CN118244556A - 一种二次谐波转换器及其制备方法以及二次谐波转换系统 - Google Patents

一种二次谐波转换器及其制备方法以及二次谐波转换系统 Download PDF

Info

Publication number
CN118244556A
CN118244556A CN202410249887.1A CN202410249887A CN118244556A CN 118244556 A CN118244556 A CN 118244556A CN 202410249887 A CN202410249887 A CN 202410249887A CN 118244556 A CN118244556 A CN 118244556A
Authority
CN
China
Prior art keywords
layer
harmonic
preset
chiral
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410249887.1A
Other languages
English (en)
Inventor
朱宇轩
何沐阳
曹乐乐
余鹏
王志明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianfu Jiangxi Laboratory
Original Assignee
Tianfu Jiangxi Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianfu Jiangxi Laboratory filed Critical Tianfu Jiangxi Laboratory
Priority to CN202410249887.1A priority Critical patent/CN118244556A/zh
Publication of CN118244556A publication Critical patent/CN118244556A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/383Non-linear optics for second-harmonic generation in an optical waveguide structure of the optical fibre type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明提供了一种二次谐波转换器及其制备方法以及二次谐波转换系统,所述二次谐波转换器包括吸收器,所述吸收器包括衬底层、底部金属层、电介质层和金属谐振器层;所述金属谐振器层的材料为钼且具有为手性结构;通过难熔金属Mo等离激元手性结构的二次谐波转换器及其制备方法,实现偏振光的二次谐波的转换,产生非线性手性效应,且具有很好的高温稳定性和机械稳定性。

Description

一种二次谐波转换器及其制备方法以及二次谐波转换系统
技术领域
本发明涉及微纳光学技术领域,具体而言,涉及一种二次谐波转换器及其制备方法以及二次谐波转换系统。
背景技术
手性是自然界的基本属性,在化学、生物、医药以及材料科学等领域起着重要作用。由于分子结构的非中心对称性,手性结构可能具有良好的非线性光学活性,如二次谐波和三次谐波的产生、圆偏振发光、光学传感与探测等与手性分子结构相关的独特物理性能。表面等离激元效应自发现以来,就得到了广泛的关注和迅猛发展。表面等离激元效应实质上是自由电子在界面出发生集体相干震荡的行为,使得电磁场局域在远小于波长尺度的范围内,光与物质的各种相互作用得以极大增强,包括手性、非线性光学效应、光声效应等等。
非线性光学主要研究强光与非线性介质材料相互作用所产生的现象及相关应用,包括光学谐波产生,超快光开关及光学成像等。虽然,非线性光学效应在光子器件上已经被广泛应用,但是只有当外加电场的强度足够大时,才会有比较明显的非线性效应产生。而材料固有的非线性光学响应很弱,且其尺寸较大,很难适用于集成微纳光电子器件领域。正因如此,等离激元增强的光与物质相互作用效应在提高弱光非线性转换效率方面尤为重要。若非线性材料还具有手性性质,则会产生非线性的手性效应。
大多数等离激元超表面都是以贵金属为基础的,如金(Au)和银(Ag),因为它们具有优异的产生表面等离激元共振的能力。然而由于光热效应或是高强度激光的激发,大量的热能产生的超高温会造成其结构的严重变形,导致其光学性能的严重退化,因此常规材料的等离激元结构的光热稳定性差。
有鉴于此,本发明提供了一种二次谐波转换器及其制备方法以及二次谐波转换系统,通过难熔金属Mo等离激元手性结构的二次谐波转换器及其制备方法,实现偏振光的二次谐波的转换,产生非线性手性效应,且具有很好的高温稳定性和机械稳定性。
发明内容
本发明的目的在于提供一种二次谐波转换器,所述二次谐波转换器包括吸收器,所述吸收器包括衬底层、底部金属层、电介质层和金属谐振器层;所述金属谐振器层的材料为钼且具有为手性结构。
进一步的,所述衬底层的材料为硅片或玻璃片。
进一步的,所述底部金属层的材料为钼。
进一步的,所述电介质层的材料为氧化铝或二氧化硅。
进一步的,所述手性结构包括“Z”、“L”、“S”和“E”字形。
进一步的,在所述底部金属层的一面设置所述电介质层,另一面设置所述衬底层;在所述电介质层远离所述底部金属层的一面设置所述金属谐振器层;所述金属谐振器层的厚度为55nm。
本发明的目的在于提供一种制备上述任意一项所述的二次谐波转换器的方法,包括:在衬底层上利用直流磁控溅射法生长钼层,得到底部金属层;在所述底部金属层上通过电子束蒸发沉积一层金属,得到电介质层;在所述电介质层上沉积一层光刻胶,并采用电子束光刻工艺字形图形对所述光刻胶进行曝光和显影,得到空腔处形状为手性结构的光刻胶层;在所述光刻胶层上通过电子束蒸发沉积一层钼金属,并将所述光刻胶层剥离,得到具有手性结构的金属谐振器层。
进一步的,所述在衬底层上利用直流磁控溅射法生长钼层,包括:用工业级氮气干燥腔室,钼被用作靶材料;在沉积薄膜之前,钼靶在氩气气氛中预溅射预设喷溅时间;将溅射室真空时的压力调整为预设真空压力;将溅射室工作时的压力调至预设工作压力;将纯氩气以预设流速引入腔室中;沉积温度为室温,沉积时间为预设沉积时间,沉积功率为预设沉积功率。
进一步的,所述预设喷溅时间为20min;所述预设真空压力为Torr;所述预设工作压力为Torr;所述预设流速为2.0SCCM;所述预设沉积时间为60min;所述预设沉积功率为100w。
本发明的目的在于提供一种基于上述任意一项所述的二次谐波转换器的二次谐波转换系统,包括激光器、所述二次谐波转换器和耦合光纤;所述激光器用于发射所需波长的激光作为光源;光源经由偏振片与四分之一波片的组合产生手性光;所述二次谐波转换器受到所述手性光的照射并产生非线性手性效应,反射出二次谐波;所述耦合光纤用于传输所述二次谐波。
本发明实施例的技术方案至少具有如下优点和有益效果:
本发明提供的二次谐波转换器,其底部金属层、电介质层与难熔金属钼谐振层相互共振,具有较强的光吸收能力的同时,能够实现对手性光二次谐波的转换,并具有较好的高温稳定性。
附图说明
图1为本发明提供的二次谐波转换器的示例性示意图;
图2为本发明提供的二次谐波转换器的三视图,a为俯视图,b为侧视图,c为另一侧视图;
图3为本发明提供的手性结构的示意图;
图4a为本发明提供的手性结构为“Z”字形的二次谐波转换器的线性手性效应的吸收图;
图4b为本发明提供的手性结构为“L”字形的二次谐波转换器的线性手性效应的吸收图;
图4c为本发明提供的手性结构为“S”字形的二次谐波转换器的线性手性效应的吸收图;
图4d为本发明提供的手性结构为“E”字形的二次谐波转换器的线性手性效应的吸收图;
图5a为本发明提供的二次谐波转换器对左旋光的二次谐波转换效率的示意图;
图5b为本发明提供的二次谐波转换器对右旋光的二次谐波转换效率的示意图;
图6为本发明提供的二次谐波转换器的非线性手性效应的结果图;
图7为本发明提供的制备二次谐波转换器的方法的流程示意图;
图8为二次谐波产生原理的示意图;
图标:1-底部金属层,2-电介质层,3-金属谐振器层,4-衬底层,5-光刻胶层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
本发明选择难熔金属作为吸收器的主体材料。具有高熔点和稳定性的金属,结合超构表面能使得材料显示出优异的光学吸收性、光热稳定性和机械稳定性。
如图1所示,本发明提供的二次谐波转换器的吸收器包括衬底层4、底部金属层1、电介质层2和金属谐振器层3;所述金属谐振器层的材料为钼且具有为手性结构。具体地,在所述底部金属层的一面设置所述电介质层,另一面设置所述衬底层;在所述电介质层远离所述底部金属层的一面设置所述金属谐振器层;所述金属谐振器层的厚度h3为55nm。
衬底层的材料为硅片或玻璃片。所述底部金属层的材料为钼。所述电介质层的材料为氧化铝或二氧化硅。如图3所示,所述手性结构包括“Z”、“L”、“S”和“E”等字形。其中,“Z”字形的手性结构的圆二色光谱如图4a所示;“L”字形的手性结构的圆二色光谱如图4b所示;“S”字形的手性结构的圆二色光谱如图4c所示;“E”字形的手性结构的圆二色光谱如图4d所示。
如图7所示,制备二次谐波转换器的方法包括利用电子束光刻方法制备难熔等离子体手性纳米结构,具体地:
步骤I,在衬底层上利用直流磁控溅射法生长钼层,得到底部金属层。其中,在衬底层上利用直流磁控溅射法生长钼层,包括:用工业级氮气()干燥腔室,钼被用作靶材料;在沉积薄膜之前,钼(Mo)靶在氩气(Ar)气氛中预溅射预设喷溅时间,以确保腔室中无氧化物的环境。预设喷溅时间是指预先设置的靶材料的喷溅时间,例如,所述预设喷溅时间可以为20min。将溅射室真空时的压力调整为预设真空压力。预设真空压力是指预先设置的真空室内的压力,例如,所述预设真空压力可以为Torr。将溅射室工作时的压力调至预设工作压力。预设工作压力是指预先设置的溅射钼层时溅射室内的压力,例如,所述预设工作压力为Torr。将纯氩气(99.99%)以预设流速引入腔室中。预设流速是指预先设置的将气体引入腔室中的速度,例如,所述预设流速为2.0SCCM。沉积温度为室温,沉积时间为预设沉积时间,沉积功率为预设沉积时间。预设沉积时间和预设沉积功率分别是指预先设置的沉积薄膜的时间和功率。例如,所述预设沉积时间为60min;所述预设沉积功率为100w。其中的预设喷溅时间、预设真空压力、预设工作压力、预设流速、预设沉积时间和预设沉积时间可以根据实验或生产需求具体设置。
步骤II,在所述底部金属层上通过电子束蒸发沉积一层金属,得到电介质层。
步骤III,在所述电介质层上沉积一层光刻胶。
步骤IV,采用电子束光刻工艺字形图形对所述光刻胶进行曝光和显影,得到空腔处形状为手性结构的光刻胶层。
步骤V,在所述光刻胶层上通过电子束蒸发沉积一层钼金属。
步骤VI,将所述光刻胶层剥离,得到具有手性结构的金属谐振器层。例如,使用丙酮溶剂溶解光刻胶,通过后续剥离形成尺寸分别为h1=200nm,h2=140nm,h3=55nm,w=100nm,s=70nm和l=360 nm具有手性的钼纳米结构,如图1和图2所示。其中,h1为底部金属层的厚度,h2为电解质层的厚度,h3为金属谐振器层的厚度,l、s和w分别为“Z”字形手性结构的三个尺寸。
本发明提供基于上述二瓷谐波转换器的二次谐波转换系统,包括激光器、所述二次谐波转换器和耦合光纤,可耦合如冷电荷耦合器件(CCD)相机等器件。所述激光器用于发射所需波长的激光作为光源;光源经由偏振片与四分之一波片的组合产生手性光;所述二次谐波转换器受到所述手性光的照射并产生非线性手性效应,反射出二次谐波;所述耦合光纤用于传输所述二次谐波。
本发明所述的二次谐波转换器,其二次谐波产生的原理如下:
当两个入射光子的频率相同,都为的时候,经过介质生成的光子的频率,这个过程叫做光学倍频,也叫光学二次谐波。二次谐波的产生的本质是光子的叠加增减,如图8所示。金属和重掺杂半导体的光学特性一般由自由载流子所决定。金属中电荷载流子的非线性光学响应可由流体动力学模型来描述。
电子流体密度和电子速度场满足欧拉方程,
(1)
以及连续性方程,,其中是有效电子质量是电子碰撞率,为频率,为电场矢量,为磁场矢量;为电子流体密度,为电子速度,表示空间坐标,表示时间,常用此描述和分析电子在空间中的运动和分布情况。将连续性方程与方程相结合,并以微扰的方式扩展所有场,自由电子极化̇强度与极化电流满足非齐次方程组:
其中分别为基场和二次谐波场的偏振矢量;是用于描述电子云范围的常数;表示非线性源;表示基场在没有任何外场下的平衡电荷密度;表示电子电荷;表示基波电场;表示二次谐波电场;表示振动频率。
非线性源表示为:
(4)
公式4体现了表面和内部的二次谐波贡献,其中,表示基波电场;表示基波磁场。
由于不影响谐波的产生,方程中可以安全地忽略线性非局部项。二次谐波转换效率强烈地依赖于在金属表面的行为,只有沿着这个垂直于金属边界的方向的导数才有作用。选择金属边界0,电子压强可以忽略();向量的平行分量几乎是常数,,法向分量可以写成
(5)
其中,表示一个从0到1快速变化函数;由此推导出二次谐波产生的表面极化方程为:
(6)
如前所述,二次谐波压力项已被忽略。
方程时我们使用方程(2)将电场表示为的函数,表示出有效非线性表面电流密度:
(7)
其中,表示有效非线性表面电流密度;表示指向方向的单位矢量;表示电子密度单位矢量;参数的下列值被使用:=
二次谐波的转换效率表达式为:=为光束截面,为光强,为输出功率,为输入功率。
本发明所述的二次谐波转换器,其手性产生的原理如下:
圆二色性是表征手性纳米结构的常用参数,由下式给出:
(9)
其中指对左旋光的吸收率,指对右旋光的吸收率。
考虑到非线性SHG-CD,我们将公式表示为:
(10)
其中分别代表左旋光和右旋光的强度。
(11)
其中,表示左旋偏振电场;表示右旋偏振电场;表示电场的x分量;表示电场的y分量;表转置。在左旋和右旋光的电场激发下,由手性结构产生的产生的二次谐波具有不同的振幅、椭圆率和椭圆取向角,产生非线性CD。
实施例1
本发明提供的基于难熔金属等离激元手性结构的二次谐波转换器,具有较强的光吸收能力的同时,能够实现对手性光二次谐波的转换,并具有较好的高温稳定性。下面结合实施例对本发明进行进一步说明。
本发明的二次谐波转换器,其制备方法结合图7说明如下:
1)提供一衬底层,所述衬底层的材料为硅片;
2)在所述硅晶片上通过电子束蒸发分别先后沉积10nm Ti、200nm Mo和140nm氧化铝,速率为1.4/s,其中Ti为黏附层。
3)接着用酋香醚1:1稀释的光刻胶以3000rpm的转速在涂在衬底上,旋涂时间为50s,在180°C焙烧持续3分钟。
4)采用电子束光刻确定纳米结构,用己酸正成醋处理3min,然后在保持MIBK/IPA-8:1的情况下处理1min(显影)。
5)用工业级氮气()干燥,Mo被用作靶材料,在Ar气氛中预溅射约20min。
6)工作时压力为2.4×10−2 Torr。将纯Ar(99.99%)以2.0 SCCM的流速引入腔室中。沉积温度为RT,沉积时间为60分钟,沉积功率为100w。
7)使用丙酮溶剂溶解光刻胶。
8)对薄膜进行软烘焙和固化。
封装成吸收器,作为谐波转换过程中反射二次谐波的部件。
本发明所述的二次谐波转换器,耦合CCD相机组成二次谐波转换系统,具体光路模块包括激光源、调制器、二次谐波转换器、耦合光纤、冷电荷耦合器件(CCD)相机和光谱仪。实施方式如下:
1)自建激光光源产生平均功率约为20 mW的变换极限30 fs的高斯脉冲串。
2)通过空间光调制器,在所需波长范围内具有灵活的波长可调谐性。
3)通过偏振片和四分之一波片组合产生圆偏振光。用额外的偏振器检查CPL的质量。
4)激发光聚焦到本发明所述二次谐波转换器,作为转换过程中反射二次谐波的部分。
5)垂直入射下产生二次谐波信号,通过连接在光谱仪上的冷却电荷耦合器件(CCD)相机接收并记录。处理数据如图5a、图5b和图6所示。
实施例2
本发明的二次谐波转换器,其吸收器制备方法如下:
1)提供一衬底层,所述衬底层的材料为玻璃片;
2)在所述硅晶片上通过原子层沉积法(ALD),先后沉积200nm Mo、140nm氧化铝和55nm Mo。使用纯度为5N的Mo靶,通过物理气相沉积(PVD)在Si(100)晶片上沉积所有Mo膜。
3)在PVD之前,生长100nm厚的热以提供电绝缘,或使用/通过原子层沉积来沉积
4)在ASM A412立式炉中,在/中对300mm晶片进行沉积后退火,温度高达
5)使用FIB系统(FEI Helios Nanolab 600)将所设计的手性图案无掩模铣削在顶部钼层中。
6)真空泵清理溅射颗粒,封装成吸收器,作为谐波转换过程中反射二次谐波的部件。
本发明所述的二次谐波转换系统,实施方式如下:
1)使用宽带白色光源和与光栅光谱仪(Horiba,iHR320)耦合获得光学吸收和CD光谱。处理数据如图4a、4b、4c和4d所示。
2)用与四分之一波片相结合的偏振器产生CPL。用额外的偏振器检查CPL的质量。
3)通过焦距为250mm的透镜进行定向,聚焦到本发明所述二次谐波转换器,作为转换过程中反射二次谐波的部分。
垂直入射下产生二次谐波信号,通过连接在光谱仪上的冷却电荷耦合器件(CCD)相机接收并记录。
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种二次谐波转换器,所述二次谐波转换器包括吸收器,其特征在于,所述吸收器包括衬底层、底部金属层、电介质层和金属谐振器层;所述金属谐振器层的材料为钼且具有为手性结构。
2.根据权利要求1所述的二次谐波转换器,其特征在于,所述衬底层的材料为硅片或玻璃片。
3.根据权利要求1所述的二次谐波转换器,其特征在于,所述底部金属层的材料为钼。
4.根据权利要求1所述的二次谐波转换器,其特征在于,所述电介质层的材料为氧化铝或二氧化硅。
5.根据权利要求1所述的二次谐波转换器,其特征在于,所述手性结构包括“Z”、“L”、“S”和“E”字形。
6.根据权利要求1所述的二次谐波转换器,其特征在于,在所述底部金属层的一面设置所述电介质层,另一面设置所述衬底层;在所述电介质层远离所述底部金属层的一面设置所述金属谐振器层;所述金属谐振器层的厚度为55nm。
7.一种制备如权利要求1-6任意一项所述的二次谐波转换器的方法,包括:
在衬底层上利用直流磁控溅射法生长钼层,得到底部金属层;
在所述底部金属层上通过电子束蒸发沉积一层金属,得到电介质层;
在所述电介质层上沉积一层光刻胶,并采用电子束光刻工艺字形图形对所述光刻胶进行曝光和显影,得到空腔处形状为手性结构的光刻胶层;
在所述光刻胶层上通过电子束蒸发沉积一层钼金属,并将所述光刻胶层剥离,得到具有手性结构的金属谐振器层。
8.根据权利要求7所述的制备二次谐波转换器的方法,其特征在于,所述在衬底层上利用直流磁控溅射法生长钼层,包括:
用工业级氮气干燥腔室,钼被用作靶材料;
在沉积薄膜之前,钼靶在氩气气氛中预溅射预设喷溅时间;
将溅射室真空时的压力调整为预设真空压力;
将溅射室工作时的压力调至预设工作压力;
将纯氩气以预设流速引入腔室中;
沉积温度为室温,沉积时间为预设沉积时间,沉积功率为预设沉积功率。
9.根据权利要求8所述的制备二次谐波转换器的方法,其特征在于,所述预设喷溅时间为20min;所述预设真空压力为Torr;所述预设工作压力为Torr;所述预设流速为2.0SCCM;所述预设沉积时间为60min;所述预设沉积功率为100w。
10.一种基于权利要求1-6任意一项所述的二次谐波转换器的二次谐波转换系统,其特征在于,包括激光器、所述二次谐波转换器和耦合光纤;所述激光器用于发射所需波长的激光作为光源;光源经由偏振片与四分之一波片的组合产生手性光;所述二次谐波转换器受到所述手性光的照射并产生非线性手性效应,反射出二次谐波;所述耦合光纤用于传输所述二次谐波。
CN202410249887.1A 2024-03-05 2024-03-05 一种二次谐波转换器及其制备方法以及二次谐波转换系统 Pending CN118244556A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410249887.1A CN118244556A (zh) 2024-03-05 2024-03-05 一种二次谐波转换器及其制备方法以及二次谐波转换系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410249887.1A CN118244556A (zh) 2024-03-05 2024-03-05 一种二次谐波转换器及其制备方法以及二次谐波转换系统

Publications (1)

Publication Number Publication Date
CN118244556A true CN118244556A (zh) 2024-06-25

Family

ID=91550102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410249887.1A Pending CN118244556A (zh) 2024-03-05 2024-03-05 一种二次谐波转换器及其制备方法以及二次谐波转换系统

Country Status (1)

Country Link
CN (1) CN118244556A (zh)

Similar Documents

Publication Publication Date Title
KR101916316B1 (ko) 플라즈모닉 도파관용 적층체 및 그의 제조방법
US20240093407A1 (en) Systems and methods for disassembling two-dimensional van der waals crystals into macroscopic monolayers and reassembling into artificial lattices
Lan et al. Fabrication and characterization of single-phase a-axis AlN ceramic films
CN104701146B (zh) 石墨烯纳米电子器件及其制备方法
Volkov et al. Photo-Switchable Nanoripples in Ti3C2 T x MXene
CN118244556A (zh) 一种二次谐波转换器及其制备方法以及二次谐波转换系统
JPH04218662A (ja) 異方性ナノ複合材料およびその製造方法
CN111689518B (zh) 一种基于表面等离子体波的二维过渡金属二硫化物层数可控制备及图案化的制备方法
CN113215574A (zh) 一种用于蓝宝石基底镀铝膜的量子芯片的湿法刻蚀方法
JP4464404B2 (ja) 音響光学素子及びそれを用いた光描画装置
CN113410742B (zh) 可饱和吸收体、制备方法、全固态超快激光器及测试装置
CN118984641A (zh) 一种探测偏振光的传感器及其制备方法以及光电转换系统
Kumar et al. Structural and optical properties of AgO thin films grown by RF reactive magnetron sputtering technique
CN109100900B (zh) 一种HfO2基铁电材料的使用方法
CN114122249A (zh) 超导量子比特及其辅助器件多层膜的制备方法及产品
Khalaf et al. Nanostructured Nickel Oxide Thin Films Prepared by Dual Magnetron DC Reactive Sputtering
Sharma et al. Processing of Advanced Materials for Next-Generation Electronics and Photonics-A Review
JP2001158957A (ja) Yag第5高調波パルスレーザ蒸着による薄膜の作製方法およびその装置
JPH11116397A (ja) (020)配向ペロブスカイト型ニオブ酸カリウム薄膜及び該薄膜を有する弾性表面波素子
Chen et al. Optical anisotropy of metal nanowire arrays on fused silica surface
JP3444949B2 (ja) 強誘電体結晶基板への装荷膜およびその形成方法
JP2574025B2 (ja) 光偏光回路素子の製造方法
Chiad Preparation of Highly Pure Nanostructures by Reactive DC Magnetron Sputtering
JPH10226535A (ja) 高電導性の透明導電膜の製造方法
CN117630067A (zh) 基于金属衬底的Janus MoSSe制备方法及Janus MoSSe

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination