上,在R1 906知道是否采用10ns或100ns发送器接收器时序延迟之前,R1 906须等待T1 904传给它的一确认消息(ACK)1306。若它从未接收,或一定时间后未收到R1 906已获得T2 910的ACK,T2 910的时间溢出并移动它的发射脉冲时序100ns,并再次尝试。这些步子总的由步1312,1314,1316及1318处的条件循环表示。
于是若R2 912确实需要锁定(即接收T1 904在步1320发送的ACK),如步1322示,T2 910在步1324将发送一返回ACK,连接建立,锁定收发器。
溢出时间最好是R2 912为得到T1 904的一脉冲而扫描抖动码的整个模量(modulo)所需的最大时间。对一256比特码,对10ns的很小码抖动,可用多达20秒的溢出时间。只对开始锁定使用溢出时间。若收发器切换码或延迟值无需时间溢出。由于脉冲交织技术实现简单,对许多通信应用如遥测、发送一应答系统,脉冲交织全双工很经济。优选实施方式中,接收器可一直开着而无需冷启动。
如上述,移动环境产生了独特的争用区问题。因此下述实施方式明确地处理移动环境,尤其是提供抗死区或争用区问题。
解决这些问题的本发明一实施方式是突发交织方法。根据突发交织方法,根本无争用。突发交织方法示于流图14。T1 904发送一如10毫秒长的突发(见步1402)开始该过程。一示例实施方法中,每个突发含速率为每秒2兆脉冲的20个脉冲,或速率为5兆脉冲的50个脉冲。在一定的传输延迟(即范围延迟)和R2 912的扫描延迟(见步1404)过去后R2 912接收该第一发送突发。范围延迟约5.2毫秒/英里(约5,200英尺)或约一英尺/纳秒。
在该突发末尾,R2获得锁定(见步1406);然后T2 910发送它的含信息调制的突发(在步1408),在相同范围延迟后,R1进行检测扫描(步1410)并获得锁定(步1412)。若突发之间的时间足够,则收发器间的任何位置与范围均不发生突发碰撞。判据是突发间的延迟足够到可容纳往返延迟和突发宽度。实际中,在需要被再次发送之前,在用完该接收器中接收时间的所有余量前突发应尽可能远。收发器然后交换获得的消息,如步1414,1416,1418及1420所示以完成锁定过程。
本发明的另一实施方式使用码分多址(CDMA)来实现极宽带脉冲无线系统的全双工通信。该改变中T1 904与T2 910用不同的时间抖动码工作,并采用近乎全帧的抖动窗以使每一后续脉冲能出现于分隔脉冲的时期内任何地方。(抖动窗是当用一抖动码调制位置时其间可产生一单周期的时期。)因为它们间的时延允许去相关,T1 904与T2 910甚至可用相同的抖动码。然而一般采用不同的时间抖动码。
该实施方式中,T1 904产生一空脉冲以在发送后的一段时间如10ns内禁止接收任何能量。它允许本地环境的天线调低(ring down)或减弱能量以打开接收器来接收可能的脉冲,如脉宽0.5ns(或中心频率2吉赫兹),周期200ns(它为5兆脉冲/秒的重复率),400个中产生1个周期(即0.25%)。
等于发送的传输脉冲的空白脉冲并不完全有效。环境中与天线中仍有足够下降的能量并可能产生严重自串扰。统计上,仅在400脉冲中约1个能精确地对准脉冲自己。10ns的空白窗口将接收脉冲在该空白窗口内的几率增至1%。1%的n率表明1%的能量被接收器扔掉。仅1%的传输能量损失只是很小的误差并允许全双工工作。该1%减少可能测量不到。
另一实施方式是频分多址(FDMA),其中“频率”指脉冲重复频率,这有别于传统连续波FM系统中的频率。图15是该方式的示例脉冲,其中例如T1 904工作于1兆脉冲/秒(由毫秒脉冲1502(数1,2,3,4,5,6等)表示)。假定T2 910工作约0.85毫秒/周期(见脉冲1504),6个脉冲后这两个将对准并大致稳定。但此时间以后,所有脉冲错过。因此若时间码限于相对窄的窗(如4ns,它是用于2GHz中心频率系统)则不管两收发器的相对位置如何,6个中仅一个脉冲相互碰撞。实际中,这两个间的重复率差使仅一百个中1个引起碰撞1506。一百中的那一个可以被空白掉(bla nked out)(与前例相似),它将再引起接收器可用功率减少1%。
可以许多方式实现空白。可用离散逻辑判断何时两不同脉冲重复率的接收脉冲与发送脉冲串扰或在时间上太接近。(例如)关掉一个触发信号可避免干扰。
该FDMA方式有一些脉冲交织方法的优点,如发送器100%可用。脉冲交织技术在发送周期内需关掉发送器大部分时间。缺点是,为产生相同的平均发射功率,需高得多的脉冲功率来达到。第一例中的占空比为大约33%。因此脉冲功率(即瞬时脉冲功率)将高66%。最后的实施方式共享了脉冲交织的优点-载波100%可用,一旦发送时从不关闭它。然而接收时,如上例,通过空白来处理周期性的自干扰,仅减少了1%的可用接收功率,这个数量完全可接收受的。
由于传统无线采用连续波载频,用于隔离全双工脉冲无线链接的发送器与接收器的方法不同于传统无线的方法。这些载频可极窄,这样,可以相同的方法使用频域技术隔离发送器与接收器。可在发送器中用一低通滤波器来阻止伪能量进入工作于较高频率的接收器。相反地,高通滤波器用于消除发送器来的能量以免进入接收器。然而该传统滤波器不能有效地用于脉冲无线系统,因为发送器与接收器使用相同单周期脉冲。
脉冲无线系统的该特点要求不同的隔离/滤波方法。这最好由例子解释。16示出了两个不同中心频率的单周期脉冲。长单周期1602中心频率低,短单周期1602中心频率较高。尽管这两脉冲的中心频率相差约3至1,它们仍严重地重叠。因此,一个在上行链路中工作于中心频率(fc1)而在下行链路中工作于不同的中心频率(fc2)的一滤波器可用于在接收器与发送器间提供一定的隔离。该实施方式中,由于使用了不同的中心频率完全消除了争用。A.抖动窗宽度对系统性能的影响
如上述,抖动窗是一个其中可出现由抖动码定位的单周期的区间。上述例中,抖动窗为5ns宽。每一抖动窗间隔200ns。这样,下一单周期在最少200ns以后能在下一抖动窗中任一位置出现。每帧中脉冲集中于相对窄的时间区增加了与传统服务的干扰及与相似收发器的干扰,其中帧为标称脉冲间的间隔。干扰增加是由于使抖动窗变宽较困难引起的不希望的结果。困难在于难于产生低跳动的长时延。由于这是相干通信原理,低跳动对脉冲的有效转换及低RF功率电平下保持好的信噪比是重要的。
脉冲交织方法,突发交织方法,脉冲重复率多址(the pulserepetition rate multiple access)技术都是能量集中于小时间区的结果。当该窗变宽时,对系统的限制将减少,直至一极限,整个帧可为一增益给定单周期的目标(即以200ns平均脉冲率,一脉冲可出现于200ns内任何地方)。为一般性起见,抖动窗最好有一简单的关闭。
脉冲交织,突发交织,CDMA及重复率多址技术中,完全帧(fullframe)中所有这些交织方法的区别消失了。它们相互不可区分。这是因为一旦结构被完全帧抖动移去,另外的重排不能使它更随机。此外,无安静的间隙时交织将无法进行。IV.收发器硬件示例A.发送器
现在参照图17描述脉冲无线通信系统的脉冲无线发送器904或910的优选实施方式。
发送器1700含一产生周期性定时信号1704并被送至时延调制器1706的时基1702。时延调制器1706用信息源的信息信号1708调制周期性定时信号1704,以产生被调制的定时信号1710。被调制的定时信号1710被送至用一伪噪声码抖动被调制定时信号1710的码时间调制器1712。码时间调制器1712输出一已调制的编码定时信号1714至输出级1716。输出级1716用已调制的编码定时信号1714作为一触发来产生电单周期脉冲(未示出)。电单周期脉冲经与其耦合的传输线1720被送至一发射天线1718。电单周期脉冲被发射天线变为传输电磁脉冲1722。多种脉冲无线发送器的详述见’973申请。B.接收器
现在参看图17描述脉冲无线接收器1701。一脉冲无线接收器(此后称接收器)1701含一接收传播脉冲无线信号1724的接收天线1726。接收信号被经与接收天线1726耦合的接收传输线1730输入至互相关器1728。
接收器1701也含一解码定时调制器/解码源1732和一可调时基1734。(可调时基1734可含一压控振荡器或一可变延迟产生器,如技术人员所熟知)。解码定时调制器/解码源1732(此后称解码定时调制器)产生一与发射传输信号1724的相关脉冲无线发送器(未画)使用的PN码相应的解码信号1736。可调时基1734产生一含波形大致等于每一接收脉冲1724的一串样板脉冲的周期性的定时信号1738。
互相关器1728执行的检测过程含将接收信号1724与解码信号1736互相关的操作。互相关的一段积分产生一基带信号1740。基带信号1740被解调器1742解调以输出一已解调信息(信号)1744。已解调信息信号1744大致与发送接收信号1724的发送器的信息信号一致。
基带信号1740也输入至一低通滤波器1746。低通滤波器1746产生给获得与锁定控制器1750的一误差信号1748以对可调时基1734进行最小相位调节。
图18是本发明突发交织方式的收发器框图。在图17的收发器基本结构中加入了发送器突发控制器1802与一接收突发控制器1804。这两个控制器是可为硬件或可编程控制(如EEPROMS,或类似)的状态机,它们根据上述的突发操作分别对已调的编码定时信号1714进行时间位置放置及时间调制周期性定时信号1738。
获得与锁定控制器1750决定并提供本发明的脉冲交织实施方式所需的延迟。类似地,对其它实施方式,如脉冲重复率,抖动窗在突发控制器1802,1804和获得与锁定控制器1750中被硬件化或程控。相关领域的技术人员可不偏离本发明的范围就对公开的收发器元件/控制器加入其它控制特点与改动C.时间切换(hand-off)
对脉冲交织方式每一接收器需测量接收来自另一收发器的脉冲与对本身发送器的触发之间的时间(这可用传统电路实现)。当一收发器检测到该时间低于一最小限制时(如20ns),它通知其它收发器从现在起在例如第二码模量的第一脉冲同步地改变它的接收定时(第一收发器改变它的发送定时)。其中“现在”是由第一收发器作为参考时间点决定的时间点,它被送至第二收发器(或第二收发器提到其它等)用于同步。
这可能是因为,尽管它不可能用调制(因为许多脉冲组成一比特)“标记”单独的脉冲,模量长到足够能编码至少一个比特,因此它能作为整个模量计数的触发器。由于编码器跟踪了脉冲的计数来给编码器加上正确的时间抖动,该方法能间接地识别单独脉冲来进行同步。
任何时候只要检测到最小时间间隔该过程可重复,例如5MPPS速率时每54.86米(180英尺)行程就发生。
完成脉冲交织的同步与锁定的机制可以是离散逻辑,但对相关领域的技术人员而言,在该公开脉冲交织功能的基础上可用最小编程的数字信号处理器(DSP)轻松地实现。
图19是根据本发明的优选实施方式,用DSP同步脉冲交织的一收发器实现的示例框图。该图用一收发器的足够细节来描述同步。DSP1902用一块1908,标为“测量时间差”来决定发送器触发信号1904是否太接近于接收器触发信号1906。DSP1902通过向一延迟块1912发送一延迟控制信号1910来延迟发送器触发信号1904 100ns(例如)并输出送至发送器的延迟触发信号1914。DSP1902也输出待用数据调制的消息信息1916来完成与其它收发器的同步。1918为一模一数(A/D)转换器,这是因为DSP需以数字形式来处理互相关器的输出。
图20为DSP用来实现脉冲交织通信的延迟的流图。从冷启动2002开始,如上所述收发器获得锁定2004。若一发送脉冲与一接收脉冲间的时间(t)少于20ns,如判断框2006示,两收发器间在2008协商-100ns延迟。这称协商,因为任一收发器能执行所需的延迟。经消息1916来协商。若如判断框2010确定出锁定丢失,需重复获得,如2012示。D.差分速率双工
脉冲重复率实施方式中,若组成收发器的发送器与接收器工作于两不同速率,由于它们产生拍频(即脉冲串的时序将周期性地使发送与接收脉冲周期性重合),所以不可能交织脉冲。
能用上述类似检测器的机制来检测最小脉冲分隔条件。然而将以不同的方式来利用该信号:使至相关器或至发送器的触发为空。任一响应将如所想地阻止自干扰的发生,但它们在通信系统中有不同的折衷。
若使发送器为空,由于载波中有源于空白动作的间隙,它将减少发送功率及与被其它收发器所接收的载波的干扰。然而它增加了第一收发器的接收功率,因为它不必象接收器被空白掉的情形那样扔掉该最小分隔窗中发生的脉冲。V.其它考虑
此处描述的通信方法不仅对使用无线(电磁)脉冲波形,也对使用声信号有用。后一方法的区别是:(1)工作频率与(2)信号发送。
工作频率基本在几十赫兹(如持续几十毫秒的脉冲),至几百兆赫兹(如持续几纳秒的脉冲)间。
声方法中使用声换能器而不是用于无线方法的天线。声换能器的信号特征在这一方面:它们须发送/接收带宽≥100%中心频率的波形(不多于几个百分点的色散,与好的转换增益),这与用于无线方法的天线的信号特征相似。换能器能用宾西法尼亚的Valley Forge的Pennwalt公司提供的叫Kynar膜的材料做成。技术人员清楚地了解该类型做成的换能器的几何结构。VI.结论
虽然上面已描述了许多本发明的实施方式,应理解它们仅是示例,而不是限制。许多技术人员可在不偏离本发明的范围与实质时改变形式与细节。这样本发明不限于上述示例实施方式,而应被下述权利要求书与它们的等效所限。上述中所有引用的专利文献和出版物都被合并至此用作参考。

Claims (20)

1.一种全双工极宽带通信的脉冲无线收发器,含:
一发送脉冲无线信号脉冲的脉冲无线发送器;
一接收脉冲无线信号脉冲的脉冲无线接收器;和
与所述脉冲无线发送器与脉冲无线接收器之一相联的装置,用于在脉冲交织通信中同步所述脉冲无线信号脉冲的所述发送与所述接收以避免所述发送脉冲无线信号脉冲与所述接收脉冲无线信号脉冲间的自干扰。
2.一全双工极宽带通信的脉冲无线收发器,含:
一发送突发脉冲无线信号脉冲的脉冲无线发送器;
一接收突发脉冲无线信号脉冲的脉冲无线接收器;及
与所述脉冲无线发送器及脉冲无线接收器之一相联的装置,用于在突发交织通信中同步所述突发脉冲无线信号脉冲的所述发送与所述接收以避免所述发送的突发脉冲无线信号脉冲与所述接收的突发脉冲的无线信号脉冲间的干扰。
3.一全双工极宽带通信的脉冲无线收发器,含:
一以第一脉冲重复率发送脉冲无线信号脉冲的脉冲无线发送器;
一以第二脉冲重复率接收脉冲无线信号脉冲的脉冲无线接收器,其中所述第二脉冲重复率不同于所述第一脉冲重复率;及
与所述脉冲无线发送器及所述脉冲无线接收器之一相联的装置,用于在所述脉冲无线信号脉冲的所述发送与所述接收以使所述发送脉冲无线信号脉冲与所述接收脉冲无线信号脉冲间的干扰最小。
4.如权利要求3的收发器,还含空白化(blanking)装置来使所述接收或发送脉冲无线信号脉冲的所选脉冲为空以避免干扰。
5.至少两脉冲无线收发器间的全双工传输,含步:
a.在至少两脉冲无线收发器中的第一个提供一周期性定时信号;
b.用一信息信号调制所述周期性定时信号以输出一编码定时信号;
c.时延调制所述编码定时信号以输出一已调制编码定时信号;
d.用所述已调制编码定时信号产生一脉冲无线信号;
e.将所述脉冲无线信号发送至至少两脉冲无线收发器中另一个;
f.在至少两脉冲无线收发器中另一个处接收所述发送脉冲无线信号;
g.在至少两脉冲无线收发器中另一个处产生并发送另一脉冲无线信号以响应步f;及
h.在至少两脉冲无线收发器间以同步的方式重复步a-g来进行脉冲交织通信以避免在至少两脉冲无线收发器中任一个处产生自干扰。
6.至少两脉冲无线收发器间全双工传输方法,含步:
a.在至少两脉冲无线收发器中第一个处提供周期性定时信号;
b.用一信息信号调制所述周期性定时信号以输出一编码定时信号;
c.时延调制所述编码定时信号以输出已调制编码定时信号;
d.用所述已调制编码定时信号产生脉冲无线信号;
e.将所述脉冲无线信号突发传送至至少两脉冲无线收发器中另一个;
f.至少两脉冲无线收发器中另一个接收所述发送突发;
g.至少两脉冲无线收发器中另一个产生并发送另一突发脉冲无线信号以响应步f;及
h.在至少两脉冲无线收发器间以同步方式重复步a-g来进行全双工突发交织通信。
7.至少两脉冲无线收发间全双工传输的方法,含步:
a.在至少两脉冲无线收发器中第一个处提供第一脉冲重复率的周期性定时信号;
b.用一信息信号调制所述周期性定时信号以输出一编码定时信号;
c.时延调制所述编码定时信号以输出一已调制编码定时信号;
d.用所述已调制编码定时信号产生脉冲无线信号;
e.将所述脉冲无线信号发送至至少两脉冲无线收发器中另一个;
f.至少两脉冲无线收发器中另一个接收所述发送脉冲;
g.至少两脉冲无线收发器中另一个产生并发送第二脉冲重复率的另一脉冲无线信号,其中所述第二脉冲重复率不同于所述第一脉冲重复率;及
h.在至少两脉冲无线收发器间重复步a-g来进行全双工通信。
8.如权利要求3的方法,还含使所述接收或发送脉冲无线信号中所选脉冲为空来避免干扰的步。
9.如权利要求1的收发器,其中所述脉冲无线信号脉冲为电磁波。
10.如权利要求1的收发器,其中所述脉冲无线信号脉冲为声波。
11.如权利要求2的收发器,其中所述脉冲无线信号脉冲为电磁波。
12.如权利要求2的收发器,其中所述脉冲无线信号脉冲为声波。
13.如权利要求3的收发器,其中所述脉冲无线信号脉冲为电磁波。
14.如权利要求3的收发器,其中所述脉冲无线信号脉冲为声波。
15.如权利要求5的方法,其中所述产生步含产生电磁脉冲无线信号脉冲。
16.如权利要求5的方法,其中所述产生步含产生声脉冲无线信号脉冲。
17.如权利要求6的方法,其中所述产生步含产生电磁脉冲无线信号脉冲。
18.如权利要求6的方法,其中所述产生步含产生声脉冲无线信号脉冲。
19.如权利要求7的方法,其中所述产生步含产生电磁脉冲无线信号脉冲。
20.如权利要求7的方法,其中所述产生步含产生声脉冲无线信号脉冲。
CN96194156A 1995-04-27 1996-04-26 全双工极宽带通信系统及方法 Pending CN1185247A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/428,489 US5687169A (en) 1995-04-27 1995-04-27 Full duplex ultrawide-band communication system and method
US08/428,489 1995-04-27

Publications (1)

Publication Number Publication Date
CN1185247A true CN1185247A (zh) 1998-06-17

Family

ID=23699103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96194156A Pending CN1185247A (zh) 1995-04-27 1996-04-26 全双工极宽带通信系统及方法

Country Status (9)

Country Link
US (1) US5687169A (zh)
EP (1) EP0823152B1 (zh)
JP (1) JPH11504480A (zh)
KR (1) KR100402912B1 (zh)
CN (1) CN1185247A (zh)
CA (1) CA2219485A1 (zh)
DE (1) DE69633007D1 (zh)
MX (1) MX9708255A (zh)
WO (1) WO1996034462A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099324B (zh) * 2005-08-31 2012-09-26 松下电器产业株式会社 同步捕获装置及同步捕获方法
CN102027681B (zh) * 2007-10-25 2015-03-18 原子能和辅助替代能源委员会 用于同步的方法和装置
CN104602247A (zh) * 2006-04-19 2015-05-06 高通股份有限公司 低等待时间多跳通信的装置和方法
CN110462431A (zh) * 2017-05-31 2019-11-15 谷歌有限责任公司 用于使用无线通信芯片组的雷达感测的全双工操作
US12019149B2 (en) 2017-05-10 2024-06-25 Google Llc Low-power radar

Families Citing this family (251)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030016157A1 (en) * 1984-12-03 2003-01-23 Fullerton Larry W. Time domain radio transmission system
USRE39759E1 (en) 1984-12-03 2007-08-07 Time Domain Corporation Time domain radio transmission system
US5952956A (en) * 1984-12-03 1999-09-14 Time Domain Corporation Time domain radio transmission system
USRE41479E1 (en) 1984-12-03 2010-08-10 Time Domain Corporation Time domain radio transmission system
US6606051B1 (en) 1984-12-03 2003-08-12 Time Domain Corporation Pulse-responsive dipole antenna
US6882301B2 (en) 1986-06-03 2005-04-19 Time Domain Corporation Time domain radio transmission system
US5832035A (en) 1994-09-20 1998-11-03 Time Domain Corporation Fast locking mechanism for channelized ultrawide-band communications
US7321611B2 (en) 1994-09-20 2008-01-22 Alereen, Inc. Method and transceiver for full duplex communication of ultra wideband signals
US5677927A (en) * 1994-09-20 1997-10-14 Pulson Communications Corporation Ultrawide-band communication system and method
US5933079A (en) * 1995-09-01 1999-08-03 Remote Data Systems, Inc. Signal discriminator and positioning system
US7539237B2 (en) 1996-12-06 2009-05-26 Alereon, Inc. Fast locking mechanism for channelized ultrawide-band communications
US6700939B1 (en) * 1997-12-12 2004-03-02 Xtremespectrum, Inc. Ultra wide bandwidth spread-spectrum communications system
US6505032B1 (en) 2000-05-26 2003-01-07 Xtremespectrum, Inc. Carrierless ultra wideband wireless signals for conveying application data
US7787514B2 (en) * 1998-02-12 2010-08-31 Lot 41 Acquisition Foundation, Llc Carrier interferometry coding with applications to cellular and local area networks
US5955992A (en) * 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
US5966090A (en) * 1998-03-16 1999-10-12 Mcewan; Thomas E. Differential pulse radar motion sensor
US6512455B2 (en) 1999-09-27 2003-01-28 Time Domain Corporation System and method for monitoring assets, objects, people and animals utilizing impulse radio
US6489893B1 (en) 1998-03-23 2002-12-03 Time Domain Corporation System and method for tracking and monitoring prisoners using impulse radio technology
US6504483B1 (en) 1998-03-23 2003-01-07 Time Domain Corporation System and method for using impulse radio technology to track and monitor animals
US6501393B1 (en) * 1999-09-27 2002-12-31 Time Domain Corporation System and method for using impulse radio technology to track and monitor vehicles
US6466125B1 (en) * 1998-03-23 2002-10-15 Time Domain Corporation System and method using impulse radio technology to track and monitor people needing health care
US6469628B1 (en) 1998-03-23 2002-10-22 Time Domain Corporation System and method for using impulse radio technology in the farming field
US6492906B1 (en) 1998-03-23 2002-12-10 Time Domain Corporation System and method using impulse radio technology to track and monitor people under house arrest
US6133876A (en) 1998-03-23 2000-10-17 Time Domain Corporation System and method for position determination by impulse radio
US6060915A (en) * 1998-05-18 2000-05-09 Mcewan; Thomas E. Charge transfer wideband sample-hold circuit
US6111536A (en) 1998-05-26 2000-08-29 Time Domain Corporation System and method for distance measurement by inphase and quadrature signals in a radio system
US6417797B1 (en) 1998-07-14 2002-07-09 Cirrus Logic, Inc. System for A multi-purpose portable imaging device and methods for using same
US6577691B2 (en) * 1998-09-03 2003-06-10 Time Domain Corporation Precision timing generator apparatus and associated methods
US6304623B1 (en) 1998-09-03 2001-10-16 Time Domain Corporation Precision timing generator system and method
US6020842A (en) * 1998-10-21 2000-02-01 Raytheon Company Electronic support measures (ESM) duty dithering scheme for improved probability of intercept at low ESM utilization
US7346120B2 (en) 1998-12-11 2008-03-18 Freescale Semiconductor Inc. Method and system for performing distance measuring and direction finding using ultrawide bandwidth transmissions
US6850733B2 (en) * 1998-12-11 2005-02-01 Freescale Semiconductor, Inc. Method for conveying application data with carrierless ultra wideband wireless signals
US6351246B1 (en) 1999-05-03 2002-02-26 Xtremespectrum, Inc. Planar ultra wide band antenna with integrated electronics
US7592944B2 (en) * 1999-06-14 2009-09-22 Time Domain Corporation System and method for intrusion detection using a time domain radar array
US7649925B2 (en) * 1999-06-14 2010-01-19 Time Domain Corporation Time transfer utilizing ultra wideband signals
US6177903B1 (en) 1999-06-14 2001-01-23 Time Domain Corporation System and method for intrusion detection using a time domain radar array
US6218979B1 (en) 1999-06-14 2001-04-17 Time Domain Corporation Wide area time domain radar array
US6539213B1 (en) 1999-06-14 2003-03-25 Time Domain Corporation System and method for impulse radio power control
US6611738B2 (en) 1999-07-12 2003-08-26 Bryan J. Ruffner Multifunctional mobile appliance
US6421389B1 (en) * 1999-07-16 2002-07-16 Time Domain Corporation Baseband signal converter for a wideband impulse radio receiver
US7023833B1 (en) 1999-09-10 2006-04-04 Pulse-Link, Inc. Baseband wireless network for isochronous communication
US20040028071A1 (en) * 1999-09-10 2004-02-12 Interval Research Corporation, A Washington Corporation Apparatus and method for managing variable-sized data slots with timestamp counters within a TDMA frame
US20040090983A1 (en) * 1999-09-10 2004-05-13 Gehring Stephan W. Apparatus and method for managing variable-sized data slots within a time division multiple access frame
US6944148B1 (en) 1999-09-10 2005-09-13 Pulse-Link, Inc. Apparatus and method for managing variable-sized data slots within a time division multiple access frame
US6603818B1 (en) 1999-09-23 2003-08-05 Lockheed Martin Energy Research Corporation Pulse transmission transceiver architecture for low power communications
US6492904B2 (en) 1999-09-27 2002-12-10 Time Domain Corporation Method and system for coordinating timing among ultrawideband transmissions
US20050223407A1 (en) * 1999-09-27 2005-10-06 Fullerton Larry W Wireless local area audio/visual information distribution system and method by impulse radio
US6351652B1 (en) 1999-10-26 2002-02-26 Time Domain Corporation Mobile communications system and method utilizing impulse radio
US7986729B2 (en) * 1999-10-28 2011-07-26 Lightwaves Systems, Inc. High bandwidth data transport system
US6976034B1 (en) * 1999-10-28 2005-12-13 Lightwaves Systems, Inc. Method of transmitting data including a structured linear database
US7088795B1 (en) 1999-11-03 2006-08-08 Pulse-Link, Inc. Ultra wide band base band receiver
KR100354337B1 (ko) * 1999-12-04 2002-09-28 한국과학기술원 대역 확산 통신 방식에서의 확산 변조 방식을 이용한송수신방식 및 송수신장치
US7027493B2 (en) * 2000-01-19 2006-04-11 Time Domain Corporation System and method for medium wide band communications by impluse radio
US6497656B1 (en) 2000-02-08 2002-12-24 General Electric Company Integrated wireless broadband communications network
US7027425B1 (en) * 2000-02-11 2006-04-11 Alereon, Inc. Impulse radio virtual wireless local area network system and method
EP1260033A1 (en) * 2000-02-21 2002-11-27 Surf Communication Solution, Ltd. Adaptive echo canceling
US6906625B1 (en) * 2000-02-24 2005-06-14 Time Domain Corporation System and method for information assimilation and functionality control based on positioning information obtained by impulse radio techniques
US6700538B1 (en) 2000-03-29 2004-03-02 Time Domain Corporation System and method for estimating separation distance between impulse radios using impulse signal amplitude
US6937667B1 (en) * 2000-03-29 2005-08-30 Time Domain Corporation Apparatus, system and method for flip modulation in an impulse radio communications system
US20020075972A1 (en) * 2000-03-29 2002-06-20 Time Domain Corporation Apparatus, system and method for one-of-many positions modulation in an impulse radio communications system
US6556621B1 (en) 2000-03-29 2003-04-29 Time Domain Corporation System for fast lock and acquisition of ultra-wideband signals
US20010036832A1 (en) * 2000-04-14 2001-11-01 Onscene, Inc. Emergency command and control system
US6538615B1 (en) 2000-05-19 2003-03-25 Time Domain Corporation Semi-coaxial horn antenna
US6823022B1 (en) 2000-06-02 2004-11-23 Time Domain Corp. Method for mitigating effects of interference in impulse radio communication
US6671310B1 (en) * 2000-06-12 2003-12-30 Time Domain Corporation Method and apparatus for positioning pulses over time by applying time-hopping codes having pre-defined characteristics
US6636566B1 (en) * 2000-06-12 2003-10-21 Time Domain Corporation Method and apparatus for specifying pulse characteristics using a code that satisfies predefined criteria
AU2001269784A1 (en) * 2000-06-12 2001-12-24 Fullerton, Larry W. Method for specifying pulse characteristics using codes
AU2001271297A1 (en) * 2000-06-12 2001-12-24 Larry W. Fullerton A method for specifying non-temporal pulse characteristics
US7145954B1 (en) 2000-06-12 2006-12-05 Time Domain Corporation Method and apparatus for mapping pulses to a non-fixed layout
US6959032B1 (en) 2000-06-12 2005-10-25 Time Domain Corporation Method and apparatus for positioning pulses in time
US6636567B1 (en) * 2000-06-12 2003-10-21 Time Domain Corporation Method of specifying non-allowable pulse characteristics
US6970448B1 (en) 2000-06-21 2005-11-29 Pulse-Link, Inc. Wireless TDMA system and method for network communications
US6952456B1 (en) * 2000-06-21 2005-10-04 Pulse-Link, Inc. Ultra wide band transmitter
US6959031B2 (en) * 2000-07-06 2005-10-25 Time Domain Corporation Method and system for fast acquisition of pulsed signals
US6705942B1 (en) 2000-07-19 2004-03-16 Golf-Domain.Com Llc Method and apparatus for managing golf related information obtained in part by using impulse radio technology
WO2002013313A2 (en) 2000-08-07 2002-02-14 Xtremespectrum, Inc. Electrically small planar uwb antenna apparatus and system thereof
US6483461B1 (en) 2000-08-24 2002-11-19 Time Domain Corporation Apparatus and method for locating objects in a three-dimensional space
WO2002023218A2 (en) * 2000-09-14 2002-03-21 Time Domain Corporation System and method for detecting an intruder using impulse radio technology
US6354946B1 (en) 2000-09-20 2002-03-12 Time Domain Corporation Impulse radio interactive wireless gaming system and method
US6845253B1 (en) * 2000-09-27 2005-01-18 Time Domain Corporation Electromagnetic antenna apparatus
US6560463B1 (en) 2000-09-29 2003-05-06 Pulse-Link, Inc. Communication system
US6937646B1 (en) * 2000-10-10 2005-08-30 Freescale Semiconductor, Inc. Leakage nulling receiver correlator structure and method for ultra wide bandwidth communication system
US6529568B1 (en) 2000-10-13 2003-03-04 Time Domain Corporation Method and system for canceling interference in an impulse radio
US6914949B2 (en) * 2000-10-13 2005-07-05 Time Domain Corporation Method and system for reducing potential interference in an impulse radio
US6750757B1 (en) 2000-10-23 2004-06-15 Time Domain Corporation Apparatus and method for managing luggage handling
US6778603B1 (en) 2000-11-08 2004-08-17 Time Domain Corporation Method and apparatus for generating a pulse train with specifiable spectral response characteristics
US6748040B1 (en) 2000-11-09 2004-06-08 Time Domain Corporation Apparatus and method for effecting synchrony in a wireless communication system
US6462701B1 (en) 2000-11-21 2002-10-08 Time Domain Corporation System and method for controlling air bag deployment systems
US6996075B2 (en) 2000-12-14 2006-02-07 Pulse-Link, Inc. Pre-testing and certification of multiple access codes
US6907244B2 (en) * 2000-12-14 2005-06-14 Pulse-Link, Inc. Hand-off between ultra-wideband cell sites
US6519464B1 (en) 2000-12-14 2003-02-11 Pulse-Link, Inc. Use of third party ultra wideband devices to establish geo-positional data
US6947492B2 (en) * 2000-12-14 2005-09-20 Pulse-Link, Inc. Encoding and decoding ultra-wideband information
US6937674B2 (en) 2000-12-14 2005-08-30 Pulse-Link, Inc. Mapping radio-frequency noise in an ultra-wideband communication system
US7397867B2 (en) * 2000-12-14 2008-07-08 Pulse-Link, Inc. Mapping radio-frequency spectrum in a communication system
US20040002346A1 (en) * 2000-12-14 2004-01-01 John Santhoff Ultra-wideband geographic location system and method
JP2002190841A (ja) * 2000-12-20 2002-07-05 Fujitsu General Ltd デジタルデータ信号の伝送方法、及び変復調器
GB0031510D0 (en) * 2000-12-22 2001-02-07 Scient Generics Ltd Reference timing acquisition aid for time modulated ultra wide band transmission
US6437756B1 (en) 2001-01-02 2002-08-20 Time Domain Corporation Single element antenna apparatus
US6593886B2 (en) 2001-01-02 2003-07-15 Time Domain Corporation Planar loop antenna
US6670909B2 (en) * 2001-01-16 2003-12-30 Time Domain Corporation Ultra-wideband smart sensor interface network and method
US20020135815A1 (en) * 2001-01-22 2002-09-26 Time Domain Corporation Hand-held scanner with impulse radio wireless interface
US7035246B2 (en) * 2001-03-13 2006-04-25 Pulse-Link, Inc. Maintaining a global time reference among a group of networked devices
US8270452B2 (en) * 2002-04-30 2012-09-18 Lightwaves Systems, Inc. Method and apparatus for multi-band UWB communications
EP1396085B1 (en) 2001-03-26 2006-11-02 Ecole Polytechnique Fédérale de Lausanne (EPFL) Sampling method, reconstruction method, and device for sampling and/or reconstructing signals
US6642903B2 (en) 2001-05-15 2003-11-04 Time Domain Corporation Apparatus for establishing signal coupling between a signal line and an antenna structure
US6512488B2 (en) 2001-05-15 2003-01-28 Time Domain Corporation Apparatus for establishing signal coupling between a signal line and an antenna structure
US6763282B2 (en) * 2001-06-04 2004-07-13 Time Domain Corp. Method and system for controlling a robot
US6661342B2 (en) 2001-06-04 2003-12-09 Time Domain Corporation System and method for using impulse radio technology to track the movement of athletes and to enable secure communications between the athletes and their teammates, fans or coaches
US20030043934A1 (en) * 2001-06-13 2003-03-06 Roberts Mark D. System and method for applying delay codes to pulse train signals
US6954480B2 (en) * 2001-06-13 2005-10-11 Time Domain Corporation Method and apparatus for improving received signal quality in an impulse radio system
US6717992B2 (en) 2001-06-13 2004-04-06 Time Domain Corporation Method and apparatus for receiving a plurality of time spaced signals
WO2003012470A2 (en) 2001-08-02 2003-02-13 Siemens Aktiengesellschaft Material handling systems with high frequency radio location devices
US6853835B2 (en) * 2001-08-13 2005-02-08 Hewlett-Packard Development Company, L.P. Asymmetric wireless communication system using two different radio technologies
WO2003023992A1 (en) * 2001-09-07 2003-03-20 Pulse-Link, Inc. System and method for transmitting data in ultra wide band frequencies in a de-centralized system
US6759948B2 (en) * 2001-09-21 2004-07-06 Time Domain Corporation Railroad collision avoidance system and method for preventing train accidents
US7148791B2 (en) * 2001-09-21 2006-12-12 Time Domain Corp. Wireless danger proximity warning system and method
US6774859B2 (en) 2001-11-13 2004-08-10 Time Domain Corporation Ultra wideband antenna having frequency selectivity
US7373107B1 (en) 2002-04-08 2008-05-13 Network Equipment Technologies, Inc. Ultra-wideband wireless backplane
AU2003224401A1 (en) * 2002-05-16 2003-12-02 Dan Raphaeli Method and system for distance determination of rf tags
US7167525B2 (en) * 2002-06-21 2007-01-23 Pulse-Link, Inc. Ultra-wideband communication through twisted-pair wire media
US20040218688A1 (en) * 2002-06-21 2004-11-04 John Santhoff Ultra-wideband communication through a power grid
US20040156446A1 (en) * 2002-06-21 2004-08-12 John Santhoff Optimization of ultra-wideband communication through a wire medium
US20060291536A1 (en) * 2002-06-21 2006-12-28 John Santhoff Ultra-wideband communication through a wire medium
US6782048B2 (en) 2002-06-21 2004-08-24 Pulse-Link, Inc. Ultra-wideband communication through a wired network
US7027483B2 (en) * 2002-06-21 2006-04-11 Pulse-Link, Inc. Ultra-wideband communication through local power lines
US7099368B2 (en) * 2002-06-21 2006-08-29 Pulse-Link, Inc. Ultra-wideband communication through a wire medium
US6895034B2 (en) 2002-07-02 2005-05-17 Pulse-Link, Inc. Ultra-wideband pulse generation system and method
JP4318510B2 (ja) * 2002-08-28 2009-08-26 パナソニック株式会社 通信装置および通信方法
AU2003287154A1 (en) * 2002-10-17 2004-05-04 Time Domain Corporation Method and apparatus for generating rf waveforms having aggregate energy with desired spectral characteristics
JP4057467B2 (ja) 2002-11-12 2008-03-05 株式会社リコー 超広帯域通信用受信機および超広帯域通信用の再生データ生成方法
US6836226B2 (en) * 2002-11-12 2004-12-28 Pulse-Link, Inc. Ultra-wideband pulse modulation system and method
US7436876B2 (en) * 2002-11-15 2008-10-14 Time Domain Corporation System and method for fast acquisition of ultra wideband signals
US20040103034A1 (en) * 2002-11-21 2004-05-27 Kimberly-Clark Worldwide, Inc. RFID system and method for purchase item accountability
US7490054B2 (en) * 2002-11-21 2009-02-10 Kimberly-Clark Worldwide, Inc. RFID system and method for vending machine control
US6853303B2 (en) * 2002-11-21 2005-02-08 Kimberly-Clark Worldwide, Inc. RFID system and method for ensuring personnel safety
US7061379B2 (en) 2002-11-21 2006-06-13 Kimberly-Clark Worldwide, Inc. RFID system and method for ensuring safety of hazardous or dangerous substances
US6982640B2 (en) 2002-11-21 2006-01-03 Kimberly-Clark Worldwide, Inc. RFID system and method for tracking food freshness
US7221900B2 (en) * 2002-11-21 2007-05-22 Kimberly-Clark Worldwide, Inc. Jamming device against RFID smart tag systems
US7617132B2 (en) 2002-11-21 2009-11-10 Kimberly-Clark Worldwide, Inc. RFID system and method for ensuring food safety
US6900740B2 (en) * 2003-01-03 2005-05-31 University Of Florida Research Foundation, Inc. Autonomous highway traffic modules
US7190722B2 (en) * 2003-03-03 2007-03-13 Pulse-Link, Inc. Ultra-wideband pulse modulation system and method
US20040218687A1 (en) * 2003-04-29 2004-11-04 John Santhoff Ultra-wideband pulse modulation system and method
US8379736B2 (en) 2003-05-30 2013-02-19 Intellectual Ventures Holding 73 Llc Ultra-wideband communication system and method
US7042388B2 (en) * 2003-07-15 2006-05-09 Farrokh Mohamadi Beacon-on-demand radar transponder
US20050024038A1 (en) * 2003-07-31 2005-02-03 John Santhoff Sampling circuit apparatus and method
US20050035663A1 (en) * 2003-07-31 2005-02-17 Steven Moore Electromagnetic pulse generator
US20050035660A1 (en) * 2003-07-31 2005-02-17 John Santhoff Electromagnetic pulse generator
US7145961B2 (en) * 2003-08-28 2006-12-05 Pulselink, Inc. Ultra wideband transmitter
JP4221480B2 (ja) * 2003-09-09 2009-02-12 独立行政法人情報通信研究機構 超広帯域バンドパスフィルタを用いた伝送システムおよび伝送装置
US7782894B2 (en) * 2003-09-12 2010-08-24 Nokia Corporation Ultra-wideband/low power communication having a dedicated removable memory module for fast data downloads—apparatus, systems and methods
US7702284B2 (en) * 2003-09-12 2010-04-20 Arto Palin Method and system for processing acknowledgments in a wireless communications network
US7499674B2 (en) * 2003-09-12 2009-03-03 Nokia Corporation Method and system for repeat request in hybrid ultra wideband-bluetooth radio
US7352998B2 (en) * 2003-09-12 2008-04-01 Nokia Corporation Method and system for establishing a wireless communications link
US20050058153A1 (en) * 2003-09-15 2005-03-17 John Santhoff Common signaling method
US7339883B2 (en) * 2003-09-15 2008-03-04 Pulse-Link, Inc. Ultra-wideband communication protocol
US20050058114A1 (en) * 2003-09-15 2005-03-17 John Santhoff Ultra-wideband communication protocol
US20050058102A1 (en) * 2003-09-15 2005-03-17 Santhoff John H. Ultra-wideband communication protocol
JP4519435B2 (ja) * 2003-09-25 2010-08-04 富士通コンポーネント株式会社 車載システム
DE10347395A1 (de) * 2003-10-09 2005-05-12 Ihp Gmbh Ultrabreitband-Kommunikationssystem für sehr hohe Datenraten
US7278084B2 (en) * 2003-10-29 2007-10-02 Nokia Corporation Method and system for providing communications security
US7266407B2 (en) 2003-11-17 2007-09-04 University Of Florida Research Foundation, Inc. Multi-frequency microwave-induced thermoacoustic imaging of biological tissue
US20050113045A1 (en) * 2003-11-21 2005-05-26 John Santhoff Bridged ultra-wideband communication method and apparatus
US7046618B2 (en) * 2003-11-25 2006-05-16 Pulse-Link, Inc. Bridged ultra-wideband communication method and apparatus
US20050149414A1 (en) * 2003-12-30 2005-07-07 Kimberly-Clark Worldwide, Inc. RFID system and method for managing out-of-stock items
US7463142B2 (en) 2003-12-30 2008-12-09 Kimberly-Clark Worldwide, Inc. RFID system and method for tracking environmental data
US7853477B2 (en) * 2003-12-30 2010-12-14 O'shea Michael D RF-based electronic system and method for automatic cross-marketing promotional offers and check-outs
US7814582B2 (en) 2003-12-31 2010-10-19 Kimberly-Clark Worldwide, Inc. System and method for measuring and monitoring overflow or wetness conditions in a washroom
US7506547B2 (en) 2004-01-26 2009-03-24 Jesmonth Richard E System and method for generating three-dimensional density-based defect map
KR100593259B1 (ko) 2004-02-24 2006-06-26 광주과학기술원 인터리빙을 이용한 초직교 길쌈 부호화 초광대역 임펄스라디오 시스템 및 그 부호화/복호화 방법
US7466682B1 (en) * 2004-02-27 2008-12-16 Sprint Spectrum L.P. Forward and reverse link capacity determination
WO2005088850A1 (ja) * 2004-03-17 2005-09-22 Brother Kogyo Kabushiki Kaisha 位置検出システム、応答器及び質問器、無線通信システム、位置検出方法、位置検出用プログラム及び情報記録媒体
US20050238113A1 (en) * 2004-04-26 2005-10-27 John Santhoff Hybrid communication method and apparatus
WO2005112315A2 (en) * 2004-05-13 2005-11-24 Sandlinks Systems Ltd. Low power fast impulse radio synchronization
GB0412260D0 (en) * 2004-06-02 2004-07-07 Ubisense Ltd Tag frequency control
US7697893B2 (en) * 2004-06-18 2010-04-13 Nokia Corporation Techniques for ad-hoc mesh networking
US7299042B2 (en) * 2004-07-30 2007-11-20 Pulse-Link, Inc. Common signaling method and apparatus
CN100593919C (zh) * 2004-08-05 2010-03-10 松下电器产业株式会社 脉冲信号解调设备
US7046187B2 (en) * 2004-08-06 2006-05-16 Time Domain Corporation System and method for active protection of a resource
US20060028374A1 (en) * 2004-08-06 2006-02-09 Time Domain Corporation System and method for ultra wideband subarray beam steering
US20060080722A1 (en) * 2004-10-12 2006-04-13 John Santhoff Buffered waveforms for high speed digital to analog conversion
US20060088081A1 (en) * 2004-10-22 2006-04-27 Time Domain Corporation Transmit-rake apparatus in communication systems and associated methods
US7417582B2 (en) * 2004-10-22 2008-08-26 Time Domain Corporation System and method for triggering an explosive device
US20060106546A1 (en) * 2004-11-17 2006-05-18 Time Domain Corporation System and method for evaluating materials using ultra wideband signals
US20060121851A1 (en) * 2004-12-06 2006-06-08 Steve Moore Ultra-wideband security system
US20070014331A1 (en) * 2005-07-12 2007-01-18 John Eldon Ultra-wideband communications system and method
US20070014332A1 (en) * 2005-07-12 2007-01-18 John Santhoff Ultra-wideband communications system and method
US20070022444A1 (en) * 2005-07-20 2007-01-25 John Santhoff Software definable transceiver apparatus and method
US20070022443A1 (en) * 2005-07-20 2007-01-25 John Santhoff Interactive communication apparatus and system
US8098707B2 (en) * 2006-01-31 2012-01-17 Regents Of The University Of Minnesota Ultra wideband receiver
US20070196621A1 (en) * 2006-02-02 2007-08-23 Arnold Frances Sprayable micropulp composition
JP2007228299A (ja) * 2006-02-23 2007-09-06 Matsushita Electric Works Ltd データ伝送装置およびデータ伝送システム
US8886125B2 (en) 2006-04-14 2014-11-11 Qualcomm Incorporated Distance-based association
US9215581B2 (en) 2006-04-14 2015-12-15 Qualcomm Incorported Distance-based presence management
US8552903B2 (en) 2006-04-18 2013-10-08 Qualcomm Incorporated Verified distance ranging
US8644396B2 (en) 2006-04-18 2014-02-04 Qualcomm Incorporated Waveform encoding for wireless applications
US9124357B2 (en) 2006-04-20 2015-09-01 Qualcomm Incorporated Media access control for ultra-wide band communication
US7576605B2 (en) 2006-04-20 2009-08-18 Qualcomm Incorporated Low power output stage
WO2007127878A1 (en) 2006-04-26 2007-11-08 Qualcomm Incorporated Dynamic distribution of device functionality and resource management
US8289159B2 (en) 2006-04-26 2012-10-16 Qualcomm Incorporated Wireless localization apparatus and method
AR060698A1 (es) 2006-04-26 2008-07-10 Qualcomm Inc Ciclo de trabajo del interpulso
US8406794B2 (en) 2006-04-26 2013-03-26 Qualcomm Incorporated Methods and apparatuses of initiating communication in wireless networks
US7855611B2 (en) 2006-11-15 2010-12-21 Qualcomm Incorporated Delay line calibration
US7716001B2 (en) 2006-11-15 2010-05-11 Qualcomm Incorporated Delay line calibration
US8014425B2 (en) * 2006-11-16 2011-09-06 Qualcomm Incorporated Multiple access techniques for a wireless communiation medium
US7889753B2 (en) 2006-11-16 2011-02-15 Qualcomm Incorporated Multiple access techniques for a wireless communication medium
US8363583B2 (en) 2006-12-15 2013-01-29 Qualcomm Incorporated Channel access scheme for ultra-wide band communication
US8351483B1 (en) 2006-12-18 2013-01-08 University Of South Florida Architecture for ultra-wideband radio
US20080219326A1 (en) * 2007-03-09 2008-09-11 John Santhoff Wireless multimedia link
US8837724B2 (en) 2007-03-27 2014-09-16 Qualcomm Incorporated Synchronization test for device authentication
US7592878B2 (en) 2007-04-05 2009-09-22 Qualcomm Incorporated Method and apparatus for generating oscillating signals
US7834482B2 (en) 2007-04-23 2010-11-16 Qualcomm Incorporated Apparatus and method for generating fine timing from coarse timing source
US9524502B2 (en) 2007-06-20 2016-12-20 Qualcomm Incorporated Management of dynamic electronic coupons
US9483769B2 (en) 2007-06-20 2016-11-01 Qualcomm Incorporated Dynamic electronic coupon for a mobile environment
US9141961B2 (en) 2007-06-20 2015-09-22 Qualcomm Incorporated Management of dynamic mobile coupons
US8326246B2 (en) 2007-07-10 2012-12-04 Qualcomm Incorporated Super regenerative (SR) apparatus having plurality of parallel SR amplifiers tuned to distinct frequencies
US8103228B2 (en) 2007-07-12 2012-01-24 Qualcomm Incorporated Method for determining line-of-sight (LOS) distance between remote communications devices
US7576672B2 (en) 2007-07-18 2009-08-18 Qualcomm Incorporated Adaptive Dynamic Range Control
US8059573B2 (en) 2007-07-30 2011-11-15 Qualcomm Incorporated Method of pairing devices
US7974580B2 (en) 2007-08-28 2011-07-05 Qualcomm Incorporated Apparatus and method for modulating an amplitude, phase or both of a periodic signal on a per cycle basis
US8005065B2 (en) 2007-09-11 2011-08-23 Qualcomm Incorporated Keep-alive for wireless networks
US8446976B2 (en) 2007-09-21 2013-05-21 Qualcomm Incorporated Signal generator with adjustable phase
US7965805B2 (en) 2007-09-21 2011-06-21 Qualcomm Incorporated Signal generator with signal tracking
US8385474B2 (en) 2007-09-21 2013-02-26 Qualcomm Incorporated Signal generator with adjustable frequency
US8233572B2 (en) 2007-09-25 2012-07-31 Qualcomm Incorporated Interference mitigation for impulse-based communication
US8275373B2 (en) 2007-09-28 2012-09-25 Qualcomm Incorporated Randomization of periodic channel scans
JP5507460B2 (ja) 2007-10-09 2014-05-28 クゥアルコム・インコーポレイテッド アンテナの放射素子を組込むハウジングを有する装置
CN101836367A (zh) * 2007-10-26 2010-09-15 高通股份有限公司 前导捕获和介质访问控制
US7812667B2 (en) 2008-03-10 2010-10-12 Qualcomm Incorporated System and method of enabling a signal processing device in a relatively fast manner to process a low duty cycle signal
US8275343B2 (en) 2008-03-10 2012-09-25 Qualcomm Incorporated System and method of using residual voltage from a prior operation to establish a bias voltage for a subsequent operation
US8254595B2 (en) 2008-03-25 2012-08-28 Qualcomm Incorporated System and method of companding an input signal of an energy detecting receiver
US7868689B2 (en) 2008-04-08 2011-01-11 Qualcomm Incorporated Low power slicer-based demodulator for PPM
US20090259672A1 (en) 2008-04-15 2009-10-15 Qualcomm Incorporated Synchronizing timing mismatch by data deletion
US8473013B2 (en) 2008-04-23 2013-06-25 Qualcomm Incorporated Multi-level duty cycling
US8483639B2 (en) 2008-05-06 2013-07-09 Qualcomm Incorporated AGC for slicer-based low power demodulator
US8375261B2 (en) 2008-07-07 2013-02-12 Qualcomm Incorporated System and method of puncturing pulses in a receiver or transmitter
US8787440B2 (en) 2008-07-25 2014-07-22 Qualcomm Incorporated Determination of receive data values
US8165080B2 (en) 2008-08-22 2012-04-24 Qualcomm Incorporated Addressing schemes for wireless communication
US8199681B2 (en) * 2008-12-12 2012-06-12 General Electric Company Software radio frequency canceller
US8553744B2 (en) 2009-01-06 2013-10-08 Qualcomm Incorporated Pulse arbitration for network communications
US20100235689A1 (en) * 2009-03-16 2010-09-16 Qualcomm Incorporated Apparatus and method for employing codes for telecommunications
US8612693B2 (en) 2009-03-19 2013-12-17 Qualcomm Incorporated Optimized transfer of packets in a resource constrained operating environment
US8665035B2 (en) * 2009-05-01 2014-03-04 L-3 Communications Integrated Systems Lp Systems and methods for generating pulsed output signals using a gated RF oscillator circuit
US8514911B2 (en) * 2009-05-13 2013-08-20 Qualcomm Incorporated Method and apparatus for clock drift compensation during acquisition in a wireless communication system
US8717430B2 (en) 2010-04-26 2014-05-06 Medtronic Navigation, Inc. System and method for radio-frequency imaging, registration, and localization
US10542372B2 (en) 2011-03-15 2020-01-21 Qualcomm Incorporated User identification within a physical merchant location through the use of a wireless network
US9383436B2 (en) 2012-01-18 2016-07-05 Tdc Acquisition Holdings, Inc. One way time of flight distance measurement
US9140772B1 (en) 2012-01-18 2015-09-22 Tdc Acquisition Holdings, Inc. Distance measuring quality factor using signal characterization
GB2502627A (en) * 2012-06-01 2013-12-04 Renesas Mobile Corp Wireless Full Duplex indication message and capability message sent between two communication devices
RU2557451C2 (ru) * 2012-06-08 2015-07-20 Ольга Игоревна Галицына Способ динамической адресации корреспондентов мобильной радиосети и устройство для его реализации
US11463231B2 (en) * 2019-09-13 2022-10-04 Nokomis, Inc Synchronized multi-channel communication device and method
WO2022132806A1 (en) 2020-12-16 2022-06-23 Fresh Blends Ltd Smart inventory management system for a dispensing and blend-in-cup beverage platform

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR962130A (zh) * 1950-06-02
US3720950A (en) * 1967-11-28 1973-03-13 North American Rockwell Time-domain correlator for spatial filtering in a pulsed energy system
US3728632A (en) * 1971-03-12 1973-04-17 Sperry Rand Corp Transmission and reception system for generating and receiving base-band pulse duration pulse signals without distortion for short base-band communication system
US3864635A (en) * 1972-08-04 1975-02-04 Westinghouse Electric Corp Correlation receiver with rapid frequency, time and phase acquisition
US3866230A (en) * 1973-03-02 1975-02-11 Bendix Corp Single channel communication system
DE2816353A1 (de) * 1978-04-12 1979-10-25 Prakla Seismos Gmbh Verfahren zur akustischen uebertragung von nachrichtensignalen durch den erdboden
US4743906A (en) * 1984-12-03 1988-05-10 Charles A. Phillips Time domain radio transmission system
US4641317A (en) * 1984-12-03 1987-02-03 Charles A. Phillips Spread spectrum radio transmission system
US4813057A (en) * 1984-12-03 1989-03-14 Charles A. Phillips Time domain radio transmission system
US5363108A (en) * 1984-12-03 1994-11-08 Charles A. Phillips Time domain radio transmission system
GB8506100D0 (en) * 1985-03-08 1985-04-11 Int Computers Ltd Decoder
US4803726A (en) * 1986-12-31 1989-02-07 Motorola, Inc. Bit synchronization method for a digital radio telephone system
GB2229055B (en) * 1989-03-10 1993-11-24 Larry W Fullerton Time domain radio transmission system
SE468266B (sv) * 1991-04-12 1992-11-30 Ericsson Telefon Ab L M Foerfarande att synkronisera en radiomottagare till en inkommande radiosignal
US5404355A (en) * 1992-10-05 1995-04-04 Ericsson Ge Mobile Communications, Inc. Method for transmitting broadcast information in a digital control channel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099324B (zh) * 2005-08-31 2012-09-26 松下电器产业株式会社 同步捕获装置及同步捕获方法
CN104602247A (zh) * 2006-04-19 2015-05-06 高通股份有限公司 低等待时间多跳通信的装置和方法
CN102027681B (zh) * 2007-10-25 2015-03-18 原子能和辅助替代能源委员会 用于同步的方法和装置
US12019149B2 (en) 2017-05-10 2024-06-25 Google Llc Low-power radar
CN110462431A (zh) * 2017-05-31 2019-11-15 谷歌有限责任公司 用于使用无线通信芯片组的雷达感测的全双工操作
US11598844B2 (en) 2017-05-31 2023-03-07 Google Llc Full-duplex operation for radar sensing using a wireless communication chipset
CN110462431B (zh) * 2017-05-31 2023-08-04 谷歌有限责任公司 用于使用无线通信芯片组的雷达感测的全双工操作

Also Published As

Publication number Publication date
AU712518B2 (en) 1999-11-11
MX9708255A (es) 1998-10-31
EP0823152B1 (en) 2004-07-28
WO1996034462A1 (en) 1996-10-31
EP0823152A1 (en) 1998-02-11
KR19990008094A (ko) 1999-01-25
CA2219485A1 (en) 1996-10-31
DE69633007D1 (de) 2004-09-02
KR100402912B1 (ko) 2004-02-11
JPH11504480A (ja) 1999-04-20
AU5673996A (en) 1996-11-18
US5687169A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
CN1185247A (zh) 全双工极宽带通信系统及方法
US6549567B1 (en) Full duplex ultrawide-band communication system and method
US7321611B2 (en) Method and transceiver for full duplex communication of ultra wideband signals
US7280607B2 (en) Ultra wide bandwidth communications method and system
US6959031B2 (en) Method and system for fast acquisition of pulsed signals
US7995644B2 (en) Device, method and protocol for private UWB ranging
CN1132345C (zh) 在蜂窝系统中用于同步无线电接收机的方法
US7574219B2 (en) Method and system for enabling device functions based on distance information
US7539237B2 (en) Fast locking mechanism for channelized ultrawide-band communications
US6354946B1 (en) Impulse radio interactive wireless gaming system and method
US20020176511A1 (en) High pulse-rate radio-frequency apparatus and associated methods
WO2001093441A1 (en) Ultra wide bandwidth spread-spectrum communications method and system
EP1732257A1 (en) Transmitting device, receiving device, and communication system
WO2002101942A2 (en) A method and apparatus for improving received signal quality in an impulse radio system
WO2002101949A1 (en) A method and apparatus for receiving a plurality of time spaced signals
US20040141547A1 (en) Transmission method for transmitting data symbols to or from users of an ultra bandwidth telecommunication system
WO1996041432A1 (en) Fast locking mechanism for channelized ultrawide-band communications
Gu et al. Ultra-wideband and its capabilities
CN1650535A (zh) 用于超宽带系统的复合波形
AU712518C (en) Full duplex ultrawide-band communication system and method
AU761539B2 (en) Full duplex ultrawide-band communication system and method
Martigne UWB for low data rate applications: technology overview and regulatory aspects
Panda et al. Performance measures of ultra-wideband communication system
Mosa Enhancing the bit error rate performance of ultra wideband systems using time-hopping pulse position modulation in multiple access environments

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication