CN118086840A - 兼具高硬度和低摩擦系数的vc纳米复合涂层 - Google Patents

兼具高硬度和低摩擦系数的vc纳米复合涂层 Download PDF

Info

Publication number
CN118086840A
CN118086840A CN202410191130.1A CN202410191130A CN118086840A CN 118086840 A CN118086840 A CN 118086840A CN 202410191130 A CN202410191130 A CN 202410191130A CN 118086840 A CN118086840 A CN 118086840A
Authority
CN
China
Prior art keywords
coating
nano composite
composite coating
high hardness
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410191130.1A
Other languages
English (en)
Inventor
王铁钢
王重阳
熊龙宇
刘艳梅
范其香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Original Assignee
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology and Education China Vocational Training Instructor Training Center filed Critical Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority to CN202410191130.1A priority Critical patent/CN118086840A/zh
Publication of CN118086840A publication Critical patent/CN118086840A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/02Alloys based on vanadium, niobium, or tantalum
    • C22C27/025Alloys based on vanadium, niobium, or tantalum alloys based on vanadium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种兼具高硬度和低摩擦系数的VC纳米复合涂层,属于涂层技术领域。该纳米复合涂层中C含量为13.49‑38.68at.%,余量为V元素;其为包含fcc‑VC晶相和金属V的纳米复合结构,VC相沿(111)晶面择优生长。采用电弧离子镀膜技术在基体上沉积VC纳米复合涂层,沉积时开启V靶并通入Ar和C2H2,通入Ar的流量为120~150sccm,通入C2H2流量为5~30sccm,气体总流量130~180sccm。本发明通过优化VC涂层中的C含量,使所制备涂层中包含fcc‑VC晶相和金属V的纳米复合结构,且VC相沿(111)晶面择优生长,从而获得兼具高硬度、低摩擦系数的涂层。

Description

兼具高硬度和低摩擦系数的VC纳米复合涂层
技术领域
本发明涉及涂层技术领域,具体涉及一种兼具高硬度和低摩擦系数的VC纳米复合涂层。
背景技术
纳米复合涂层由于其具有特殊的物理、化学性能而得到了广泛的关注,与材料表面相关的性能如硬度、耐高温、耐氧化、耐摩擦、耐腐蚀等,都是目前人们研究的热点。两种及两种以上结构不同的相组成的涂层可被称为纳米复合涂层,主要分为三类(1)nc-陶瓷/a-陶瓷复合涂层,如nc-TiN/a-Si3N4、nc-ZrN/a-Si3N4、nc-TiAlN/a-AlN等;(2)nc-陶瓷/nc-陶瓷复合涂层,如nc-MeN/nc-C3N4等;(3)nc-陶瓷/金属复合涂层,如nc-ZrN/Cu、nc-ZrN/Ni、nc-ZrN/Y等。
自润滑涂层通过涂层组分在高温下向表面扩散,并发生原位氧化反应生成氧化物润滑相来达到自润滑效果。过渡金属元素V、W、Mo等所形成氧化物具有典型的层状结构Magnéli相,剪切强度低、易滑动。这类氧化物高温热稳定性好、粘附性低,所以通常被认为是理想的润滑材料。且V的氧化物具有热稳定性、粘附性弱的特点,且V极易扩散,涂层抗氧化能力弱,在摩擦过程中易生成具有润滑作用的Magnéli相氧化物V2O5与V2O3
本发明拟向V涂层中加入C元素,通过设计工艺条件以优化涂层中的C元素,以期在不明显降低VC涂层的力学性能和摩擦学性能的前提下,进一步提高涂层的高韧性和自润滑的性能。
发明内容
为进一步提高现有二元涂层的硬度和摩擦性能,本发明的目的在于提供一种兼具高硬度和低摩擦系数的VC纳米复合涂层,采用电弧离子镀膜技术,将V元素和C元素相结合,并通过工艺设计制备出兼具高硬度、低摩擦系数的VC纳米复合涂层。
为实现上述目的,本发明所采用的技术方案如下:
一种兼具高硬度和低摩擦系数的VC纳米复合涂层,其沉积在金属(纯金属、硬质合金、不锈钢片)或硅片基材上,纳米复合涂层与基材之间为金属V过渡层,纳米复合涂层厚度为1.5-2.5μm。
该VC纳米复合涂层中,C元素含量为13.49-38.68at.%(优选22-36.7at.%),余量为V元素。
所述VC纳米复合涂层为包含fcc-VC晶相和金属V的纳米复合结构,VC相沿(111)晶面择优生长。
所述VC纳米复合涂层的硬度高于28GPa,涂层的弹性模量稳定在280~390GPa,涂层的H/E最高可达0.07。
该VC纳米复合涂层是采用电弧离子镀膜技术在基体上沉积而成,其中:靶材选取金属V靶,沉积VC纳米复合涂层时,开启V靶并通入Ar和C2H2,通入Ar的流量为120~150sccm,通入C2H2流量为5~30sccm(优选12-22sccm),气体总流量130~180sccm。
进一步地,沉积VC纳米复合涂层时,本底真空度为6×10-3Pa以上,沉积压强调节至0.5-0.8Pa,V靶电流为85~100A,设置偏压为-100~-200V(占空比40~60%)。
进一步地,沉积VC纳米复合涂层时,通过调控C2H2流量、偏压、靶电流等能够改变VC涂层中的C含量,进而调控涂层中V相与VC相比例。
该该VC纳米复合涂层的制备过程具体包括如下步骤:
(1)将清洗后的基体固定于镀膜室内旋转架上,将真空度抽至6×10-3Pa以上;V靶与电弧离子镀电源连接;
(2)对基体依次进行辉光放电清洗和离子轰击清洗,所述辉光放电清洗的过程为:将炉腔加热至400℃,通入氩气200~250sccm,设置脉冲偏压-800V(占空比70~90%),对基体进行辉光清洗15~20min;所述离子轰击清洗过程为:辉光放电清洗后,开启V靶,然后设置V靶弧源电流85~100A,弧源电压20~22V,沉积压强0.5Pa~0.8Pa,保持氩气流量为120~150sccm,在-800V(占空比70~90%)偏压条件下轰击清洗8~10min。
(3)沉积金属V过渡层,以提高工作层与基体的结合强度;沉积V过渡层的过程为:在辉光放电清洗和离子轰击清洗后,设置偏压为-120V~-150V(占空比70%~90%),开启V靶,设置V靶弧源电流85~100A,弧源电压20~20.3V,通入氩气流量为120~150sccm,调节沉积压强制0.5Pa~0.8Pa,沉积V过渡层15~20min。
(4)沉积VC纳米复合涂层。
本发明的设计机理如下:
本发明采用电弧离子镀膜技术在硬质合金片、SUS304不锈钢和单晶Si片等基材上沉积VC纳米复合涂层。
传统二元涂层虽然具有良好的力学性能和高温抗氧化性能,但其摩擦系数高、耐磨性差的缺点限制了其在高速切削难加工工件时的应用。在保证对涂层机械性能影响不大的前提下,向V涂层中掺杂适量的润滑元素是改善其摩擦学性能最有效的途径。
C具有多种杂化状态,在SP2和SP3协同作用下使得涂层具有优异力学性能的同时还保持良好的摩擦学性能。本发明通过设计工艺条件优化涂层中C的掺杂量,由于适量C的掺杂细化了涂层中的晶粒,使涂层更加致密。适量C掺杂可使涂层的微观结构从粗糙的柱状晶粒变为纤维状颗粒并形成了SP2C-C键,提高了涂层硬度的同时降低了摩擦系数,V的引入可形成最坚硬的过渡碳化物VC,有效降低切削过程中的摩擦系数和切削热产生。
本发明的优点及有益效果如下:
1、本发明制备的VC纳米复合涂层具有高的抗磨能力,具有明显的减摩效果。
2、本发明VC纳米复合涂层是充分发挥V2O5和石墨碳两者的协同效果,实现自润滑的复合涂层,具有高硬度、低摩擦系数、化学性能稳定等优点。
3、本发明VC纳米复合涂层应用前景广泛,适用于高速干切削各种难加工材料,大幅度提高切削效率及刀具使用寿命。
4、本发明VC纳米复合涂层具有良好的力学性能及摩擦磨损性能,涂层刀具可适用于重载断续加工。
附图说明
图1为实施例1在不同C2H2流量下采用电弧离子镀膜技术制备的VC纳米复合涂层的表面形貌和截面形貌。
图2为实施例1在不同C2H2流量下采用电弧离子镀膜技术制备的VC纳米复合涂层的XRD图谱。
图3为实施例1在不同C2H2流量下采用电弧离子镀膜技术制备的VC纳米复合涂层的硬度和弹性模量。
图4为实施例1在不同C2H2流量下采用电弧离子镀膜技术制备的VC纳米复合涂层的划痕形貌图。
图5为实施例1在不同C2H2流量下采用电弧离子镀膜技术制备的VC纳米复合涂层的摩擦系数和磨损率。
图6为实施例1在不同C2H2流量下采用电弧离子镀膜技术制备的VC纳米复合涂层的磨痕形貌。
图7为实施例1在不同C2H2流量下采用电弧离子镀膜技术制备的VC纳米复合涂层的元素含量。
具体实施方式
下面通过实施例对本发明作进一步详细说明。
实施例1:
本实施例为制备具有不同C含量的VC纳米复合涂层。
本实施例是在单晶Si片(40mm×40mm×0.67mm)、硬质合金片(25mm×25mm×3.0mm)及不锈钢片(35mm×35mm×1.0mm)上沉积VC纳米复合涂层,采用电弧离子镀膜技术进行镀膜。具体操作步骤如下:
(1)将硬质合金基片抛光处理后,同预先准备好的单晶硅片和304不锈钢片置于超声波清洗机中,依次在丙酮和酒精溶液中超声清洗20min,然后用高纯N2(99.999%)吹干,在夹具指定位置压紧,在真空室泄真空后,打开真空室炉门,用铁丝将基片固定在镀膜室内转架上,将金属V靶放置在磁控溅射设备的炉体内壁上;调整基片固定位置,使基片正对靶材表面,防止沉积过程表面沉积距离不同,造成涂层制备不均匀现象。调整好夹具位置,检查真空室内无外物残留,关闭炉门。
(2)抽真空:由于真空室内压强高于4.0Pa时分子泵无法工作,所以抽真空分为两步。首先在大气压下开始抽真空,利用TRP-90型粗抽泵对真空室抽真空,当真空室内真空度达到4.0Pa时,打开分子泵,使分子泵加速,当真空度达到3.0Pa时,打开IP2200型分子泵(抽气速率≥1600L/s)阀门,进一步抽真空,直至真空室内压强达到6×10-3Pa以下,开启加热源对真空室内加热,设置最终温度400℃,报警温度450℃,加热过程中转架保持正转40Hz,确保基片受热均匀。直至温度稳定在400℃且真空度达到6×10-3Pa。
(3)辉光放电清洗真空室:将真空室的本底真空度抽至6.0×10-3Pa后,加热制400℃,然后施加-800V偏压,偏压占空比87%,向真空室内通入Ar(99.999%),Ar流量为200sccm,调节工作压强在1.5Pa,辉光放电清洗15min;
(4)轰击清洗靶材表面:保持通入Ar(99.999%),保持气体流量为100sccm,开启V靶,然后设置V靶弧源电流90A,弧源电压20~22V,沉积压强0.6Pa,脉冲偏压-800V,偏压占空比87%,轰击时间为8min。去除基体和靶材表面污染层和氧化物。
(5)沉积过渡层时,通入Ar(99.999%),保持气体流量为150sccm,开启V靶,然后设置V靶弧源电流90A,弧源电压20~20.3V,脉冲偏压-150V,偏压占空比70%,工作压强维持在0.8Pa,时间15min。
(6)制备VC涂层时,调低偏压至-150V,偏压占空比50%,通入Ar(99.999%)和C2H2(99.999%),保持气体总流量为150sccm,其中C2H2气流量分别为5sccm、10sccm、15sccm、20sccm、25sccm,开启V靶,电流为90A,调节工作压强为0.6Pa;
本实施例不同C2H2流量下制备的VC纳米复合涂层进行形貌表征与性能测试,具体如下:
利用X射线衍射仪(XRD)分析涂层的物相组成,采用阶梯扫描方式采集数据,入射X射线选用Cu靶Kα特征谱线(λ=0.154056nm)辐射,管电压40kV,管电流40mA,衍射角(2θ)扫描范围为20°~80°,扫描步长0.02°,每步计数时间0.2s。利用S4800型场发射扫描电子显微镜(SEM)观察涂层表面和截面形貌,涂层化学成分利用电子探针(EPMA,Shimadzu,EPMA1600)进行分析。采用纳米压痕仪(Anton Paar,TTX-NHT-3)测试涂层的硬度及弹性模量,为消除基体效应对测量结果的影响,保证针尖压入深度不超过涂层厚度的1/10,测量15个点取平均值。采用划痕测试仪(Anton Paar RST-3)测量涂层与SUS304不锈钢基体的结合强度,金刚石针尖直径为200μm,参数如下:加载速度6mm/min;划痕长度3mm;设定载荷100N,实验数据由计算机实时记录。
摩擦系数在摩擦磨损试验机(Anton Paar THT)上进行测试,对摩副选用直径为5.99mm的Al2O3球(硬度为22±1GPa),滑动线速度为0.1m/s,法向载荷4N,旋转半径为6mm,滑动距离100m。摩擦实验在室温22±3℃和湿度30%下进行,每个样片测试3次,涂层磨损率W利用公式W=V/(F×S)计算(V为磨损体积,F为法向载荷,S为滑动距离),另外使用超景深显微镜(VHX-1000C,Keyence)观察涂层磨损后的形貌。
图1为不同C2H2流量下制备VC纳米复合涂层的表面形貌和截面形貌。根据SEM图可以看出纳米复合涂层呈现典型非晶包裹纳米晶结构,涂层均匀致密,无明显孔洞缺陷。
图2为不同C2H2流量下制备VC纳米复合涂层的XRD图谱。VC纳米复合涂层在(111)晶面择优生长取向,其中S为基体Si峰,VC相在(111)晶面上的衍射峰强度显著提高,表明VC纳米复合涂层的结晶程度提高。
图3为采用纳米压痕仪测试不同C2H2流量下制备VC纳米复合涂层的纳米硬度和弹性模量。C2H2流量为5sccm、10sccm、15sccm、20sccm、25sccm时,纳米多层复合涂层硬度先增大后减小,而在C2H2流量为15sccm时,纳米复合涂层获得最大硬度28.6GPa。纳米复合涂层在C2H2流量为15sccm时弹性模量最大为394.0GPa。
图4为不同C2H2流量下VC纳米复合涂层经划痕测试后的形貌。膜/基结合力随C2H2流量的增加呈现先增加后减小的趋势。适当压应力的存在增加薄膜的断裂韧性,C2H2流量为15sccm时膜/基结合力最大为64N。
图5为不同C2H2流量下制备VC纳米复合涂层经摩擦磨损测试后涂层的摩擦系数,呈现先减小后增大的趋势。在C2H2流量为20sccm时最小为0.44。由摩擦试验后磨痕形貌图可看出,磨痕中存在大量磨屑,摩擦过程中剥落的磨屑在摩擦试验中参与摩擦,导致摩擦系数的增大,而20sccm时的薄膜磨痕形貌磨屑相对较少,摩擦系数相对较低。
图6为不同C2H2流量下VC纳米复合涂层的磨痕形貌。当C2H2流量为5sccm、10sccm时,磨痕表面磨屑较多,磨痕颜色较深,耐磨损能力较差。
图7为不同C2H2流量下VC纳米复合涂层的元素含量。可以看出,随着C2H2流量的增加C元素含量由13.49at.%增加至38.68at.%;而涂层中的V含量由86.51at.%降低至61.32at.%。结合各VC纳米复合涂层的性能情况,说明只有当涂层中C与V含量在一定比例范围内才能获得综合性能较优的涂层。而本发明通过选择适当沉积工艺及相应工艺参数(气体流量、偏压、电流等)将涂层中C与V含量控制在合适范围内。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (10)

1.一种兼具高硬度和低摩擦系数的VC纳米复合涂层,其特征在于:该VC纳米复合涂层沉积在金属或硅片基材上,纳米复合涂层与基材之间为金属V过渡层。
2.根据权利要求1所述的兼具高硬度和低摩擦系数的VC纳米复合涂层,其特征在于:该VC纳米复合涂层中,C元素含量为13.49-38.68at.%,余量为V元素;,该纳米复合涂层厚度为1.5-2.5μm。
3.根据权利要求1所述的兼具高硬度和低摩擦系数的VC纳米复合涂层,其特征在于:所述VC纳米复合涂层为包含fcc-VC晶相和金属V的纳米复合结构,VC相沿(111)晶面择优生长。
4.根据权利要求1所述的兼具高硬度和低摩擦系数的VC纳米复合涂层,其特征在于:该VC纳米复合涂层的硬度高于28GPa,涂层的弹性模量稳定在280~390GPa,涂层的H/E最高可达0.07。
5.根据权利要求1-4任一所述的兼具高硬度和低摩擦系数的VC纳米复合涂层,其特征在于:该VC纳米复合涂层是采用电弧离子镀膜技术在基体上沉积而成,其中:靶材选取金属V靶,沉积VC纳米复合涂层时,开启V靶并通入Ar和C2H2,通入Ar的流量为120~150sccm,通入C2H2流量为10~30sccm,气体总流量130~180sccm。
6.根据权利要求5所述的兼具高硬度和低摩擦系数的VC纳米复合涂层,其特征在于:沉积VC纳米复合涂层时,本底真空度为6×10-3Pa以上,沉积压强调节至0.5-0.8Pa,V靶电流为85~100A,设置偏压为-100~-200V(占空比40~60%)。
7.根据权利要求5所述的兼具高硬度和低摩擦系数的VC纳米复合涂层,其特征在于:该VC纳米复合涂层的制备具体包括如下步骤:
(1)将清洗后的基体固定于镀膜室内旋转架上,将真空度抽至6×10-3Pa以上;V靶与电弧离子镀电源连接;
(2)对基体依次进行辉光放电清洗和离子轰击清洗;
(3)沉积金属V过渡层,以提高工作层与基体的结合强度;
(4)沉积VC纳米复合涂层。
8.根据权利要求7所述的兼具高硬度和低摩擦系数的VC纳米复合涂层,其特征在于:步骤(2)中,所述辉光放电清洗的过程为:将炉腔加热至400℃,通入氩气200~250sccm,设置脉冲偏压-800V(占空比70-90%),对基体进行辉光清洗15~20min。
9.根据权利要求7所述的兼具高硬度和低摩擦系数的VC纳米复合涂层,其特征在于:步骤(2)中,所述离子轰击清洗过程为:辉光放电清洗后,开启V靶,然后设置V靶弧源电流85~100A,弧源电压20~22V,沉积压强0.5Pa~0.8Pa,保持氩气流量为100~150sccm,在-800V(占空比70~90%)偏压条件下轰击清洗8~10min。
10.根据权利要求7所述的兼具高硬度和低摩擦系数的VC纳米复合涂层,其特征在于:步骤(3)中,沉积V过渡层的过程为:在辉光放电清洗和离子轰击清洗后,设置偏压为-100V~-200V(占空比70%~90%),开启V靶,设置V靶弧源电流85~100A,弧源电压20~20.3V,通入氩气流量为120~150sccm,调节沉积压强制0.5Pa~0.8Pa,沉积V过渡层15~20min。
CN202410191130.1A 2024-02-21 2024-02-21 兼具高硬度和低摩擦系数的vc纳米复合涂层 Pending CN118086840A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410191130.1A CN118086840A (zh) 2024-02-21 2024-02-21 兼具高硬度和低摩擦系数的vc纳米复合涂层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410191130.1A CN118086840A (zh) 2024-02-21 2024-02-21 兼具高硬度和低摩擦系数的vc纳米复合涂层

Publications (1)

Publication Number Publication Date
CN118086840A true CN118086840A (zh) 2024-05-28

Family

ID=91158251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410191130.1A Pending CN118086840A (zh) 2024-02-21 2024-02-21 兼具高硬度和低摩擦系数的vc纳米复合涂层

Country Status (1)

Country Link
CN (1) CN118086840A (zh)

Similar Documents

Publication Publication Date Title
CN107130222B (zh) 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法
CN110453190B (zh) 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法
CN106987816A (zh) 一种高铝含量超致密Al‑Cr‑Si‑N涂层制备工艺
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN110670038A (zh) 具有自润滑和耐磨性能的AlCrN/MoS2纳米复合薄膜及其制备方法
CN113025979B (zh) 一种纳米晶非晶复合涂层及其制备方法
CN112501553B (zh) 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法
CN111647856B (zh) 一种AlCrTiSiN/AlCrTiSiON多层复合涂层的制备工艺
CN111485219B (zh) 具有高耐磨性的AlCrSiN/Mo热处理型涂层及其制备工艺
CN111424254B (zh) 一种提高AlCrSiN/Mo纳米复合涂层韧性与耐磨性的热处理工艺
CN113667939B (zh) 具有高硬度与高温抗氧化性的Zr-B-N/ZrO2纳米多层复合涂层的制备工艺
CN118086840A (zh) 兼具高硬度和低摩擦系数的vc纳米复合涂层
CN118497665A (zh) 一种高硬度、低摩擦系数的vc纳米复合涂层及其制备方法
CN111647859B (zh) 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺
CN111500990B (zh) 一种Zr-Ti-B-N纳米复合涂层及其制备方法
CN115404438B (zh) 高硬度与高耐磨性的AlCrSiN/AlCrMoSiN纳米多层复合涂层的制备工艺
CN112626456A (zh) 一种兼具高硬度和高韧性的ZrB2-Ni涂层及其制备工艺
CN115505886B (zh) 高硬度、高耐磨性的AlCrSiN/AlCrMoSiN纳米多层复合涂层及其制备方法
CN111471973B (zh) 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺
CN118441248A (zh) 一种高抗氧化性、高耐磨性的Ti-Al-V-C纳米复合涂层及其制备方法
CN114606467A (zh) 一种高耐磨TiAlMoN硬质涂层及其制备方法和应用
CN113981398A (zh) 一种TiAlN复合薄膜的制备方法以及稀土掺杂TiAlN复合膜层
CN117845165A (zh) 兼具高抗氧化性和高耐磨性的Ti-Al-V-C纳米复合涂层
CN111549322A (zh) 一种AlCrTiSiN/AlCrTiSiON多层复合涂层及其制备工艺
Tian et al. Optimization of structure and properties of hydrogen-containing DLC films by pulse auxiliary anode duty ratio

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination