CN118098744A - 一种超细晶FeNi基非晶纳米晶软磁合金带材及其制备方法 - Google Patents

一种超细晶FeNi基非晶纳米晶软磁合金带材及其制备方法 Download PDF

Info

Publication number
CN118098744A
CN118098744A CN202311398408.4A CN202311398408A CN118098744A CN 118098744 A CN118098744 A CN 118098744A CN 202311398408 A CN202311398408 A CN 202311398408A CN 118098744 A CN118098744 A CN 118098744A
Authority
CN
China
Prior art keywords
alloy
feni
alloy strip
magnetically soft
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311398408.4A
Other languages
English (en)
Inventor
朱乾科
张珍妮
王帅
陈哲
张克维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Science and Technology
Original Assignee
Taiyuan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Science and Technology filed Critical Taiyuan University of Science and Technology
Priority to CN202311398408.4A priority Critical patent/CN118098744A/zh
Publication of CN118098744A publication Critical patent/CN118098744A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/008Amorphous alloys with Fe, Co or Ni as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种超细晶FeNi基非晶纳米晶软磁合金带材及其制备方法,属于磁性材料制备技术领域,解决非晶纳米晶软磁合金的纳米晶尺寸细化的技术问题,解决方案为:超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比为:(MxGa1‑x):5%~11%、Fe:40%~48%、B:3%~4%、余量为Ni;其中,0≤x≤0.1,M为Mo、Nb或者Zr中的至少一种。所述合金带材的制备方法依次包括以下步骤:称取原料、熔炼母合金铸锭、制备非晶合金条带以及分步退火处理。本发明可有效细化合金晶粒尺寸,易于操作控制和产业化,并且降低了能耗,制备所得合金带材存在三相微观结构,可有效提高合金的软磁性能。

Description

一种超细晶FeNi基非晶纳米晶软磁合金带材及其制备方法
技术领域
本发明属于磁性材料制备技术领域,具体涉及的是一种超细晶FeNi基非晶纳米晶软磁合金带材及其制备方法。
背景技术
非晶纳米晶软磁合金具有高饱和磁感应强度、低矫顽力、高磁导率、高电阻率、低损耗等优异软磁性能,同时兼具生产工艺简单、价格低廉等优势,逐渐成为变压器、电感器、互感器等电子器件的关键材料,被广泛应用于国防军工、航空航天、高精度仪表、医疗器械、微波器件、传感器、各种磁性传动装置、高端电机等众多领域。
近年来,随着科技的高速发展,对软磁材料的发展和应用提出了更高的要求。非晶纳米晶合金优异软磁性能来源于其独特的结构,即通过对非晶合金前驱体进行退火处理后,在非晶基体上析出致密均匀的纳米晶组织。在这种特殊结构中,纳米晶之间的铁磁交换耦合作用可以极大地降低合金的有效磁晶各向异性,从而降低合金的矫顽力、提高有效磁导率。因此,合金析出纳米晶的平均晶粒尺寸直接影响着软磁性能,晶粒尺寸越小,软磁性能越好。
在Fe基非晶纳米晶软磁合金中,一般通过掺杂合金元素来细化晶粒,如通过掺杂促进形核的元素Cu等来提高非晶晶化过程中的形核率,通过掺杂抑制晶粒长大的元素Nb等来抑制纳米晶的长大,两种效应同时作用获得的Fe基非晶纳米晶合金极限平均晶粒尺寸在15nm左右,无法获得更小的晶粒尺寸,从而限制了软磁性能的提高。公开号为CN 115938710A的专利文献公开了一种非晶、纳米晶软磁合金薄带及磁芯的制备方法,该系列纳米晶合金带材通过掺杂Cu和Nb,在退火后得到的FeSiBNbCuNi非晶纳米晶合金平均晶粒尺寸小于等于12nm,但其非晶形成能力较低。
在FeNi基非晶合金中,由于该系列非晶合金析出相为γ-(Fe,Ni)相,且晶粒尺寸普遍在40~50nm,目前还没有细化γ-(Fe,Ni)相晶粒的手段,导致该系列合金以非晶态使用,不做纳米晶化处理。公开号为CN 102867608 A的专利文献公开了一种FeNi基非晶软磁合金及其制备方法,其采用急冷法制备了FeNi基非晶合金棒材和带材。该系列合金的热处理温度低于玻璃转变温度Tg,还未达到晶化温度,所得合金带材或棒材仍保持非晶结构,但在使用过程中其非晶结构有向晶体转变的趋势,导致使用寿命较低。
发明内容
为了克服现有技术的不足,解决非晶纳米晶软磁合金的纳米晶尺寸细化的技术问题,本发明提供一种具有高非晶形成能力、优异软磁性能的超细晶FeNi基非晶纳米晶软磁合金带材及其制备方法。
本发明通过以下技术方案予以实现:一种超细晶FeNi基非晶纳米晶软磁合金带材,其组成及其重量百分比为:(MxGa1-x):5%~11%、Fe:40%~48%、B:3%~4%、余量为Ni;其中,0≤x≤0.1,M为Mo、Nb或者Zr中的至少一种。
在超细晶FeNi基非晶纳米晶软磁合金带材中,MxGa1-x中间合金的掺杂可引入多种元素,熔炼制备所得合金铸锭的组元数越多,越有利于在后续制备条带过程中形成非晶结构;Mo、Nb、Zr与Fe、Ni、B原子的混合含均为负值,可有效提高合金的非晶形成能力,此外Mo、Nb、Zr的原子半径较大,可有效抑制非晶合金在晶化过程中各种原子的扩散,为形成超细晶非晶纳米晶组织结构提供有利条件。由于Ga可以固溶于γ-(Fe,Ni)析出相,且与Fe和Ni之间均存在电子转移效应,这种原子间的相互作用可有效抑制晶化过程中Fe和Ni原子的扩散,从而起到细化晶粒的目的。
进一步地,超细晶FeNi基非晶纳米晶软磁合金带材的微观结构由原子呈无序排列的非晶相结构、原子呈指纹状有序排列的中程有序相结构以及原子呈点阵状有序排列的纳米晶相结构组成,并且平均晶粒尺寸小于10nm。
一种如上所述超细晶FeNi基非晶纳米晶软磁合金带材的制备方法,包括以下步骤:
S1、称取原料:根据超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比称取原料,并将软磁合金原料混合均匀;
S2、熔炼母合金铸锭:采用真空电弧炉将步骤S1称取的软磁合金原料在惰性气氛中正反面交替熔炼4~6次,直至完全均匀后冷却至室温,制得母合金铸锭;正反交替熔炼可有效提高合金铸锭的均匀性,为后续制备非晶带材提供保障;
S3、制备非晶合金条带:将步骤S2制备的母合金铸锭熔化,然后在惰性气氛中采用单辊急冷法将熔化后的合金喷射到快速旋转的铜辊上,制得淬态非晶合金带材;所述单辊急冷法的工艺参数为:喷射压力为0.015MPa~0.02MPa,喷射温度为1200℃~1400℃,喷嘴与铜辊表面的初始间距为0.8mm~1.3mm,铜辊转动线速度为30~35m/s;
S4、分步退火处理:首先,将步骤S3制得的淬态非晶合金带材在惰性气氛中进行预热,预热温度为150℃~200℃,预热时间为0.2h~0.5h;然后,对预热后的非晶合金带材进行退火处理,退火温度为325℃~425℃,升温速率为100℃/min,保温时间为1min~5min;最后,快速冷却至室温,降温速率≥80℃/min,制得超细晶FeNi基非晶纳米晶软磁合金带材。预处理(即预热)可有效促进非晶合金带材晶化前的预形核,提高形核点数量,起到细化晶粒的目的;在退火过程中,合金中大量的晶核之间形成竞争生长关系,进一步起到细化晶粒的目的。退火过程的升温速率为100℃/min,可使形成的晶核同时长大,使得纳米晶之间形成竞争生长机制,有利于细化纳米晶组织;较快的降温速率可使合金在预设温度析出纳米晶之后不再继续长大,从而降低降温过程对晶粒尺寸的影响。
进一步地,所述软磁合金原料的纯度均不小于99.9%,并且Fe为块状,平均粒径≤10mm;(MxGa1-x) 为块状,平均粒径≤10mm;Ni为块状,平均粒径≤10mm;B为粒状,平均粒径≤3mm;限定软磁合金原料的初始粒径,有利于在熔炼合金铸锭的过程中实现快速均匀化,使其在后续过程中更好地制备非晶合金带材。
进一步地,在所述步骤S2~S4中,惰性气氛为氩气、氮气或者氦气气氛。
进一步地,在所述步骤S2中,制得的母合金铸锭的厚度为8mm~12mm,有利于在制备非晶带材过程中快速熔化,且保证熔融合金温度的均匀性,使其在后续过程中更好地制备非晶合金带材;在所述步骤S3中,制得的非晶合金带材厚度为20μm~25μm。
本发明的有益效果在于:
1、本发明通过掺杂MxGa1-x中间合金,一方面Mo、Nb或者Zr与Fe、Ni和B原子的混合含均为负值,可有效提高合金的非晶形成能力,此外,Mo、Nb、Zr的原子半径较大,可有效抑制非晶合金在晶化过程中各种原子的扩散,为形成超细晶非晶纳米晶组织结构提供有利条件。另一方面由于Ga可以固溶于γ-(Fe,Ni)析出相,且与Fe和Ni之间均存在电子转移效应,这种原子间的相互作用可有效抑制晶化过程中Fe和Ni原子的扩散,从而起到细化晶粒的目的;
2、本发明采用分步退火处理,首先将淬态合金带材进行预热,可有效促进非晶合金带材晶化前的预形核,提高形核点数量,起到细化晶粒的目的;然后进一步升温进行退火处理,在该过程中,合金中大量的晶核之间形成竞争生长关系,进一步起到细化晶粒的目的;
3、本发明通过掺杂MxGa1-x中间合金,使得合金带材在退火后形成三相微观结构,即残余非晶相、中程有序结构、超细纳米晶相,这种三相共存的微观结构可有效提高合金的软磁性能。
总之,本发明提供的制备方法易于操作控制和产业化,制备出的非晶纳米晶合金性能优异。
附图说明
图1为本发明的工艺流程图;
图2为实施例1制得的超细晶FeNi基非晶纳米晶软磁合金的TEM照片;
图3为实施例2制得的超细晶FeNi基非晶纳米晶软磁合金的TEM照片。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细描述,但本发明的保护范围不止局限于以下所述。
实施例1
如图1所示一种超细晶FeNi基非晶纳米晶软磁合金带材的制备方法,包括以下步骤:
S1、称取原料:根据超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比称取原料,并将软磁合金原料混合均匀;本实施例1中,超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比为:Ga:10.8%、Fe:43.1%、B:3%、Ni:43.1%;所述软磁合金原料的纯度均不小于99.9%,并且Fe、Ga、Ni为块状,平均粒径≤10mm;B为粒状,平均粒径≤3mm;
S2、熔炼母合金铸锭:采用真空电弧炉将步骤S1称取的软磁合金原料在惰性气氛中正反面交替熔炼4次,直至完全均匀后冷却至室温(25℃),制得厚度为8mm的母合金铸锭;
S3、制备非晶合金条带:将步骤S2制备的母合金铸锭熔化,然后在惰性气氛中采用单辊急冷法将熔化后的合金喷射到快速旋转的铜辊上,制得厚度为23μm的淬态非晶合金带材;所述单辊急冷法的工艺参数为:喷射压力为0.015MPa,喷射温度为1350℃,喷嘴与铜辊表面的初始间距为1.3mm,铜辊转动线速度为30m/s;
S4、分步退火处理:首先,将步骤S3制得的淬态非晶合金带材在惰性气氛中进行预热,预热温度为150℃,预热时间为0.2h;然后,对预热后的非晶合金带材进行退火处理,退火温度为400℃,升温速率为100℃/min,保温时间为5min;最后,快速冷却至室温,降温速率≥80℃/min,制得超细晶FeNi基非晶纳米晶软磁合金带材。
本实施例1制备的超细晶FeNi基非晶纳米晶软磁合金带材的TEM照片如图2所示,检测其磁性能为:平均晶粒尺寸D=9nm,矫顽力H c=2.7A/m,有效磁导率μ e=12600,饱和磁感应强度B s=0.94T。
实施例2
一种超细晶FeNi基非晶纳米晶软磁合金带材的制备方法,包括以下步骤:
S1、称取原料:根据超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比称取原料,并将软磁合金原料混合均匀;本实施例2中,超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比为:(Zr0.02Ga0.98):8.3%、Fe:44.2%、B:3.4%、Ni:44.1%;所述软磁合金原料的纯度均不小于99.9%,并且Fe、Ga、Zr、Ni为块状,平均粒径≤10mm;B为粒状,平均粒径≤3mm;
S2、熔炼母合金铸锭:采用真空电弧炉将步骤S1称取的软磁合金原料在惰性气氛中正反面交替熔炼4次,直至完全均匀后冷却至室温(25℃),制得厚度为8mm的母合金铸锭;
S3、制备非晶合金条带:将步骤S2制备的母合金铸锭熔化,然后在惰性气氛中采用单辊急冷法将熔化后的合金喷射到快速旋转的铜辊上,制得厚度为24μm的淬态非晶合金带材;所述单辊急冷法的工艺参数为:喷射压力为0.017MPa,喷射温度为1250℃,喷嘴与铜辊表面的初始间距为1mm,铜辊转动线速度为32m/s;
S4、分步退火处理:首先,将步骤S3制得的淬态非晶合金带材在惰性气氛中进行预热,预热温度为180℃,预热时间为0.3h;然后,对预热后的非晶合金带材进行退火处理,退火温度为375℃,升温速率为100℃/min,保温时间为5min;最后,快速冷却至室温,降温速率≥80℃/min,制得超细晶FeNi基非晶纳米晶软磁合金带材。
本实施例2制备的超细晶FeNi基非晶纳米晶软磁合金带材的TEM照片如图3所示,检测其磁性能为:平均晶粒尺寸D=5nm,矫顽力H c=1.5A/m,有效磁导率μ e=11300,饱和磁感应强度B s=0.98T。
实施例3
一种超细晶FeNi基非晶纳米晶软磁合金带材的制备方法,包括以下步骤:
S1、称取原料:根据超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比称取原料,并将软磁合金原料混合均匀;本实施例3中,超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比为:(Mo0.1Ga0.9):11%、Fe:40%、B:4%、Ni:45%;所述软磁合金原料的纯度均不小于99.9%,并且Fe、Ga、Mo、Ni为块状,平均粒径≤10mm;B为粒状,平均粒径≤3mm;
S2、熔炼母合金铸锭:采用真空电弧炉将步骤S1称取的软磁合金原料在惰性气氛中正反面交替熔炼6次,直至完全均匀后冷却至室温(20℃),制得厚度为12mm的母合金铸锭;
S3、制备非晶合金条带:将步骤S2制备的母合金铸锭熔化,然后在惰性气氛中采用单辊急冷法将熔化后的合金喷射到快速旋转的铜辊上,制得厚度为25μm的淬态非晶合金带材;所述单辊急冷法的工艺参数为:喷射压力为0.02MPa,喷射温度为1380℃,喷嘴与铜辊表面的初始间距为1.3mm,铜辊转动线速度为35m/s;
S4、分步退火处理:首先,将步骤S3制得的淬态非晶合金带材在惰性气氛中进行预热,预热温度为200℃,预热时间为0.5h;然后,对预热后的非晶合金带材进行退火处理,退火温度为400℃,升温速率为100℃/min,保温时间为3min;最后,快速冷却至室温,降温速率≥80℃/min,制得超细晶FeNi基非晶纳米晶软磁合金带材,本实施例3制备的超细晶FeNi基非晶纳米晶软磁合金带材的磁性能为:平均晶粒尺寸D=9nm,矫顽力H c=3.1A/m,有效磁导率μ e=12500,饱和磁感应强度B s=0.78T。
实施例4
一种超细晶FeNi基非晶纳米晶软磁合金带材的制备方法,包括以下步骤:
S1、称取原料:根据超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比称取原料,并将软磁合金原料混合均匀;本实施例4中,超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比为:(Nb0.1Ga0.9):5%、Fe:48%、B:4%、Ni:43%;所述软磁合金原料的纯度均不小于99.9%,并且Fe、Ga、Nb、Ni为块状,平均粒径≤10mm;B为粒状,平均粒径≤3mm;
S2、熔炼母合金铸锭:采用真空电弧炉将步骤S1称取的软磁合金原料在惰性气氛中正反面交替熔炼6次,直至完全均匀后冷却至室温(25℃),制得厚度为10mm的母合金铸锭;
S3、制备非晶合金条带:将步骤S2制备的母合金铸锭熔化,然后在惰性气氛中采用单辊急冷法将熔化后的合金喷射到快速旋转的铜辊上,制得厚度为24μm的淬态非晶合金带材;所述单辊急冷法的工艺参数为:喷射压力为0.018MPa,喷射温度为1400℃,喷嘴与铜辊表面的初始间距为1.1mm,铜辊转动线速度为33m/s;
S4、分步退火处理:首先,将步骤S3制得的淬态非晶合金带材在惰性气氛中进行预热,预热温度为160℃,预热时间为0.2h;然后,对预热后的非晶合金带材进行退火处理,退火温度为325℃,升温速率为100℃/min,保温时间为1min;最后,快速冷却至室温,降温速率≥80℃/min,制得超细晶FeNi基非晶纳米晶软磁合金带材,本实施例4制备的超细晶FeNi基非晶纳米晶软磁合金带材的磁性能为:平均晶粒尺寸D=5nm,矫顽力H c=2.4A/m,有效磁导率μ e=17400,饱和磁感应强度B s=1.0T。
实施例5
一种超细晶FeNi基非晶纳米晶软磁合金带材的制备方法,包括以下步骤:
S1、称取原料:根据超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比称取原料,并将软磁合金原料混合均匀;本实施例3中,超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比为:(Nb0.05Ga0.95):7%、Fe:46%、B:3.5%、Ni:43.5%;所述软磁合金原料的纯度均不小于99.9%,并且Fe、Ga、Nb、Ni为块状,平均粒径≤10mm;B为粒状,平均粒径≤3mm;
S2、熔炼母合金铸锭:采用真空电弧炉将步骤S1称取的软磁合金原料在惰性气氛中正反面交替熔炼6次,直至完全均匀后冷却至室温(25℃),制得厚度为8mm的母合金铸锭;
S3、制备非晶合金条带:将步骤S2制备的母合金铸锭熔化,然后在惰性气氛中采用单辊急冷法将熔化后的合金喷射到快速旋转的铜辊上,制得厚度为20μm的淬态非晶合金带材;所述单辊急冷法的工艺参数为:喷射压力为0.015MPa,喷射温度为1350℃,喷嘴与铜辊表面的初始间距为0.8mm,铜辊转动线速度为35m/s;
S4、分步退火处理:首先,将步骤S3制得的淬态非晶合金带材在惰性气氛中进行预热,预热温度为150℃,预热时间为0.5h;然后,对预热后的非晶合金带材进行退火处理,退火温度为325℃,升温速率为100℃/min,保温时间为5min;最后,快速冷却至室温,降温速率≥80℃/min,制得超细晶FeNi基非晶纳米晶软磁合金带材,本实施例5制备的超细晶FeNi基非晶纳米晶软磁合金带材的磁性能为:平均晶粒尺寸D=6nm,矫顽力H c=3.0A/m,有效磁导率μ e=15600,饱和磁感应强度B s=0.97T。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (6)

1.一种超细晶FeNi基非晶纳米晶软磁合金带材,其特征在于:所述超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比为:(MxGa1-x):5%~11%、Fe:40%~48%、B:3%~4%、余量为Ni;其中,0≤x≤0.1,M为Mo、Nb或者Zr中的至少一种。
2.根据权利要求1所述的一种超细晶FeNi基非晶纳米晶软磁合金带材,其特征在于:超细晶FeNi基非晶纳米晶软磁合金带材的微观结构由原子呈无序排列的非晶相结构、原子呈指纹状有序排列的中程有序相结构以及原子呈点阵状有序排列的纳米晶相结构组成,并且平均晶粒尺寸小于10nm。
3.一种如权利要求1所述超细晶FeNi基非晶纳米晶软磁合金带材的制备方法,其特征在于,包括以下步骤:
S1、称取原料:根据超细晶FeNi基非晶纳米晶软磁合金带材的组成及其重量百分比称取原料,并将软磁合金原料混合均匀;
S2、熔炼母合金铸锭:采用真空电弧炉将步骤S1称取的软磁合金原料在惰性气氛中正反面交替熔炼4~6次,直至完全均匀后冷却至室温,制得母合金铸锭;
S3、制备非晶合金条带:将步骤S2制备的母合金铸锭熔化,然后在惰性气氛中采用单辊急冷法将熔化后的合金喷射到快速旋转的铜辊上,制得淬态非晶合金带材;所述单辊急冷法的工艺参数为:喷射压力为0.015MPa~0.02MPa,喷射温度为1200℃~1400℃,喷嘴与铜辊表面的初始间距为0.8mm~1.3mm,铜辊转动线速度为30~35m/s;
S4、分步退火处理:首先,将步骤S3制得的淬态非晶合金带材在惰性气氛中进行预热,预热温度为150℃~200℃,预热时间为0.2h~0.5h;然后,对预热后的非晶合金带材进行退火处理,退火温度为325℃~425℃,升温速率为100℃/min,保温时间为1min~5min;最后,快速冷却至室温,降温速率≥80℃/min,制得超细晶FeNi基非晶纳米晶软磁合金带材。
4.根据权利要求3所述的一种超细晶FeNi基非晶纳米晶软磁合金带材的制备方法,其特征在于:所述软磁合金原料的纯度均不小于99.9%,并且Fe为块状,平均粒径≤10mm;(MxGa1-x) 为块状,平均粒径≤10mm;Ni为块状,平均粒径≤10mm;B为粒状,平均粒径≤3mm。
5.根据权利要求3所述的一种超细晶FeNi基非晶纳米晶软磁合金带材的制备方法,其特征在于:在所述步骤S2~S4中,惰性气氛为氩气、氮气或者氦气气氛。
6.根据权利要求3所述的一种超细晶FeNi基非晶纳米晶软磁合金带材的制备方法,其特征在于:在所述步骤S2中,制得的母合金铸锭的厚度为8mm~12mm;在所述步骤S3中,制得的非晶合金带材厚度为20μm~25μm。
CN202311398408.4A 2023-10-26 2023-10-26 一种超细晶FeNi基非晶纳米晶软磁合金带材及其制备方法 Pending CN118098744A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311398408.4A CN118098744A (zh) 2023-10-26 2023-10-26 一种超细晶FeNi基非晶纳米晶软磁合金带材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311398408.4A CN118098744A (zh) 2023-10-26 2023-10-26 一种超细晶FeNi基非晶纳米晶软磁合金带材及其制备方法

Publications (1)

Publication Number Publication Date
CN118098744A true CN118098744A (zh) 2024-05-28

Family

ID=91164489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311398408.4A Pending CN118098744A (zh) 2023-10-26 2023-10-26 一种超细晶FeNi基非晶纳米晶软磁合金带材及其制备方法

Country Status (1)

Country Link
CN (1) CN118098744A (zh)

Similar Documents

Publication Publication Date Title
US20220205071A1 (en) Fe-based amorphous alloy containing subnanometer-scale ordered clusters, and preparation method and nanocrystalline alloy derivative thereof
CN107287468B (zh) 一种高强高导耐热的铜合金材料及其制备方法
EP2149616B1 (en) Soft magnetic thin strip, process for production of the same, magnetic parts, and amorphous thin strip
CN104934179A (zh) 强非晶形成能力的铁基纳米晶软磁合金及其制备方法
WO2023093464A1 (zh) 一种高熵奥氏体不锈钢及其制备方法
CN109930080B (zh) 一种无铜纳米晶软磁合金及其制备方法
CN109440023B (zh) 一种高磁感氮耦合铁基非晶纳米晶合金及其制备方法
Jiang et al. Unique influence of heating rate on the magnetic softness of Fe81. 5Si0. 5B4. 5P11Cu0. 5C2 nanocrystalline alloy
WO2019196200A1 (zh) 一种添加钇的稀土永磁材料及其制备方法
CN106917042A (zh) 一种高频高磁感应强度铁基纳米晶软磁合金及其制备方法
Keller et al. Manganese-based permanent magnet materials
CN107103976A (zh) 一种铁钴基韧性纳米晶软磁合金及其制备方法
JP2868121B2 (ja) Fe基磁性合金磁心の製造方法
CN110093565B (zh) 晶化窗口宽、软磁性能可控的铁基纳米晶合金及其制备方法
CN109880985B (zh) 软磁材料的制造方法
CN118098744A (zh) 一种超细晶FeNi基非晶纳米晶软磁合金带材及其制备方法
CN1306057C (zh) 含有微量稀土元素的铁基纳米晶合金
CN113628823B (zh) 高耐蚀性的铁基纳米晶软磁合金及制备方法
CN112962024B (zh) 一种类Finemet型Fe基纳米晶软磁合金及其制备方法
CN111485182B (zh) 一种利用元素间正混合热制备的铁基非晶纳米晶合金及其制备方法和应用
CN115821173B (zh) 一种高丰度稀土元素基纳米双相复合材料及其制备方法
CN113278897B (zh) 一种铁基纳米晶软磁合金及其制备方法
CN116356221B (zh) 一种原位合成铁基非晶纳米晶合金薄带
CN115725886B (zh) 一种g相析出强化高熵合金及其制备方法
CN118186276B (zh) 一种高熵合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination