CN118241201A - 一种石墨烯铜基复合材料及其制备方法 - Google Patents

一种石墨烯铜基复合材料及其制备方法 Download PDF

Info

Publication number
CN118241201A
CN118241201A CN202410352085.3A CN202410352085A CN118241201A CN 118241201 A CN118241201 A CN 118241201A CN 202410352085 A CN202410352085 A CN 202410352085A CN 118241201 A CN118241201 A CN 118241201A
Authority
CN
China
Prior art keywords
copper
graphene
substrate
composite material
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410352085.3A
Other languages
English (en)
Inventor
高健峰
王泽一
丁一
韩钰
刘文杰
庞震
冷冰冰
王志鹏
祝志祥
刘辉
陈保安
迟铖
张捷欣
刘倓
张丛睿
赵兴雨
李梦琳
陈瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Power Supply Co Of State Grid Jilinsheng Electric Power Supply Co
State Grid Smart Grid Research Institute Co ltd
State Grid Corp of China SGCC
Original Assignee
Changchun Power Supply Co Of State Grid Jilinsheng Electric Power Supply Co
State Grid Smart Grid Research Institute Co ltd
State Grid Corp of China SGCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Power Supply Co Of State Grid Jilinsheng Electric Power Supply Co, State Grid Smart Grid Research Institute Co ltd, State Grid Corp of China SGCC filed Critical Changchun Power Supply Co Of State Grid Jilinsheng Electric Power Supply Co
Priority to CN202410352085.3A priority Critical patent/CN118241201A/zh
Publication of CN118241201A publication Critical patent/CN118241201A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1031Alloys containing non-metals starting from gaseous compounds or vapours of at least one of the constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1094Alloys containing non-metals comprising an after-treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种石墨烯铜基复合材料及其制备方法,属于电工材料技术领域,克服现有技术中石墨烯铜基复合材料导电性能较低的缺陷。本发明石墨烯铜基复合材料的制备方法,包括以下步骤:步骤1、采用铜镍合金作为靶材,通过磁控溅射在衬底上制备Cu/Ni基底;所述铜镍合金中镍的质量含量为0.01~0.1%,余量为Cu和不可避免杂质;步骤2、采用化学气相沉积在所述Cu/Ni基底表面制备石墨烯薄膜,获得片状复合材料。本发明制得的石墨烯铜基复合材料具有较高的导电性。

Description

一种石墨烯铜基复合材料及其制备方法
技术领域
本发明属于电工材料技术领域,具体涉及一种石墨烯铜基复合材料及其制备方法。
背景技术
铜由于具有优异的导电、导热性能以及良好的塑性,是当前电力系统中应用最为广泛的导体材料。但现有铜材的导电性大多难以较好满足电工装备低损耗、高安全可靠性的长期服役要求。
石墨烯铜基复合材料充分利用了石墨烯具有高导电率、高强度、高热稳定性等本征性能,将其高载流子迁移率的优势与铜的高载流子浓度的优势相结合。目前石墨烯铜的制备方法主要包括高能球磨法、化学气相沉积,电解共沉积法,粉末冶金法等。
但传统的高能球磨法高强度的机械搅拌会破坏石墨烯结构,粉末冶金法无法解决石墨烯的均匀分散问题,电解共沉积法易受电流密度,溶质分散均匀性影响,石墨烯与铜层之间的结合力较差,同时化学气相法也难以在铜基底上获得高质量的石墨烯,从而导致石墨烯铜基的导电性能相较于铜的提升效果较差。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中石墨烯铜基复合材料导电性能较低,从而提供一种石墨烯铜基复合材料及其制备方法。
为此,本发明提供了以下技术方案。
第一方面,本发明提供了一种石墨烯铜基复合材料的制备方法,包括以下步骤:
步骤1、采用铜镍合金作为靶材,通过磁控溅射在衬底上制备Cu/Ni基底;
所述铜镍合金中镍的质量含量为0.01~0.1%,余量为Cu和不可避免杂质;
步骤2、采用化学气相沉积在所述Cu/Ni基底表面制备石墨烯薄膜,获得片状复合材料。
进一步的,还包括步骤3、将多层所述片状复合材料叠片后进行热压,获得石墨烯铜基块体。
进一步的,所述Cu/Ni基底的厚度为100nm~300nm;
所述石墨烯薄膜的厚度为0.5nm~2nm。
进一步的,所述步骤1中的磁控溅射满足以下条件中的至少一项:
(1)靶材的直径为180~220mm,厚度为2~4mm,靶材到衬底的距离为10~14cm;
(2)磁控溅射的工作气体为Ar,流量28~32sccm,溅射功率180~220W,溅射气压为1~3Pa,溅射时间为60min~120min;
(3)磁控溅射的真空室中的真空度不大于10-4Pa;
(4)工作气体的纯度在99.999%以上。
进一步的,所述步骤2中的化学气相沉积的条件为:在900~950℃下,通入碳源和氢气,碳源流量为30~50sccm,氢气流量为20~40sccm,保温3~5min后,停止通入碳源;然后通入氩气和氢气,氩气流量为150~250sccm,氢气流量为80~120sccm,并以8~12℃/min的速率降温。
进一步的,采用化学气相沉积在所述Cu/Ni基底表面制备石墨烯薄膜前,还包括将对所述Cu/Ni基底进行预处理;对所述Cu/Ni基底进行预处理包括在600~700℃下保温10~20min。
优选的,所述预处理的气氛为惰性气体和氢气的混合气体;
更优选的,惰性气体的流量为150~250sccm,氢气的流量为80~120sccm;
更优选的,所述惰性气体为氩气。
进一步的,所述热压压力30Mpa~50Mpa,温度850-1020℃,时间0.5h~2h。
进一步的,所述碳源包括甲烷、乙炔或乙烯中的至少一种。
进一步的,在步骤1前还包括对衬底进行预处理:用丙酮、无水乙醇及去离子水依次对衬底进行超声清洗30min~60min,用干燥氩气吹干。
第二方面,本发明提供了一种根据所述方法制得的石墨烯铜基复合材料。
在一种可能的设计中,对Cu/Ni基底的预处理步骤包括:通入惰性气体及氢气,流量分别为150~250sccm,80~120sccm,惰性气体为氩气,将Cu/Ni基底在600~700℃下保温10~20min,此处理步骤使铜基体上掺杂的Ni充分互溶,升温速率为10~15℃/min。
对Cu/Ni基底进行预处理后,将其快速升温(50~60℃/min)至900~950℃。
可经后续机加工成型,获得所需形状材料。
本发明技术方案,具有如下优点:
1.本发明石墨烯铜基复合材料的制备方法包括以下步骤:步骤1、采用铜镍合金作为靶材,通过磁控溅射在衬底上制备Cu/Ni基底;所述铜镍合金中镍的质量含量为0.01~0.1%,余量为Cu和不可避免杂质;步骤2、采用化学气相沉积在所述Cu/Ni基底表面制备石墨烯薄膜,获得片状复合材料。
通过采用铜镍合金靶材,以磁控溅射工艺制备的超薄Ni掺杂铜箔作为生长石墨烯的基底。过渡金属因为具有部分填充的d轨道,能形成可吸附和活化反应介质的中间产物而表现出良好的催化活性。d轨道的填充情况也决定了金属与碳的相互作用强弱。Ni的d轨道介于Fe和Cu之间,催化活性高于Cu,在Cu/Ni中掺杂的Ni不仅保持了自身的催化活性,而且在甲烷离解过程中提高了相邻表面Cu原子的活性,从而提高了石墨烯的生长速率,有助于生成大尺寸完整度较高的石墨烯层。且不会像Fe一样容易形成碳化物,在降温过程中,碳在Ni金属中的溶解度降低,于是在Ni金属表面析出大量的碳原子,进而形成石墨烯。
本发明铜镍合金中镍的质量含量为0.01~0.1%,余量为Cu和不可避免杂质。若镍含量相对较高,其较高的溶碳性导致生成的石墨烯多为不均匀的多层石墨烯,且铜镍合金的电阻率较高,若Ni含量过高将大幅度降低铜基体的电导率,难以获得高导电性能的石墨烯铜基复合材料。Ni含量在本发明限定的范围内,可降低石墨烯生长时间、提高制得的石墨烯的质量,并尽可能避免对基底导电性的不利影响,综合条件下使得石墨烯铜基复合材料具有较高的导电性。
同时市面的铜箔厚度在5um左右,难以获得超薄铜箔基体。本发明通过超高真空磁控溅射获得微量镍原子掺杂的超薄铜箔,在保留Ni原子高催化活性的同时加快高质量石墨烯的生长速率,在不影响导电性能的前提下,优化石墨烯的生长质量与层数,获得高质量石墨烯包覆的铜材,提高石墨烯铜基复合材料的导电性,并经后续叠层热压与机加工获得所需的性能。
2.采用化学气相沉积在所述Cu/Ni基底表面制备石墨烯薄膜前,还包括将所述Cu/Ni基底在600~700℃下保温10~20min。使铜基体上掺杂的Ni充分互溶,Ni的充分互溶有助于提升其在铜基体中分散性能,避免Ni在铜基体表面聚集导致出现石墨烯的缺陷;利用Ni原子催化石墨烯生长的高活性,缩短生长时间,获得石墨烯在Cu/Ni基底表面均匀分布的高质量的石墨烯铜基复合材料。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供了一种石墨烯铜基复合材料的制备方法,包括以下步骤:
1、用丙酮、无水乙醇及去离子水依次对玻璃衬底进行超声清洗30min,用干燥氩气吹干后将其置于真空室中。
2、装载铜镍合金(Ni含量为0.01%)的靶材,靶材的直径为200mm,厚度为3mm,靶材到玻璃衬底的距离为12cm;将真空室抽真空至10-4Pa以下,进行磁控溅射:磁控溅射工作气体是纯度为99.999%的Ar,流量30sccm,溅射功率200W,溅射气压为2Pa,溅射时间为80min,制得Cu/Ni基底。
3、将Cu/Ni基底置于化学气相沉积设备内,通入惰性气体氩气及氢气,氩气和氢气的流量分别为200sccm,100sccm。以10℃/min的升温速率升至700℃,保温10min。然后以50℃/min速率升温至920℃,将气体改为气态碳源甲烷及氢气,甲烷流量为40sccm,氢气流量为30sccm,保温3min在Cu/Ni基底生长石墨烯薄膜。然后停止通入甲烷,持续通入惰性气体氩气及氢气,流量分别为200sccm,100sccm,并以10℃/min的降温速率缓慢降温,制得片状复合材料。
4、将100层步骤3制得的片状复合材料叠片后进行热压,热压压力40Mpa,热压温度950℃,时间1h,获得石墨烯铜块体。
实施例2
本实施例与实施例1基本相同,不同之处在于,作为靶材的铜镍合金中Ni含量为0.05%。
实施例3
本实施例与实施例1基本相同,不同之处在于,作为靶材的铜镍合金中Ni含量为0.1%。
实施例4
本实施例提供了一种石墨烯铜基复合材料的制备方法,包括以下步骤:
1、用丙酮、无水乙醇及去离子水依次对玻璃衬底进行超声清洗60min,用干燥氩气吹干后将其置于真空室中。
2、装载铜镍合金(Ni含量为0.01%)的靶材,靶材的直径为220mm,厚度为4mm,靶材到玻璃衬底的距离为14cm;将真空室抽真空至10-4Pa以下,进行磁控溅射:磁控溅射工作气体是纯度为99.999%的Ar,流量32sccm,溅射功率200W,溅射气压为3Pa,溅射时间为120min,制得Cu/Ni基底。
3、将Cu/Ni基底置于化学气相沉积设备内,通入惰性气体氩气及氢气,氩气和氢气的流量分别为250sccm,120sccm。以10℃/min的升温速率升至700℃,保温10min。然后以50℃/min速率升温至950℃,将气体改为气态碳源甲烷及氢气,甲烷流量为50sccm,氢气流量为40sccm,保温3min在Cu/Ni基底生长石墨烯薄膜。然后停止通入甲烷,持续通入惰性气体氩气及氢气,流量分别为250sccm,120sccm,并以10℃/min的降温速率缓慢降温,制得片状复合材料。
4、将100层步骤3制得的片状复合材料叠片后进行热压,热压压力50Mpa,热压温度1020℃,时间2h,获得石墨烯铜块体。
实施例5
本实施例提供了一种石墨烯铜基复合材料的制备方法,包括以下步骤:
1、用丙酮、无水乙醇及去离子水依次对玻璃衬底进行超声清洗30min,用干燥氩气吹干后将其置于真空室中。
2、装载铜镍合金(Ni含量为0.01%)的靶材,靶材的直径为180mm,厚度为2mm,靶材到基片的距离为10cm;将真空室抽真空至10-4Pa以下,进行磁控溅射:磁控溅射工作气体是纯度为99.999%的Ar,流量28sccm,溅射功率200W,溅射气压为1Pa,溅射时间为60min,制得Cu/Ni基底。
3、将Cu/Ni基底置于化学气相沉积设备内,通入惰性气体氩气及氢气,氩气和氢气的流量分别为150sccm,80sccm。以10℃/min的升温速率升至700℃,保温10min。然后以50℃/min速率升温至900℃,将气体改为气态碳源甲烷及氢气,甲烷流量为30sccm,氢气流量为20sccm,保温3min在Cu/Ni基底生长石墨烯薄膜。然后停止通入甲烷,持续通入惰性气体氩气及氢气,流量分别为150sccm,80sccm,并以10℃/min的降温速率缓慢降温,制得片状复合材料。
4、将100层步骤3制得的片状复合材料叠片后进行热压,热压压力30Mpa,热压温度850℃,时间0.5h,获得石墨烯铜块体。
实施例6
本实施例与实施例1基本相同,不同之处在于,步骤3为:将Cu/Ni基底置于化学气相沉积设备内,以50℃/min速率升温至920℃,将气体改为气态碳源甲烷及氢气,甲烷流量为40sccm,氢气流量为30sccm,保温3min在Cu/Ni基底生长石墨烯薄膜。然后停止通入甲烷,持续通入惰性气体氩气及氢气,流量分别为200sccm,100sccm,并以10℃/min的降温速率缓慢降温,制得片状复合材料。
对比例1
本对比例与实施例1基本相同,不同之处在于,作为靶材的铜镍合金中Ni含量为1%。
对比例2
本对比例与实施例1基本相同,不同之处在于,靶材为铜,不存在Ni。
对实施例1-6和对比例1-2的产物的导电率进行测试,测试结果如表1所示。
表1石墨烯铜基复合材料导电率
由表1可知,本发明制得的石墨烯铜基复合材料导电率≥109.3%IACS,相较于对比例具有显著提升。
由实施例1和实施例6比较可知,采用化学气相沉积在所述Cu/Ni基底表面制备石墨烯薄膜前,对Cu/Ni基底进行预处理可进一步提高产物的导电性能。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种石墨烯铜基复合材料的制备方法,其特征在于,包括以下步骤:
步骤1、采用铜镍合金作为靶材,通过磁控溅射在衬底上制备Cu/Ni基底;
所述铜镍合金中镍的质量含量为0.01~0.1%,余量为Cu和不可避免杂质;
步骤2、采用化学气相沉积在所述Cu/Ni基底的表面制备石墨烯薄膜,获得片状复合材料。
2.根据权利要求1所述的石墨烯铜基复合材料的制备方法,其特征在于,还包括步骤3、将多层所述片状复合材料叠片后进行热压,获得石墨烯铜基块体。
3.根据权利要求1所述的石墨烯铜基复合材料的制备方法,其特征在于,所述Cu/Ni基底的厚度为100nm~300nm;
和/或,所述石墨烯薄膜的厚度为0.5nm~2nm。
4.根据权利要求1所述的石墨烯铜基复合材料的制备方法,其特征在于,所述步骤1中的磁控溅射满足以下条件中的至少一项:
(1)靶材的直径为180~220mm,厚度为2~4mm,靶材到衬底的距离为10~14cm;
(2)磁控溅射的工作气体为Ar,流量28~32sccm,溅射功率180~220W,溅射气压为1~3Pa,溅射时间为60min~120min;
(3)磁控溅射的真空室中的真空度不大于10-4Pa;
(4)工作气体的纯度在99.999%以上。
5.根据权利要求1所述的石墨烯铜基复合材料的制备方法,其特征在于,所述步骤2中的化学气相沉积的条件为:在900~950℃下,通入碳源和氢气,碳源流量为30~50sccm,氢气流量为20~40sccm,保温3~5min后,停止通入碳源;然后通入氩气和氢气,氩气流量为150~250sccm,氢气流量为80~120sccm,并以8~12℃/min的速率降温。
6.根据权利要求1-5任一项所述的石墨烯铜基复合材料的制备方法,其特征在于,采用化学气相沉积在所述Cu/Ni基底表面制备石墨烯薄膜前,还包括将对所述Cu/Ni基底进行预处理;
对所述Cu/Ni基底进行预处理的步骤包括:在600~700℃下保温10~20min。
7.根据权利要求1所述的石墨烯铜基复合材料的制备方法,其特征在于,所述热压压力30Mpa~50Mpa,温度850~1020℃,时间0.5h~2h。
8.根据权利要求5所述的石墨烯铜基复合材料的制备方法,其特征在于,所述碳源包括甲烷、乙炔或乙烯中的至少一种。
9.根据权利要求1-5任一项所述的石墨烯铜基复合材料的制备方法,其特征在于,在步骤1前还包括对衬底进行预处理:用丙酮、无水乙醇及去离子水依次对衬底进行超声清洗30min~60min,用干燥氩气吹干。
10.一种根据权利要求1-9任一项所述方法制得的石墨烯铜基复合材料。
CN202410352085.3A 2024-03-26 2024-03-26 一种石墨烯铜基复合材料及其制备方法 Pending CN118241201A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410352085.3A CN118241201A (zh) 2024-03-26 2024-03-26 一种石墨烯铜基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410352085.3A CN118241201A (zh) 2024-03-26 2024-03-26 一种石墨烯铜基复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN118241201A true CN118241201A (zh) 2024-06-25

Family

ID=91564148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410352085.3A Pending CN118241201A (zh) 2024-03-26 2024-03-26 一种石墨烯铜基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN118241201A (zh)

Similar Documents

Publication Publication Date Title
CN108573763B (zh) 电线电缆导体、石墨烯包覆金属粉体和导体的制备方法
CN110371955B (zh) 一种石墨烯-金属复合材料的制备方法
CN110846529A (zh) 石墨烯增强铜复合材料的制备方法
WO2022233100A1 (zh) 第二代高温超导带材及其制备方法
CN111118325B (zh) 一种细晶铌钛合金的制备方法
CN110540193A (zh) 加压石墨化的石墨烯薄膜的制备方法
CN112813397A (zh) 一种钼钠合金板状靶材的制备方法
CN111499381A (zh) 一种磁控溅射用高致密性导电氧化锆陶瓷靶材的制备方法
CN114974647A (zh) 超高导电电线电缆及其制备方法
CN116332645A (zh) 一种氧化钼钽靶材及其制备方法与应用
CN115029682A (zh) 石墨烯金属复合材料及其制备方法
CN118241201A (zh) 一种石墨烯铜基复合材料及其制备方法
CN111161903B (zh) 石墨烯铝复合导线及其制备方法
CN217459595U (zh) 等离子辅助制备高导电石墨烯金属复合材料的装置
CN113996782B (zh) 石墨烯包覆铜粉的复合材料及其制备方法
CN107522191B (zh) 一种基于自限制形核生长的大尺寸高质量石墨烯制备方法
CN106216396A (zh) 一种双零银箔的生产工艺
CN102747337B (zh) 一种制备大面积高质量非晶碳薄膜的方法
CN111058017B (zh) 石墨烯金属复合丝材及其低温连续化制备方法
CN113897591A (zh) 金属防护方法及应用
CN114990487B (zh) 硼纤维增强铜基先驱丝、连续硼纤维增强铜基复合材料及制备方法和应用
CN115572877B (zh) 一种钼铌或钼钽合金的制备方法
CN111471994A (zh) 一种电子束熔覆增强高熵合金涂层及其制备方法
CN116552068B (zh) 金属/石墨烯复合材料及其制备方法和应用
CN116607108B (zh) 一种MAX-Ag导电复合涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination