CN118033180A - 测量样品的亚微米区域的光学特性的方法及原子力显微镜 - Google Patents

测量样品的亚微米区域的光学特性的方法及原子力显微镜 Download PDF

Info

Publication number
CN118033180A
CN118033180A CN202410181480.XA CN202410181480A CN118033180A CN 118033180 A CN118033180 A CN 118033180A CN 202410181480 A CN202410181480 A CN 202410181480A CN 118033180 A CN118033180 A CN 118033180A
Authority
CN
China
Prior art keywords
sample
tip
near field
scattered light
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410181480.XA
Other languages
English (en)
Inventor
王浩民
徐晓纪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lehigh University
Original Assignee
Lehigh University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lehigh University filed Critical Lehigh University
Publication of CN118033180A publication Critical patent/CN118033180A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/02Multiple-type SPM, i.e. involving more than one SPM techniques
    • G01Q60/06SNOM [Scanning Near-field Optical Microscopy] combined with AFM [Atomic Force Microscopy]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

测量样品的亚微米区域的光学特性的方法及原子力显微镜。传统的散射式显微镜(s‑SNOM)技术使用轻敲模式操作和锁定检测,无法提供具有明确针尖‑样品距离的直接层析成像信息。PF‑SNOM使用峰值力散射式扫描近场光学显微镜,并结合峰值力轻敲模式和时间选通光检测,可以从样品表面直接分离垂直近场信号来进行三维近场成像和光谱分析。PF‑SNOM还提供5nm的空间分辨率,并且可以同时测量机械和电气特性以及光学近场信号。

Description

测量样品的亚微米区域的光学特性的方法及原子力显微镜
本申请是国际申请号为PCT/US2019/014572、申请日为2019年1月22日、发明名称为“非轻敲模式的散射式扫描近场光学显微镜系统及方法”的PCT申请的中国国家阶段申请的分案申请,该中国国家阶段申请的申请号为201980020933.8,其全部内容结合于此作为参考。
优先权要求
本申请要求于2018年1月22日提交的题为“具有峰值力轻敲模式的非轻敲模式的散射式扫描近场光学显微镜”的美国第62/620,263号临时申请的优先权,本申请出于全部目的全文引用此文。
技术领域
本公开涉及测量样品的亚微米区域的光学特性的方法及原子力显微镜。
背景技术
扫描近场光学显微镜(Scanning Near-Field Optical Microscopy,SNOM,还被称作近场扫描光学显微镜-NSOM)是用于进行纳米结构研究的显微技术。在SNOM(如下所述)中,通过孔径来聚焦激光,而该孔径的直径小于激光所激发的波长,这导致在孔径的远侧产生消逝场(或近场)。当在孔径下短距离处扫描样品时,透射光或反射光会被捕获并以低于衍射极限的空间分辨率通过显示设备显示出来。
在SNOM应用中,散射式扫描近场光学显微镜(Scattering-type Scanning Near-Field Optical Microscopy,s-SNOM)是已经开发出的一种特殊技术,能够实现对于各种纳米级现象的研究,而远场光谱由于其光学衍射极限无法对这样的现象进行研究。s-SNOM已成为研究石墨烯等离子激元、表面声子极化子、相关电子材料的相变、异质材料中的成分和化学反应的工具。在s-SNOM中,通过光学检测器来测量原子力显微镜(atomic forcemicroscope,AFM)在样品上方操作的锐利金属针尖的弹性散射光。针尖与样品之间的近场相互作用可以改变针尖的极化率,从而影响光的弹性散射。但是,由于弹性散射不会改变散射光的波长,因此来自AFM悬臂其他部分或针尖区域外样品表面的反射或散射光子也会被同一个光学检测器记录并导致背景信号,背景信号是来自针尖-样品相互作用区域以外的背景区域的远场背景。为了对远场背景和针尖-样品相互作用的近场信号进行区分,一种传统的方法是在轻敲模式下,通过AFM悬臂的机械谐振振荡针尖,并在针尖振荡频率的非基波处对散射光进行锁相解调或傅里叶分析。
尽管这个方法应用广泛并且取得了成功,然而轻敲模式s-SNOM下的锁相检测仍存在局限性。首先,由于锁相解调的s-SNOM信号是离散值,因此传统的s-SNOM无法提供针尖-样品近场相互作用的垂直范围的直接信息。这导致在信号产生机制中,针尖-样品近场相互作用的距离相关性十分复杂并丢失。第二,不同解调阶数的s-SNOM信号表现出不同的信号形状,并导致空间图案变得模糊。此外,以轻敲模式操作的s-SNOM无法与其他需要牢固针尖-样品接触的AFM模式同时执行,例如测量机械性能和电导率。轻敲模式的s-SNOM无法实现对于近场光、机械和电信号的同时以及相关测量。
发明内容
本申请的一方面涉及一种测量样品的亚微米区域的光学特性的方法,所述方法使用原子力显微镜所述方法包括:使探针与样品相互作用;用来自辐射源的光束照射所述样品,使得光从探针-样品相互作用区域散射;使用检测器收集来自所述探针-样品相互作用区域和背景区域的散射光,所述散射光是所述探针与所述样品之间距离的函数;并且响应于所收集的相对于所述距离的散射光来构造近场信号;并且其中,所述近场信号的垂直分辨率至少是7nm。
本申请的另一方面涉及一种测量样品的亚微米区域的光学特性的原子力显微镜,包括:探针,用于与所述样品相互作用;辐射源,利用光束照射所述样品,使得光从探针-样品相互作用区域散射;检测器,用于检测来自所述探针-样品相互作用区域和背景区域的散射光,所述散射光是所述探针与所述样品之间距离的函数;以及处理器,响应于检测到的相对于所述距离的散射光来构造近场信号,并且其中,所述近场信号的垂直分辨率至少是7nm。
附图说明
将参考附图对本发明所公开主题的实施例进行说明,其中:
图1是根据本发明所公开主题的实施例的峰值力散射式近场光学显微镜(PF-SNOM,Peak Force Scattering-Type Near-Field Optical Microscopy)装置的系统图;
图2A是显示根据本发明所公开主题的实施例的通过PF-SNOM技术同时记录的悬臂垂直偏转和来自针尖的散射光的红外检测器信号的图表;
图2B是显示根据本发明所公开主题的实施例的从图2A中的两个波形导出的光学检测器信号和针尖-样品距离之间的关系的图表,其中保留了背景信号;
图2C是显示根据本发明所公开主题的实施例的通过减去图2B的拟合线性背景而获得的具有明确针尖-样品距离相关性的纯近场信号的图表;
图2D是显示根据本发明所公开主题的实施例的PF-SNOM信号的零差相位依赖性的图表;
图2E是显示根据本发明所公开主题的实施例的在氮化硼纳米管进行1000nm长线扫描时,相对于一个波长(1405cm-1)的不同针尖-样品距离的不同PF-SNOM信号的图表;
图2F是根据本发明所公开主题的实施例的执行图2E的线扫描的氮化硼纳米管的图表;
图3A-图3J是显示根据本发明所公开主题的实施例的在氮化硼纳米管和六角氮化硼上进行PF-SNOM操作来揭示针尖诱导声子极化阻尼、5nm空间分辨率,以及相关的机械-电气和近场成像的图表;
图4是显示根据本发明所公开主题的实施例的用于在AFM显微镜实现PF-SNOM技术的方法流程图;以及
图5是显示根据实施例的计算机设备或系统中的元素或组件的图表,计算机设备或系统被配置为实现方法、过程、功能或操作。
应注意,在本发明和附图中使用的相同编号表示类似的组件和特征。
具体实施方式
下面,对本文所公开实施例的主题进行描述,使其满足规定要求,但这些描述并非用于限制权利要求的范围。所要保护的主题也可以被实现为其他方式,可以包括不同的元件或步骤,并且可以与其他现有或未来技术结合使用。除非明确说明各个步骤的顺序或元素的排列,下面的描述不应被解释为暗示各种步骤或元素之间的任何特定顺序或排列。
在下文中,将参照作为本文一部分的附图更全面地描述实施例,通过附图示出了可以实施本文所述的系统和方法的示例性实施例。然而,可以通过许多不同方式来实现该系统和方法,并且不应被解释为限于本文所述的实施例;相反,提供这些实施例的目的在于使本发明满足规定要求并使本领域技术人员了解本主题的范围。
综上所述,本文所讨论的系统和方法可直接用于峰值力散射式近场光学显微镜(Peak Force Scattering-Type Near-Field Optical Microscopy,PF-SNOM)。与以往的传统方法不同,PF-SNOM技术避免了轻敲模式操作,轻敲模式操作会导致在锁定检测中发生后续信息丢失。本文所讨论的新技术结合了峰值力轻敲(peak force tapping,PFT)模式和利用远场背景差分算法(subtraction algorithm)的近场散射信号的时间选通检测(time-gated detection)。与传统的基于轻敲模式的s-SNOM相比,PF-SNOM能够以明确的针尖-样品距离实现针尖-样品近场相互作用的层析切片(tomographic sectioning),并以远低于衍射极限的高空间分辨率同时执行相关的近场、机械,以及电气测量。在下面的图1至图5中更详细地说明了这些方面,以及优点和其他方面。
图1是根据本公开主题的实施例的峰值力(例如,非轻敲模式)散射式近场光学显微镜(PF-SNOM)装置100的系统图。在本实施例中,PF-SNOM装置100包括具有二极管激光器110(例如,光源)的原子力显微镜(Atomic Force Microscope,AFM)105,从而通过在悬臂背面的反射并被偏转检测器119检测来感应AFM悬臂115的偏转。该装置被配置成允许来自激光源(例如,频率可调谐中红外量子级联激光器(quantum cascade laser,QCL)128)的光束聚焦到可放置在具有压电振荡器118的样品台117上的样品(未示出)。光源128可以是适于产生波长在红外范围内的光束的红外激光器,在其他实施例中也可以使用其他范围。此外,配置在样品台上的压电振荡器118可以由频率在0.1khz和100.0khz之间的压电驱动台所驱动,其中4.0khz是典型的驱动频率。在另一实施例中,可以以0.1kHz至100.0kHz之间的非谐振频率振荡AFM悬臂,而不是振荡样品。以非谐振频率振荡驱动的AFM悬臂115不保留动能(kinetic energy),这与在悬臂机械谐振处或附近驱动AFM悬臂115的轻敲模式的AFM不同。
AFM 105还包括一个探针系统,探针系统具有适于操纵悬臂115的驱动器111,悬臂115具有位于悬臂115末端的探针针尖116(通常被例如金的金属覆盖)。与大多数AFM相同,悬臂是柔性的,并在与布置在样品台117上的压电振荡器118相邻时发生振动。通常,当悬臂115在接近或接触设置在样品台117上的样品时,当受到压电振荡器118上的样品产生的机械力的影响时,悬臂115将上下偏转。探针针尖116可以被放置在样品附近或与样品接触,以使用偏转检测器119测量悬臂115随时间的偏转,对此,将在下面进行详细说明。可将偏转测量输入到处理器130以确定样品信息(例如,用于分析所收集数据的分析电路)。
此外,来自中红外量子级联激光器128的光被引导至分束器121。中红外量子级联激光器的频率可以被调节,并可以提供与样品中的谐振相匹配的选择性光频率(例如分子的振动跃迁、极化模式或其他谐振现象)。该光源还可以是提供谐振频率的另一种激光源,例如,在光学参量振荡器中使用的非线性光学频率转换的激光辐射。一部分激光被分束器121分离为参考光场124,来自分束器121的另一部分可以通过第一抛物面镜120被聚焦到探针针尖116上。可由其它类型的光聚焦光学元件(例如透镜)代替抛物面镜120的功能。光从探针针尖116散射。散射光可以从样品反射出来。第一抛物面镜120捕获直接散射光和二次反射光。
当光被反射时,第一抛物面镜120将其引导至分束器121。另外,参考激光场124也可以被添加到分束器121,使得该信号可以有助于通过干涉检测来检测针尖反射的光信号。为此,分束器121可将光信号(来自样品的反射信号和参考信号124的组合)引导至第二抛物面镜122(或等效聚焦元件,例如透镜),并且可以被光学检测器123(例如碲镉汞(MercuryCadmium Telluride,MCT)检测器)检测。应注意,包括光源(激光器128)、分束器121、光参考路径124、包含针尖116的光路径以及用于干涉检测的光学检测器123的上述设置是s-SNOM的典型布置,并且是非对称的迈克尔逊干涉仪(Michelson interferometer)。检测到的光信号(例如,散射信号)可以被发送到处理器130,并且与悬臂115的偏转检测器119所检测到的偏转一起使用,用来确定设置在样品台117上的样品的各个方面。如下文所述,图2A示出了随着时间测量的光学检测器信号和悬臂垂直偏转信号。同样,将在下文中进一步讨论这些测量的具体情况。接下来,将参照图1的设备100的组件来呈现图1所示的设备的操作和细节。
图2A是根据本文所公开主题的一实施例的通过PF-SNOM技术同时记录悬臂115的垂直偏转205和由光学检测器123检测的来自针尖116的散射光的散射信号207的图表200。在操作期间,当样品台117上的样品通过压电振荡器118以几千赫兹的低频(定义为PF-SNOM频率)以大振幅(例如300nm)垂直振动时,悬臂115可保持静止。对于每个振荡周期,最大悬臂偏转(例如,峰值力)可以被控制并保持在负反馈回路下的设定点。当针尖116接近样品表面时,分子间吸引力使针尖116跳跃并与样品表面接触,这种现象被称为跳动接触(snap-incontact),也被称为跳跃接触。针尖-样品的接触时间是预先确定的,图2A中的跳动接触时间ts 210可以从悬臂偏转信号205的波形中测量,并且与最小偏转相一致。在本示例中,跳动接触过程(例如,ts 210附近较暗的带)从约45持续到52μs,并且,跳动接触时间ts 210是52μs。
在图2A中,可以从示出的最小和最大偏转图中确定跳动接触时间ts210,最大峰值力时间tp 212和针尖分离时间td 214。图2A顶部的悬臂115示出了PF-SNOM周期的三个阶段的相应针尖-样品配置,从左到右为:针尖接近样品220、跳动接触222和允许其他AFM模态的动态针尖-样品接触224,例如电测量230(这里以针尖和样品之间施加的电压为例)。然后,可以导出检测器信号(图2A中的207)与针尖-样品距离的关系的图表208(如图2B所示。对此将在下文中讨论),并给出在跳动接触时间ts 210的距离可以被定义为零的事实。在跳动接触ts 210之前,针尖-样品距离可以是正值。从跳动接触之后到针尖在td214之后从样品缩回之前,距离保持为零。
图2B是显示根据本发明所公开主题的实施例的从图2A中的两个波形导出的光学检测器信号208和针尖-样品距离之间的关系的图表240,其中远场背景信号保持不变。在一实施例中,将图2A中的悬臂垂直偏转波形D(t)205和散射光的检测器信号波形S(t)207(其中t是时间)转换为如图2B所示的函数S(d)208,其中d是用于层析成像的针尖-样品距离。在PFT模式下,可以在PFT频率f下以正弦振荡方式垂直驱动样品压电台。压电台的垂直位置dz可以表示为:
式中,A为峰值力振幅,为压电台的振荡相位。在205中,压电台的最高位置也对应于时间tp的最大悬臂垂直偏转(峰值力设定点)。在tp处,由/>计算得出压电台运动的相位/>以得出dz的最大值,然后导出为/>因此,压电台的垂直位置dz为:
dz(t)=A cos(2πf(t-tp))
在本示例中,从悬臂垂直偏转信号波形D(t)205识别出最大悬臂弯曲的时间tp。根据悬臂偏转灵敏度V的知识,即有关偏转传感器测量的电压或信号与以纳米为单位的实际针尖移动(通常为几十纳米)的相关性的知识,可知时域中的针尖-样品距离d(t)为:
d(t)=A-dz(t)+V·D(t)
或者
d(t)=A-Acos(2πf(t-tp))+V·D(t)
由于在跳动接触时间ts之后和分离时间td,之前,针尖-样品距离几乎为零(考虑到在PF-SNOM中的压痕的作用可以忽略不计,因为在压痕中信号不被提取),因此可以将一个d(t)定义为两个区域,并以截断的正弦形状给出:
从原始D(t)曲线205可以识别出所有tp、ts和td。在目前的PF-SNOM操作中,在每个PFT周期中,只处理了跳动接触时间ts之前的光散射信号S(t)207。因此,根据计算的d(t)和同步测量的t<ts的S(t),导出了散射信号与针尖-样品距离S(d)208之间的关系。
在图2B中可以观察到由短距离近场相互作用引起的短针尖-样品距离处明显增加的散射信号,以及线性拟合的长距离远场背景241(虚线)。由于PF-SNOM技术允许在不丧失反馈稳定性的情况下实现针尖-样品距离的大幅度振荡,可以将远场背景241精确地线性拟合在针尖远离样品的区域内,从而可在短针尖-样品距离下对远场背景信号进行精确的线性预测。为了获得近场散射信号,可以从散射光信号中去除背景区域的远场背景信号,因为在较大的针尖-样品距离下,检测器信号的变化只响应于悬臂轴和样品表面的远场散射的变化。由于激光波长约为3~12μm,样品台垂直位置的几十纳米变化相对较小,因此远场散射信号的变化可以近似为相对于针尖-样品距离的线性变化。然后将拟合的线性远场背景信号外推到短针尖-样品距离区域以从检测器信号中去除。由此产生的差异(图2C)提供了近场信号和针尖-样品距离之间的关系,由此,能够精确访问垂直近场响应。
图2C是根据本公开主题的实施例的通过从图2B的检测器信号208减去拟合的线性背景241而获得的具有明确距离依赖性的纯近场信号261的图表260。从散射信号中减去近似线性的远场背景可以得到作为距离函数的纯近场响应。在一实施例中,用于移除远场信号的过程包括分析信号,从而线性拟合至图2B所示的大的针尖-样品距离d的S(d)区域(例如,图的右侧~20nm以上)。在另一实施例中,可以使用一般趋势拟合来说明与线性趋势的轻微偏差。在较大的针尖-样品距离下,检测器信号的变化来自于悬臂轴和样品表面的远场散射变化(例如背景区域),并且可以拟合成线性的远场背景。由此产生的差异(如下面关于图2C所讨论的)提供了近场信号和针尖-样品距离之间的关系SNF(d)261,由此能够精确访问垂直近场响应。
在另一实施例中,快速背景去除算法可用于直接从时域中的散射信号波形拟合远场背景信号。该算法首先在跳动接触时间ts附近提取激光信号波形的短周期(例如120μs)。然后在ts前的短周期内(约10μs),随着针尖-样品距离的减小,近场散射光明显增强。这个短周期被定义为信号区域,其对应于大体小于5nm的针尖-样品距离的短距离。在该信号区域之前,由于远场散射背景,激光信号波形呈现出逐渐且近似线性的增长。可以对该区域进行背景趋势拟合(trend fit),然后外推到信号区域。趋势拟合可以是多项式函数,例如,二次函数,或者选择其它函数,使得其与通常在10-20nm以上,80-100nm以下区域的大的针尖-样品距离的散射信号基本上重叠。然后,用外推的远场背景减去信号区域的光散射来得到纯近场响应。在去除远场背景后,可以在ts之前的规定时间窗内对散射信号进行平均,并将其用作PF-SNOM信号。这意味着为了提高信噪比(例如,对于样品上的固定空间位置和固定波长),可以基于算术平均值对近场响应与针尖-样品距离进行平均,即将近场响应相加并处以所求出总和。在另一实施例中,可以在减去背景之前,在时域中对散射光信号进行平均。在这种情况下,可以同步平均数据,即图2A的散射光信号S(t)207和图2A中的偏转信号D(t)205在同步参考点的时间上重叠,该时间可以是跳动接触时间ts 210。在基于该时间戳对每个PFT周期重叠数据之后,可以对近场数据或偏转信号进行平均。根据该同步平均数据,按照上述步骤,可以获得作为距离S(d)208的函数的散射光信号,并且在去除背景之后,可以确定依赖于针尖-样品距离的纯近场信号SNF(d)261。
图2C示出了近场响应260,该响应可由在特定针尖-样品距离d处对应于曲线261的PF-SNOM信号的积分来确定。这由深灰色条262表示。通过改变提取近场响应的距离d,可以得到与不同d值(如不同的选通距离)相对应的近场信号,从而捕捉到针尖与样品之间的明确垂直近场响应。因此,可以在沿样品的不同位置的不同距离d处获取数据,以产生样品的整体层析图像。下面的图3A-图3J中示出并讨论了这一示例。使用参照图1讨论的实施例,可以在大约30分钟内生成256×256像素的PF-SNOM图像。在PF-SNOM成像中,根据信号强度,每个像素可使用50或150个峰值力轻敲周期的平均信号。图3A-图3C所示的PF-SNOM光谱是通过可调谐量子级联激光器128的扫描频率来收集,在该示例中,压电频率保持在2kHz。PF-SNOM光谱中的每个点可以是大约400个PFT周期的平均值。应注意,传统的基于轻敲的s-SNOM不能直接提供与距离相关的近场信号,因为其在轻敲频率的不同谐波下的锁定检测仅提供离散的近场信号值,而不能提供PF-SNOM针尖-样品距离曲线261(假设没有对近场响应使用更复杂的重构处理)。
图2D是根据本公开主题的实施例的PF-SNOM信号的零差相位依赖性的图表270。与传统的s-SNOM相同,可以使用零差参考场(图1中的参考124)对PF-SNOM信号进行干涉检测,通常可以在轻敲模式s-SNOM中用于增强近场信号和抑制背景散射。图2D显示了通过调整参考回射器(reference retroreflector)的位置得到的不同的零差相位272处的PF-SNOM信号依赖性。参考回射器是通常在s-SNOM使用的非对称迈克尔逊型干涉仪的一部分,对此在图1中进行了解释。再次进行重复,在图1中,通常通过分束器121分离QCL输出光束,从而由QCL激光器128获得参考光束124。当激光器输出的另一部分照亮抛物面镜120和针尖116时,参考光束124被反射镜或回射器反射并被送回分束器121,并在被聚焦元件122聚焦后与光学检测器123上的针尖-散射光重叠。在光学检测器上,针尖-散射光、参考光干涉,以及记录的信号强度取决于参考路径和针尖-散射路径之间的相对光路长度,即光场的相对相位。图2D中的强度271是调整零差相位272(即针尖-散射光路和参考光路之间的相对光路长度)时的光检测器信号强度。通常通过改变回射器在参考路径中的位置来改变强度,从而获得不受光场干扰的图2D所示的清晰的信号最小值和最大值。在另一实施例中,相对于固定参考路径来改变针尖-散射路径的光程长度。与轻敲模式的s-SNOM一样,相敏PF-SNOM也可用于计算近场信号的振幅和相位,并可从中提取样品的吸收和反射。
图2E是显示根据本发明所公开主题的实施例的在氮化硼纳米管(Boron NitrideNanotube,BNNT)进行1000nm长线扫描时,在一个波长(1405cm-1)的相对于不同针尖-样品距离的不同PF-SNOM信号的图表290。BNNT的形貌(例如,三维表示)如图2F所示,并且线扫描零位从图中右侧的BNNT端开始(接近标记“1”)。在这个示例图中,显示了针对不同针尖-样品距离d的从氮化硼纳米管(BNNT)样品的顶表面提取的PF-SNOM的响应轮廓(为了便于比较,d=4、8和12nm的轮廓分别被放大了2、4和8倍)。因此,可以从256×256像素区域(或其他合适区域)的该图和其他相关图提取不同距离d的图像(例如,二维表示)。我们可以看到,当d从12nm减小到1nm时,沿着BNNT纳米管顶部表面的近场分布不仅如预期的那样显示整体较大的近场信号,而且还有更多的近场强度接近纳米管的末端(靠近图2F中的位置“1”),这表明当针尖更靠近表面时,BNNT的末端有更强的针尖-样品相互作用。通过用经验指数衰减函数S(d)=ANF e(-d/b)拟合近场响应的垂直衰减活动,其中S(d)是取决于针尖-样品距离d的近场响应,ANF和b是表示近场响应总振幅和垂直衰减范围的拟合系数,基于近场总振幅ANF和针尖-样品特征1/e衰减范围b,我们可以得到两种新的近场信号表示形式。直接获取针尖-样品相互作用范围是PF-SNOM方法的一个独特优势,而对于采用单独锁定解调的轻敲模式s-SNOM而言,如果不对近场响应进行进一步重建处理则缺乏这种能力。
与传统轻敲模式s-SNOM相比,PF-SNOM的另一个优势是能够直接获取近场散射信号以及在不同距离的针尖-样品垂直距离依赖性(例如,选通采样)。这种能力可以收集层析近场图像,这与传统的s-SNOM技术相比,可以揭示更多微秒的针尖-样品相互作用。如下面将参照图3A-图3F所讨论的,使用PF-SNOM在小于10nm的针尖-样品距离范围内观察到了氮化硼材料中声子极化子(Phonon Polariton,PhP)谐振的线宽展宽(linewidthbroadening)和谐振频移,而对于轻敲模式的s-SNOM而言,由于针尖所需的振荡振幅通常为25-60nm,以及随后产生的复杂信号(convoluted signal),很难在该范围内进行区分。由于可以通过PF-SNOM获得直接和定量的弹性散射信号,因此可以确定针尖诱导的PhP弛豫特征。
由于PF-SNOM信号与近场信号成正比,PF-SNOM信号的数值建模所需的计算复杂度远低于轻敲模式s-SNOM,在轻敲模式s-SNOM中,需要额外的步骤来解释针尖振荡和锁定解调以再现s-SNOM信号。尽管在轻敲模式s-SNOM中使用通过傅立叶合成重建s-SNOM的方法来垂直重建针尖-样品近场响应,但重建s-SNOM的带宽受到傅里叶合成中谐波解调次数和针尖振荡幅度的限制。例如,即使共使用18次谐波解调,对于150nm的针尖振荡幅度而言,重建s-SNOM中的垂直分辨率仅为8.3nm。8.3nm的垂直分辨率无法捕获本发明的系统和技术所能实现的低于10nm的短距离近场相互作用的特征,更无法在没有昂贵的高端多通道锁定放大器的情况下同时记录18次谐波。相比之下,PF-SNOM的垂直分辨率与红外检测器的带宽、PFT振幅和PFT频率有关,并且,可以轻松调节或满足这些参数来提高垂直分辨率。在我们的PF-SNOM装置中,垂直分辨率估计为0.12nm,因此PF-SNOM在垂直方向上的近场分辨相比现有的轻敲模式s-SNOM技术更加精确。可以通过PF-SNOM直接获得大范围针尖-样品距离内的大量层析图像。这一优势可用于揭示等离子纳米天线的三维近场分布。此外,由于空间分辨率取决于场增强的横向限制,因此具有高垂直精度的PF-SNOM可以通过在短针尖-样品距离处采集来实现间隙模式(gap mode)下最严格的场限制,并提供如图3I所示的信号轮廓的优秀的5nm横向空间分辨率。而在超过10-20nm的轻敲模式s-SNOM中,场限制的大小随着针尖垂直振荡发生变化,从而导致横向场限制受到损害。
通过PF-SNOM的BNNT的层析近场图像和SiC光谱对散射式近场光学显微镜意义很大。s-SNOM被广泛应用于极化材料近场响应的表征。很少有人关注AFM的针尖会改变样品的近场活动。在PF-SNOM中,直接提取短针尖-样品距离的近场响应,可以清楚地观察到PhP光谱活动的变化。金属针尖不仅是探测近场的散射体,而且在短的针尖-样品距离上起到了阻尼器(damper)的作用。这意味着由于测量针尖可能会影响正在测量的近场响应,通常应谨慎对待通过散射式近场光学显微镜获得的空间图案。由于PF-SNOM能够获得不同针尖-样品距离处的响应,因此其测量结果在解读实际近场响应时特别有用。
如前所述,峰值力轻敲不仅可以实现形貌成像,还可以对样品特性(如模量或附着力)进行纳米机械映射以及电成像,例如确定样品的纳米级电导率。在PF-SNOM中,这种方法可以与近场映射相结合,以获得许多样品特性的相关图像。源于对近场散射信号的实时测量获得的垂直近场响应的能力以及PF-SNOM与机电同时测量的兼容性,是通过PFT模式下明确的针尖-样品接触实现的。由于AFM针尖悬臂保持固定,除非在动态接触过程中向上推,悬臂中存储的动能几乎为零。因此,悬臂对探针与样品之间分子间作用力非常灵敏地响应,并由此给出了针尖-样品零距离参考点的明确的跳动接触时间ts。相比之下,轻敲模式的AFM悬臂由外部驱动而振动。探针与样品之间的分子间作用力导致悬臂的振动相位相对于外部驱动振荡的明显偏移。虽然轻敲模式AFM中的相移是信息性的,并且用作相位成像模式,但大的相移会导致难以确定用于其他AFM模式的瞬间针尖-样品接触时间。PF-SNOM可以精确地确定针尖-样品距离随时间的变化,而与PF-SNOM相比,轻敲模式AFM中的振荡相移导致难以实现时间选通检测方案。
在轻敲模式AFM中,斥力、吸力,特别是探针与样品之间的粘附力导致悬臂振动的非线性动力学活动,即使在通过非谐远场散射(anharmonic far-field scattering)进行高阶锁定解调时也会表现出非线性动力学活动。相比之下,PF-SNOM直接从接近PFT周期的一侧测量散射信号,在这一侧不会对接触后针尖和样品之间的粘附有任何影响,从而避免了粘性表面可能产生的机械变形。在这方面,PF-SNOM比轻敲模式s-SNOM更能适应粗糙和粘性的样品。应注意,在另一实施例中,缩回曲线(retract curve)可用于获得近场信息,即在图2A中的曲线205的点td之后,当针尖与表面分离时分析散射信号。这在可能的机械变形很小或可以纠正时可以实现。
PF-SNOM是对现有峰值力红外(peak force infrared,PFIR)显微镜的补充,该显微镜在峰值力轻敲模式下测量激光诱导光热膨胀。PF-SNOM光学检测来自针尖和样品的近场散射信号,该信号由针尖-样品的极化率和传播的表面波决定;而PFIR则根据局部光学吸收和随后将能量耗散为热量的结果进行机械检测。与适用于具有大光热膨胀系数的软物质的PFIR显微镜相比,PF-SNOM继承了s-SNOM在测量具有源于介电函数的差异的空间对比度的刚性和极化材料方面的优势。
PF-SNOM能够同时对样品进行机械、电气和光学近场表征。通过PF-SNOM的一次测量获得的三个方面的样品性能将非常有助于研究功能材料的纳米级活动,如相关电子材料的金属-绝缘体跃迁,以及纳米级的光学机械结构和设备。PF-SNOM的通用兼容性使其成为一个更完善的散射式近场光学显微平台。
图3A-图3J显示了利用PF-SNOM的针尖-样品距离相关近场光谱可获得的有价值信息的示例。图3A-图3I示出了根据本文所公开主题的实施例的分析氮化硼纳米管(BNNT)的声子极化子的谐振峰位置和光谱峰宽度及其针尖-样品距离依赖性的数据示例集。在同一BNNT纳米管上的三个不同空间位置(图3A-图3C分别显示了图2F中的1、2、3),三个不同针尖-样品距离d的PF-SNOM信号被测量为激光波长的函数。例如,图3A示出了在光源(x轴306)的多个波长的针尖-样品距离下,对BNNT上的第一位置的散射近场响应(y轴305)(在该示例中为1nm 310、3.5nm311和6.5nm 312)。中心峰区域的洛伦兹拟合(Lorentzian fittings)显示为相应距离组集合的实线。插图显示了在三个不同的d值下拟合的谐振峰ωp在半峰全宽(full-width at half-maximum,FWHM)处的全宽转变。可以观察到随着d的减小,ωp的线宽增加。
图3B和图3C显示了相对于样品的不同位置的相似曲线。由此,可以收集与256x256位置矩阵(例如像素)相对应的数据,从而最终基于所收集的PF-SNOM数据生成层析图像。图3D包含用于图3A-图3C的洛伦兹拟合的拟合参数。图3E给出了氮化硼(BN)的基于d=1、3.5和6.5nm的图像偶极子模型的模拟光谱与介电函数。图3E说明了不同d值下ωp偏移320的出现,并用倾斜垂直线示出。从图3D中总结的实验数据可以看到类似的偏移。基于针尖-样品相互作用的等离子体谐振和位移的精确测量提供了对纳米结构谐振的更精确估计,这改善了对基于极化材料的化学传感器的光谱特性的评估。
图3F-图3G是根据本公开主题的一实施例的可以从由PF-SNOM技术收集的数据创建的层析图像的附图。在附图中,一组数据对应于近场响应,该近场响应与来自光源的单个波长的光(例如,在本示例中为1390cm-1)的单个针尖-样品距离(例如,图3F中的d=1nm和图3G中的d=4nm)相关联。如前所述,表面声子极化子(PhP)是由光学声子的集体振荡和与表面结合的电场形成的表面电磁模式。众所周知,碳化硅(silicon carbide,SiC)和氮化硼(boron nitride,BN)等极性材料支持表面PhP。PF-SNOM能够在样品表面的横向和垂直方向上探测PhP。图3A-图3I示出了使用PF-SNOM显微镜对氮化硼纳米管(BNNT)进行数据收集、测量和图像构建的实施例。
可以从BNNT的边缘估计PF-SNOM的空间分辨率。图3H示出在d=1nm处拍摄的放大的PF-SNOM图像。图3I示出沿图3H中的白线350的PF-SNOM图像的轮廓截面,其获得5nm的空间分辨率。相比之下,本实例中使用的金属针尖的半径估计为30nm。PF-SNOM的空间分辨率比针尖半径有很大的提高是因为在1nm的短针尖-样品距离处形成的间隙模式(gap-mode)增强,这种间隙模式增强是由于光场的高度非均匀空间分布形成,光场在横向尺寸上被严格约束在远小于针尖半径的范围内。
BNNT的光谱响应也表现出与针尖-样品距离d的依赖性。图3A-图3C显示了PF-SNOM在1、3.5和6.5nm三个不同的d值下测量的BNNT上三个位置的散射光谱,频率为1370cm-1到1440cm-1。图3D中列出了来自三个位置和三个针尖-样品距离的PF-SNOM光谱的拟合参数,其中可以发现,随着探测位置离纳米管末端越来越远(从图2F中的位置1到3),PhP红移(redshift)的中心谐振频率ωp及其峰值线宽变窄(就半峰全宽(FWHM)而言)。这很可能是由针尖发射的PhP与末端反射的PhP间的干扰造成的。由较低频率激发的PhP具有更长的极化波长和更低的损耗。这种频率较低的PhP传播得更远,因此在远离末端的位置会更加突出。另一方面,由于较低的极化子损耗意味着较长的寿命,相应地,谐振峰ωp的线宽也较窄。
在图3D中,有两个涉及针尖-样品距离的特殊特征只能由PF-SNOM来显示。首先,在BNNT上的同一位置,随着针尖-样品距离d的减小,PhP的谐振频率ωp发生了少量红移。这种偏移可以用基于氮化硼的介电函数的图像偶极子(mage dipole model)模型定性地解释。图3E显示了根据具有金(Au)涂层的30nm半径针尖的图像偶极子模型的极化谐振光谱的最大值与针尖-样品距离d之间的模拟关系。在图3E中观察到随着针尖-样品距离d从6.5减小到1nm,ωp发生1cm-1的小位移。由于PhP的空间频率依赖于光源的频率,ωp的偏移表明在PhP的高色散区中,PhP的空间图案在不同的测量距离处会发生变化。
图3D的第二个特征是,在相同的探测位置,随着针尖-样品距离的减小,ωp的线宽变宽,这表明BNNT-PhP的寿命随着针尖接近表面而降低。寿命的降低可能是由于高度受限的间隙模式的存在形成了更多的弛豫通道,这将大大增加BNNT针尖尖端与表面之间状态的光密度。因此,尽管间隙模式的较强的场增强会激发更多的PhPs,但PhPs的弛豫是有利的并且谐振线宽被加宽。这种得到增强的弛豫效应在概念上类似于被耦合到谐振腔和针尖增强弛豫的荧光团柏赛尔效应(Purcell effect)。
利用上述原子力显微镜系统,这种新型的PF-SNOM方法和系统实现了许多优点。特别是PF-SNOM可以快速测量三维近场响应。PF-SNOM允许测量来自多个针尖-样品距离的多个近场信号。因此,可通过将不同针尖-样品距离处的PF-SNOM图像堆叠到数据立方体中,或通过集合来自一组二维横向位置的不同针尖-样品距离处的近场响应来构建三维近场响应立方体(例如,三维图)。相比之下,电流轻敲模式s-SNOM只有在应用高度复杂的算法时才能够以足够的速度实现这一操作。因此,使用传统的s-SNOM系统和方法进行三维数据图是不可行的。
与传统解决方案相比的另一个优势是,在等于或小于2nm针尖-样品距离下测量近场信号的能力可以提高空间分辨率。在PF-SNOM中,当针尖非常靠近样品时(例如,小于2nm),可以访问针尖-样品距离。由此,可以很容易地获得针尖-样品距离小于2nm的近场信号。可能的最小针尖-样品距离仅受检测器响应时间的限制。在上面讨论的实施例中演示了在1nm的针尖-样品距离处的测量。
相比之下,在传统的轻敲模式s-SNOM中,由于传统的轻敲模式AFM需要至少中等的振荡幅度来进行AFM形貌反馈,因此不能实现任意小的AFM针尖的振荡幅度。典型的传统轻敲模式AFM针尖振荡幅度为25~60nm。来自轻敲模式s-SNOM的信号无法提供在较小针尖-样品距离范围内的针尖和样品之间的近场信号。相比之下,本文提供了具有高空间分辨率的1nm的针尖-样品距离处的PF-SNOM近场图像。
另一个优点是,PF-SNOM通过间隙模式增强来放大近场信号并提高信号强度。PF-SNOM允许常规访问间隙模式增强。也就是说,当金属针尖靠近导体,或通常靠近介电函数的实部为负的样品时,针尖和样品之间的间隙的电场会被大大增强。间隙模式增强导致电场放大,并导致更强的近场信号。PF-SNOM可以测量针尖-样品非常接近(例如小于2nm)时的近场散射信号。近的距离范围可以实现收集来自间隙模式增强的近场信号,而不会与缺乏间隙模式增强的近场散射信号混合。间隙模式增强技术可以高度局部化激发场,并且,使用约30nm半径的AFM针尖将PF-SNOM的空间分辨率提高到约5nm。相比之下,传统的轻敲模式s-SNOM提供的空间分辨率超过10nm。
另一个优点是,PF-SNOM使用同步数据采集,这样的同步数据采集允许在多个事件中同步平均多个针尖-样品的接近/缩回,由此提高信噪比。在PF-SNOM中,数据采集与针尖-样品距离的变化同步到针尖-样品接触的前一刻。同步检测,也称为选通检测(gateddetection)使近场信号平均化,从而提高信噪比。
与传统的s-SNOM相比的另一个优点是PF-SNOM技术利用峰值力轻敲模式,而不是传统轻敲模式。在峰值力轻敲模式下,由于AFM悬臂不储存动能,因此针尖与样品之间的距离是可预测的。不同的是,在传统的轻敲模式s-SNOM中,悬臂在一个谐振频率下振荡。AFM悬臂运动中储存了动能(Kinetic energy)。针尖与样品之间的分子间力的相互作用导致在轻敲模式AFM中无法预测振荡相位的偏移。轻敲模式AFM振荡相位的变化意味着无法预测针尖和样品最接近的时刻,并且该时刻取决于样品表面。这导致难以采集时间同步信号,这是因为在不了解待测量的基本样品轮廓的情况下,无法预测针尖-样品距离。
PF-SNOM不受此影响。相反,PF-SNOM考虑了由于AFM针尖和样品之间的分子间作用力而导致的针尖-样品距离的偏差。短针尖-样品距离范围内的分子间作用力导致在接近悬臂和从悬臂缩回的过程中针尖-样品距离发生变化。在PF-SNOM中,悬臂偏转与近场信号被同步动态测量。悬臂偏转用于校正针尖-样品距离的读数。相比之下,传统的轻敲模式s-SNOM不能通过使用锁定放大器来校正实时针尖-样品距离扰动。
PF-SNOM的另一个优点是能够在一种AFM操作模式下同时测量近场信号、机械响应和电信号,并且无需切换。在传统的s-SNOM中,依次完成近场和机械映射的联合测量。也就是说,可以使用峰值力轻敲模式来确定机械信息,但是利用传统轻敲模式下的传统s-SNOM收集近场成像。联合测量非常耗时。在PF-SNOM中,近场测量和机械测量都是在峰值力轻敲模式下完成的。此外,电导率测量也可以与近场成像和机械映射一起在一种操作模式下完成。图3J示出了半导体硅衬底上的六角氮化硼片的样品形貌、机械模量、接触电流和近场响应的相关测量。与硅衬底相比,六方氮化硼具有较高的模量和较低的电导率。显示了在1530cm-1的红外照明频率下的六角氮化硼中声子极化子的近场响应。
在另一个优点中,与传统的轻敲模式s-SNOM相比,PF-SNOM提供了更高的每单位针尖-样品振荡周期的信噪比。在PF-SNOM中,可以将近场信号恢复为在一个针尖-样品距离范围内的近场信号的积分。这相比单值锁定解调可以提供更多的数据点。因此,与传统的轻敲模式s-SNOM相比,所需要的针尖振荡周期更少。
另一个优点是,PF-SNOM所基于的峰值力轻敲模式广泛适用于一系列样品。轻敲模式的原子力显微镜在粘性或粗糙的样品表面上提供的反馈较差或不稳定。因此,轻敲模式s-SNOM不能应用于这些样品表面。峰值力轻敲模式AFM对样品表面的粘性或粗糙度没有那么大的限制。因此,PF-SNOM继承了峰值力轻敲模式的广泛适用性,可适用于不理想的样品表面。
图4是说明根据本文所公开主题的一实施例的适于实现用于AFM显微镜的PF-SNOM技术的方法流程图400。该方法可从步骤410开始,在步骤410中,将样品放置在AFM的样品台上并启动PF-SNOM扫描周期。在一实施例中,如上所述,样品可以是BNNT。当启动PF-SNOM过程时,压电驱动台可以产生信号,该信号被配置成在样品台上引起运动,所述运动是在接近针尖/悬臂装置和样品之间的垂直距离上的周期性变化。然后在步骤415中,可以朝向样品操纵针尖使其到达特定位置(例如像素位置)。这将引起针尖和样品之间的相互作用以及悬臂的垂直偏转,导致针尖与在样品台中处于压电材料的振荡频率的样品动态接触。如上所述,该频率通常在0.1kHz和100.0kHz之间。
当针尖与样品相互作用时,在步骤420中,该方法确定各种距离的近场响应(例如,选通离散距离响应)。通过检测悬臂的垂直偏转来确定多个针尖-样品距离,针尖-样品距离对应于与样品接触的针尖以及一段时间内的悬臂偏转。也就是说,随着最大偏转远离静止位置,可以在特定时间间隔内确定跳动接触。通过这种确定方式,可以从聚焦在样品的针尖接触区的样品上的光确定多个近场散射响应。此外,当针尖不足够接近样品以在周期变化期间引起短距离(short-range)近场相互作用时,可从最初确定代表背景信号的响应信号中移除任何背景信号。然后,与背景信号相对应的可以是线性或非线性响应,并且,当样品通过引发的相互作用在悬臂中引起偏转时,则可以从多个近场散射响应中移除近似的线性或非线性响应。
可以在不同波长下完成这些扫描。因此,在步骤430中,提供以另一频率进行扫描的询问。如果要在该像素位置以额外频率进行扫描,则该方法在步骤440中调整光源的波长之后返回到步骤420,并且使用新波长再次记录散射近场响应。如果在该位置不再有波长可以收集样品的响应数据,则该方法进入询问步骤445以确定是否要分析更多像素位置。如果是,则该方法返回到步骤415,并将针尖移动到新像素位置。如果在询问步骤445中处没有更多的像素位置,则该方法移动到步骤460,在步骤460中,可以使用所有收集的数据来生成底层样品的一个或多个层析图像。这可以通过将多个近场散射响应与每个样品位置的多个针尖-样品距离相关联来实现,以生成样品的近场响应数据映射。相关函数还可以包括:将来自多个近场散射响应的一组近场散射响应与每个样品位置的针尖-样品距离相关联,其中每个组与每个样品位置的d=1到n纳米的等效针尖-样品距离相关。此外,这种关联可以在用于分析样品的不同波长上实现。图4描述了不同的示例,例如恒定波长的近场映射/成像、在单个空间位置上的各种波长的近场点光谱、以及不同空间位置上各种波长的近场光谱(例如,256×256像素的线扫描或高光谱图,其中在每个像素处记录了全光谱)。
基于轻敲模式AFM操作的传统s-SNOM需要连续波(continuous-wave,cw)或准连续波光源,即如果是脉冲光源,则需要足够高的重复率,通常在10s内的MHz范围,例如80MHz。其原因在于,近场信号是通过在针尖振荡频率(通常为200-400kHz)的高次谐波(通常为第2-4次谐波)下解调针尖散射信号而获得的。在~100kHz至~1MHz范围内的光源重复频率通常低于揭示针尖振荡频率的高次谐波所需的奈奎斯特采样率(Nyquist sampling rate),因此,通常在s-SNOM中使用锁定放大器进行的解调将无法令人满意。为了使传统的s-SNOM与低重复频率的激光器一起工作,必须进行更复杂的信号重建。PF-SNOM对光源的要求不那么严格。由于PF-SNOM中的散射信号通常仅在围绕跳动接触时间ts建立针尖-样品接触之前的几十微秒内提取(见图2A和图2B),仅在该时间间隔内照亮样品就已经足够。这意味着在极端情况下,在2kHz PFT频率的通常可以持续500us的PET周期中,激光器只需要在约50us期间进行发射。在本示例中,减少10%的占空比可能有利于防止过度加热敏感样品。此外,在从kHz至高达MHz范围内的光源脉冲仍允许提取PF-SNOM数据。由于在PFT周期中的针尖位置在每个时刻都是已知和明确定义的,因此光学检测器信号可以参考特定的针尖位置。对于PFT周期频率顺序的低激光重复率(例如2kHz)而言,每个周期只有极少数脉冲(例如只有1个)与针尖位置一起被记录。通过在多个PFT周期上收集数据最终可以实现散射信号与针尖-样品距离S(d)关系的足够多的数据点,以便可以对由离散数据点组成的图2B中的曲线208进行插值和分析。激光重复率和PFT频率可以彼此同步,以便可以在每个PFT周期中获得某个固定针尖-样品距离(例如d=1nm)处的散射信号。在这种同步PFT周期和激光重复频率的特殊情况下,一旦确定了背景信号的形状,就可以仅通过在单个PFT周期内测量单个光检测器信号来推断出减去背景信号的PF-SNOM信号。这意味着不需要确定与针尖-样品距离相关散射信号S(d)的整个曲线,并且,可以使用低kHz脉冲激光器。但它需要了解背景信号,背景信号可通过测量散射信号与针尖样品距离(图2B中的曲线208)获得,例如,可以通过在同步激光脉冲和PFT周期之间移动相对时间,或者通过不同步操作,从而收集足够多的数据点来内插和重建图2B中的曲线208。如前所述,随后的线性或非线性拟合将产生背景曲线。这还要求在成像或光谱中的不同样品位置之间背景形状不发生改变。
对于PF-SNOM而言,能够像传统的轻敲模式s-SNOM那样使用连续波光源有几个优点。如上所述,如果样品对光或热敏感,则可将样品被照亮的占空比和时间减至最小。这样可以避免样品被破坏或被不必要的改性。此外,由于重复频率范围更为灵活,PF-SNOM比s-SNOM可使用更多的光源。例如,s-SNOM不能使用中红外区域的1-100kHz光学参量放大器系统,而PF-SNOM则可以使用。
在替代实施例中,PF-SNOM可采用中红外光谱区域以外的更宽波长范围,例如紫外线、可见光、近红外线和太赫兹或远红外线范围。QCL、光学参量振荡器(opticalparametric oscillator,OPO)和放大器作为红外线中的脉冲和连续波光源存在。紫外线、可见光和近红外线被固体激光器、二极管激光器、光纤激光器、OPO或气体激光器等激光源,以及基于非线性频率转换的激光源所覆盖,基于非线性频率转换包括光参量产生、和频产生、谐波产生、频率梳和相关方法。在太赫兹光谱区,出现了太赫兹量子级联激光器,而太赫兹气体激光器、太赫兹天线或自由电子激光器已经存在以覆盖这一范围。
另一个实施例适于使用宽带光源(例如激光驱动等离子体源、碳硅棒(globar)、超连续谱源或同步加速器)来执行近场光谱。这些光源可以一次覆盖几百cm-1,而QCL提供的窄激光线的宽度通常约为1cm-1。宽带光参量振荡器或放大器提供的几十到几百cm-1的脉冲也是足够的。当用宽带光源替换激光器时,其设置与图1相同。但现在获得了PF-SNOM近场干涉图。这是通过在图1中的非对称迈克尔逊干涉仪中改变参考臂124和包括针尖116的臂之间的相对光程长度来实现的。通常,通过移动(例如使用电动平台)参考路径124中的回射器来实现这一点。在改变相对路径长度的同时,根据上述步骤提取PF-SNOM信号。在一实施例中,路径长度逐步改变,并且在每一步之后,在特定的针尖-样品距离d(例如d=1nm)处获得PF-SNOM信号,并且可能是特定PFT周期数量的平均值。所得到的数据集包含干涉图,即在特定距离d处的PF-SNOM信号是两个干涉仪臂相对路径长度的函数。随后的傅里叶变换得到了作为波长函数的PF-SNOM近场光谱。该过程可用于从宽带源获取光谱。在不同的实施例中,路径长度是连续改变的而不是阶梯式改变的。
在上述PF-SNOM实施例中,AFM针尖和样品之间的距离通过调节样品位置而周期性地振荡,除此之外,还可以通过振荡AFM针尖的位置获得相同的距离振荡效果。在该实施例中,可以从外部以低于悬臂的机械谐振频率驱动AFM针尖的位置,并且可以使用PF-SNOM执行相关的近场信号和针尖-样品距离测量。应注意,本实施例中的针尖运动不同于轻敲模式s-SNOM中悬臂的谐振振荡。在PF-SNOM中,避免以AFM悬臂的谐振频率驱动AFM针尖的位置振荡。在PF-SNOM操作下,悬臂不会以谐振振荡的形式储存动能。相反,在轻敲模式的s-SNOM中,以悬臂的谐振频率驱动悬臂振荡。其结果,悬臂振动在与样品相互作用时会发生相位变化,这使得在给定的时间内很难确定针尖-样品的距离。
图5是显示根据实施例的被配置成实现方法、过程、功能或操作的计算机设备或系统中可能存在的元件或组件的附图。根据一个或多个实施例,系统、装置、方法、过程、功能和/或操作用于根据用户先前的行为,向用户配置和有效呈现用户接口,可以由一个或多个编程的计算机处理器(例如主控制单元(MCU)、中央处理单元(CPU)、或微处理器)执行的一组指令的形式全部或部分地实现。此类处理器可并入由系统的其他组件操作或与之通信的设备、服务器、客户端或其他计算或数据处理设备。作为示例,图5是显示根据实施例的可以存在于用于实施方法、过程、功能或操作的计算机设备或系统600中的元件或组件的附图。图5所示的子系统通过系统总线602互连。附加子系统包括打印机604、键盘606、固定磁盘608和耦合到显示适配器612的显示器610。耦合到I/O控制器614的外围设备和输入/输出(I/O)设备可以通过本领域已知的任何数量的手段(例如串行端口616)连接到计算机系统。例如,串行端口616或外部接口618可用于将计算机设备600连接到图5中未示出的其他设备和/或系统,包括如因特网的广域网、鼠标输入设备和/或扫描仪。通过系统总线602的互连,使得一个或多个处理器620可以与每个子系统通信,并控制存储在系统存储器622和/或固定磁盘608中的指令执行,还控制子系统之间的信息交换。系统存储器622和/或固定磁盘608可以包含有形的计算机可读介质。
在本实施例中,AFM 105也可以经由接口(未示出)耦合到总线602。由此,可以使用整体计算系统600的处理器620或在AFM 105的机载处理器621来发起和执行上述操作和过程。此外,AFM 105确定和收集的数据可以存储在计算系统600的存储器622中,或者可以存储在与AFM 105相关联的本地存储器623中。
应当理解,如上所述的本公开可以使用计算机软件以模块化或集成的方式以控制逻辑的形式实现。基于本文提供的公开和教导,本领域普通技术人员将了解通过硬件以及组合硬件和软件来实现本公开的其他方式和/或方法。
本申请中描述的任何软件组件、过程或功能可以被实现为软件代码,该软件代码可以通过处理器使用任何适当的计算机语言(例如,汇编语言Java、JavaScript、C、C++或Perl),并使用例如常规或面向对象的技术来执行。软件代码可以作为一系列指令或命令存储在计算机可读介质上,例如随机存取存储器(RAM)、只读存储器(ROM)、例如硬盘驱动器或软盘的磁性介质,或如CD-ROM的光学介质。任何这样的计算机可读介质可以驻留在单个计算设备上或其内部,并且可以存在于系统或网络内的不同计算设备上或其内部。
本文所引用的所有参考文献,包括出版物、专利申请和已授权专利,均以引用方式并入本文,并且如同每个参考被单独地和具体地通过引用并入本文和/或以其整体并入本文的方式进行阐述。
除非本文另有说明或上下文明确矛盾,否则在说明书和所附权利要求中使用术语“一(a/an)”、“该(The)”以及类似的指称应被解释为涵盖单数和复数。除非另有说明,否则说明书和所附权利要求中的术语“具有”、“包括”、“包含”和类似用语应解释为开放式术语(例如,是指“包括但不限于”)。除非本文另有说明,否则本文列举的数值范围仅仅是用作单独参考的落入该范围的每个单独的值,并且每个单独的值被并入说明书如同本文对其进行单独列举一样。除非本文另有说明或上下文明确矛盾,否则本文所述的所有方法都可以以任何合适的顺序执行。除非另有声明,本文提供的任何和所有示例或示例性语言(例如,“例如”)仅仅是为了更好地说明实施例,不会限制本公开的范围。说明书中的任何语言都不应被解释为任何未要求保护的元素对于本公开的每个实施例而言是至关重要的。
可以与附图所示或如上所述的部件具有不同布置,并且可以有未示出或未描述的部件和步骤。类似地,一些特征和子组合将十分有益,并且可以在不参考其他特征和子组合的情况进行使用。实施例仅作为示例而非出于限制性目的,并且替代实施例对于本专利的读者来说是显而易见的。因此,本主题不限于上文或附图中描绘的实施例,并且可以在不脱离所附权利要求的范围的情况下对实施例进行多种修改。

Claims (20)

1.一种测量样品的亚微米区域的光学特性的方法,所述方法使用原子力显微镜所述方法包括:
使探针与样品相互作用;
用来自辐射源的光束照射所述样品,使得光从探针-样品相互作用区域散射;
使用检测器收集来自所述探针-样品相互作用区域和背景区域的散射光,所述散射光是所述探针与所述样品之间距离的函数;并且
响应于所收集的相对于所述距离的散射光来构造近场信号;并且
其中,所述近场信号的垂直分辨率至少是7nm。
2.根据权利要求1所述的方法,其中,构造所述近场信号还包括:
当所述散射光由来自较大针尖-样品距离的所述背景区域的散射光支配时,外推距离相关的散射光响应的线性函数;并且
当所述散射光不受来自较小针尖-样品距离的所述背景区域的散射光支配时,从所述散射光中减去所外推的线性函数。
3.根据权利要求1所述的方法,其中,构造所述近场信号还包括:
当所述散射光由来自较大针尖-样品距离的所述背景区域的散射光支配时,外推距离相关的散射光响应的二次函数;并且
当所述散射光不受来自较小针尖-样品距离的所述背景区域的散射光支配时,从所述散射光中减去所外推的二次函数。
4.根据权利要求1所述的方法,其中,构造所述近场信号还包括:
当所述散射光由来自较大针尖-样品距离的所述背景区域的散射光支配时,外推距离相关的散射光响应的多项式函数;并且
当所述散射光不受来自较小针尖-样品距离的所述背景区域的散射光支配时,从所述散射光中减去所外推的多项式函数。
5.根据权利要求1所述的方法,还包括:对所述样品的多个位置的多个针尖-样品距离确定所述样品的空间近场响应图的层析截面。
6.根据权利要求1所述的方法,还包括:为所述样品上的多个位置的至少一个特定的垂直针尖-样品距离创建空间近场响应图的步骤,其中,至少一个图具有20nm或更好的空间分辨率。
7.根据权利要求1所述的方法,还包括:为所述样品上的多个位置的至少一个特定的垂直针尖-样品距离创建空间近场响应图的步骤,其中,至少一个图具有5nm或更好的空间分辨率。
8.根据权利要求1所述的方法,其中,所述近场信号的垂直分辨率至少是1。
9.根据权利要求8所述的方法,其中,为至少一个特定的垂直针尖-样品距离创建空间分辨的近场响应图,并且其中,所述图包括至少100×100个像素并且在小于30分钟内完成。
10.根据权利要求1所述的方法,还包括:改变所述辐射源的波长以确定与近场散射对波长的依赖性相对应的近场光谱。
11.根据权利要求1所述的方法,还包括:确定对应于针尖-样品距离为零时的跳动接触时间ts来作为同步点,从而能预测地确定来自探针偏转信号的所述针尖-样品距离,并将所述探针偏转信号与所述散射光的信号相关联。
12.根据权利要求1所述的方法,还包括:确定对应于针尖-样品距离不再为零时的分离时间td来用作同步点,从而能预测地确定来自探针偏转信号的所述针尖-样品距离从而与所述散射光的信号相关联。
13.根据权利要求11所述的方法,其中,所述近场信号包括多个被同步平均的周期,从而提高信噪比。
14.根据权利要求1所述的方法,还包括:使用光学干涉仪在光学检测器处对所述散射光的信号进行干涉放大。
15.根据权利要求1所述的方法,其中,光源的波长包括从紫外线波长到远红外波长的范围。
16.根据权利要求1所述的方法,其中,使所述探针与所述样品相互作用还包括:使所述探针以峰值力轻敲模式与所述样品相互作用。
17.一种测量样品的亚微米区域的光学特性的原子力显微镜,包括:
探针,用于与所述样品相互作用;
辐射源,利用光束照射所述样品,使得光从探针-样品相互作用区域散射;
检测器,用于检测来自所述探针-样品相互作用区域和背景区域的散射光,所述散射光是所述探针与所述样品之间距离的函数;以及
处理器,响应于检测到的相对于所述距离的散射光来构造近场信号,并且其中,所述近场信号的垂直分辨率至少是7nm。
18.根据权利要求17所述的AFM,还包括针对所述样品上的多个位置的至少一个特定的垂直针尖-样品距离的空间近场响应图,其中,至少一个图具有20nm或更好的空间分辨率。
19.根据权利要求17所述的AFM,还包括针对所述样品上的多个位置处的至少一个特定的垂直针尖-样品距离的空间近场响应图,其中,至少一个图具有5nm或更好的空间分辨率。
20.根据权利要求17所述的方法,其中,所述近场信号的垂直分辨率至少是1nm。
CN202410181480.XA 2018-01-22 2019-01-22 测量样品的亚微米区域的光学特性的方法及原子力显微镜 Pending CN118033180A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862620263P 2018-01-22 2018-01-22
US62/620,263 2018-01-22
PCT/US2019/014572 WO2019144128A2 (en) 2018-01-22 2019-01-22 System and method for a non-tapping mode scattering-type scanning near-field optical microscopy
CN201980020933.8A CN111886505B (zh) 2018-01-22 2019-01-22 非轻敲模式的散射式扫描近场光学显微镜系统及方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201980020933.8A Division CN111886505B (zh) 2018-01-22 2019-01-22 非轻敲模式的散射式扫描近场光学显微镜系统及方法

Publications (1)

Publication Number Publication Date
CN118033180A true CN118033180A (zh) 2024-05-14

Family

ID=67301217

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202410181480.XA Pending CN118033180A (zh) 2018-01-22 2019-01-22 测量样品的亚微米区域的光学特性的方法及原子力显微镜
CN201980020933.8A Active CN111886505B (zh) 2018-01-22 2019-01-22 非轻敲模式的散射式扫描近场光学显微镜系统及方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201980020933.8A Active CN111886505B (zh) 2018-01-22 2019-01-22 非轻敲模式的散射式扫描近场光学显微镜系统及方法

Country Status (4)

Country Link
US (2) US11415597B2 (zh)
EP (1) EP3743732A4 (zh)
CN (2) CN118033180A (zh)
WO (1) WO2019144128A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3743732A4 (en) * 2018-01-22 2021-09-15 Lehigh University SYSTEM AND PROCEDURE FOR AN OPTICAL SCREENING FIELD MICROSCOPY WITH NON-TAPPING MODE
CN115684069B (zh) * 2022-10-13 2024-05-07 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种对精子头部无损层析成像的方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519212A (en) * 1992-08-07 1996-05-21 Digital Instruments, Incorporated Tapping atomic force microscope with phase or frequency detection
US6002471A (en) * 1996-11-04 1999-12-14 California Institute Of Technology High resolution scanning raman microscope
US6469288B1 (en) * 1999-05-17 2002-10-22 Olympus Optcial Co., Ltd. Near field optical microscope and probe for near field optical microscope
US7111504B2 (en) * 2004-09-30 2006-09-26 Lucent Technologies Inc. Atomic force microscope
ATE407430T1 (de) 2005-09-30 2008-09-15 Max Planck Gesellschaft Optische vorrichtung zur messung von modulierten lichtsignalen
US7526949B1 (en) * 2006-07-21 2009-05-05 The United States Of America As Represented By The Secretary Of The Army High resolution coherent dual-tip scanning probe microscope
US8173965B2 (en) * 2006-09-12 2012-05-08 International Business Machines Corporation Thermally excited near-field source
US8156568B2 (en) * 2007-04-27 2012-04-10 Picocal, Inc. Hybrid contact mode scanning cantilever system
US9061494B2 (en) * 2007-07-19 2015-06-23 The Board Of Trustees Of The University Of Illinois High resolution electrohydrodynamic jet printing for manufacturing systems
CN103328984B (zh) * 2010-11-29 2015-11-25 布鲁克纳米公司 使用峰值力轻敲模式来测量样本的物理特性的方法和设备
US8643847B1 (en) * 2011-05-08 2014-02-04 Bruker Nano Inc. Interferometric technique for measuring patterned sapphire substrates
US9417170B2 (en) * 2011-07-15 2016-08-16 Clarkson University High resolution, high speed multi-frequency dynamic study of visco-elastic properites
EP2613159A1 (en) 2012-01-05 2013-07-10 Neaspec GmbH Method for measuring the near-field signal
GB201215546D0 (en) * 2012-08-31 2012-10-17 Infinitesima Ltd Multiple probe detection and actuation
US8646110B1 (en) * 2012-11-27 2014-02-04 Xiaoji Xu Method to obtain absorption spectra from near-field infrared scattering using homodyne detection
JP6014502B2 (ja) * 2013-01-25 2016-10-25 株式会社日立製作所 走査プローブ顕微鏡およびこれを用いた試料の観察方法
US9778282B2 (en) * 2013-03-15 2017-10-03 Anasys Instruments Method and apparatus for infrared scattering scanning near-field optical microscopy with high speed point spectroscopy
EP4345463A2 (en) * 2013-03-15 2024-04-03 Bruker Nano, Inc. Chemical nano-identification of a sample using normalized near-field spectroscopy
US10067159B2 (en) * 2014-02-19 2018-09-04 Bruker Nano, Inc. Field-mapping and focal-spot tracking for S-SNOM
US10228389B2 (en) * 2015-12-02 2019-03-12 Bruker Nano, Inc. Method and apparatus for infrared scattering scanning near-field optical microscopy with background suppression
CN105699701B (zh) * 2016-03-26 2019-01-25 吉林大学 用于提取近场太赫兹信号的伪零差干涉探测系统及探测方法
EP3500841A4 (en) * 2016-08-22 2020-06-03 Bruker Nano, Inc. INFRARED CHARACTERIZATION OF A SAMPLE USING AN OSCILLATION MODE
KR20190128192A (ko) * 2017-03-09 2019-11-15 브루커 나노, 인코퍼레이션. 광열 효과에 기반한 적외선 스캐닝 근접장 광학 현미경법을 위한 방법 및 장치
EP3619264A1 (en) * 2017-05-03 2020-03-11 Lehigh Technologies, Inc. Thermoplastic elastomer compositions having micronized rubber powder
EP3743732A4 (en) * 2018-01-22 2021-09-15 Lehigh University SYSTEM AND PROCEDURE FOR AN OPTICAL SCREENING FIELD MICROSCOPY WITH NON-TAPPING MODE
US10746542B2 (en) * 2018-09-25 2020-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. Line edge roughness analysis using atomic force microscopy
DE102020210290B3 (de) * 2020-08-13 2021-11-18 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zum Betreiben eines Biegebalkens in einer geschlossenen Regelschleife
US11346857B1 (en) * 2021-08-04 2022-05-31 Nanometronix LLC Characterization of nanoindentation induced acoustic events
US11835546B1 (en) * 2021-08-04 2023-12-05 Nanometronix LLC Characterization of nanoindented and scratch induced accoustic events

Also Published As

Publication number Publication date
EP3743732A2 (en) 2020-12-02
US20210041477A1 (en) 2021-02-11
CN111886505B (zh) 2024-03-05
WO2019144128A3 (en) 2020-04-09
WO2019144128A2 (en) 2019-07-25
EP3743732A4 (en) 2021-09-15
US20220390485A1 (en) 2022-12-08
US12000861B2 (en) 2024-06-04
CN111886505A (zh) 2020-11-03
US11415597B2 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
US10845382B2 (en) Infrared characterization of a sample using oscillating mode
CN110573887B (zh) 用于基于光热效应的红外扫描近场光学显微镜的方法与装置
CN104981701B (zh) 利用零差检测从近场红外散射获得吸收光谱的方法
US12000861B2 (en) System and method for a non-tapping mode scattering-type scanning near-field optical microscopy
US9846178B2 (en) Chemical nano-identification of a sample using normalized near-field spectroscopy
EP4189405A1 (en) Method and apparatus of atomic force microscope based infrared spectroscopy with controlled probing depth
Yoxall et al. Widely tuneable scattering-type scanning near-field optical microscopy using pulsed quantum cascade lasers
JP4009197B2 (ja) 走査型近接場光学顕微鏡
US20220163559A1 (en) Active bimodal afm operation for measurements of optical interaction
JP5802417B2 (ja) 走査プローブ顕微鏡およびこれを用いた測定方法
EP0757271A2 (en) Interferometric near-field apparatus and method
US20240168053A1 (en) Nano-Mechanical Infrared Spectroscopy System and Method Using Gated Peak Force IR
WO2011007168A2 (en) Microspectroscopy apparatus and method
Gerber Real-time detection for scattering scanning near-field optical microscopy
Yoxall Applications of scattering-type scanning near-field optical microscopy in the infrared
Hosek et al. Journal of the Association for Laboratory

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination