CN118003707A - 一种隔热耐烧蚀复合材料及其制备方法与应用 - Google Patents

一种隔热耐烧蚀复合材料及其制备方法与应用 Download PDF

Info

Publication number
CN118003707A
CN118003707A CN202311844777.1A CN202311844777A CN118003707A CN 118003707 A CN118003707 A CN 118003707A CN 202311844777 A CN202311844777 A CN 202311844777A CN 118003707 A CN118003707 A CN 118003707A
Authority
CN
China
Prior art keywords
ablation
heat
silicon carbide
carbide fiber
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311844777.1A
Other languages
English (en)
Inventor
黄小忠
陶孟
陶浩帆
马彦
陈欢
黎尧
梅文斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Boom New Materials Co ltd
Original Assignee
Hunan Boom New Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Boom New Materials Co ltd filed Critical Hunan Boom New Materials Co ltd
Priority to CN202311844777.1A priority Critical patent/CN118003707A/zh
Publication of CN118003707A publication Critical patent/CN118003707A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • B29C70/345Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation using matched moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/229Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/231Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2461/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明公开一种隔热耐烧蚀复合材料,包括基体板和压在基体板上的碳化硅纤维增强树脂复合材料,所述碳化硅纤维增强树脂复合材料是碳化硅纤维布/毡上下两面均涂覆隔热耐烧蚀改性树脂并被所述隔热耐烧蚀改性树脂浸润、固化后得到,所述隔热耐烧蚀改性树脂由20%‑60%重量份的环氧树脂、2%‑10%重量份的固化剂、5%‑15%重量份的催化剂、10%‑15%重量份的成核剂、3%‑5%重量份的发泡剂、15%‑20%重量份的阻燃剂、5%‑15%重量份的助剂反应制得;本发明提供的隔热耐烧蚀复合材料实现了隔热、耐烧蚀一体化,能满足1300℃高温下的耐烧蚀、隔热需求,能在1300℃高温下持续烧蚀30min后保持背板温度低于300℃。

Description

一种隔热耐烧蚀复合材料及其制备方法与应用
技术领域
本发明属于复合材料领域,尤其涉及一种隔热耐烧蚀复合材料及其制备方法与应用。
背景技术
动力电池系统(电池包)是新能源汽车整车的动力来源,是新能源汽车最关键的零部件之一。电池包一般由电池模组、电气系统、热管理系统、电池管理系统和结构件等组成。动力电池包壳体的主要作用是承载电池模组、电气模块、冷却模块等动力电池系统部件,同时保护电池和电气系统在受到外界碰撞、挤压时不会破坏,对电池包的安全防护具有至关重要的作用。为保证动力电池的安全性,动力电池包壳体需要适应各种复杂工况,满足强度和刚度等需求。
目前电池包壳体一般采用云母片作为耐烧蚀层,盖板与防火隔热层分开,该方案存在如下不足:(1)使用云母片制作的电池包防护材料,其耐火温度一般在800℃,未来随着电池的能量密度增加,电池防火温度需求将会达到1300℃,现有的云母片将难以满足高温使用的需求;(2)传统的电池包壳体的厚度为5-8mm,加上云母片1mm总共厚度将达到6-9mm,电池组自重大,电耗增加,续航减少,不利于电动汽车节能环保及轻量化发展。
随着新能源汽车的发展,人们对新能源汽车的续航里程要求不断提升,对动力电池的隔热耐高温性能及其轻量化的要求不断提高,而现有的电池包壳体材料一般只具有隔热性能或只具有抗烧蚀性能,难以实现1300℃高温下隔热抗烧蚀性能于一体,满足不了1300℃温度下耐烧蚀及隔热的要求。
发明内容
本发明所要解决的技术问题是:克服以上背景技术中提到的不足和缺陷,提供一种隔热耐烧蚀一体化复合材料,既能满足高温条件下的耐烧蚀、隔热问题,同时实现复合材料轻质低重,且能满足高温1300℃下烧蚀30min后背板温度低于300℃。
本发明的目的之一,在于在解决目前面临的更高失火温度和耐烧蚀性能的需求,提供一种隔热耐烧蚀复合材料;本发明的目之二,是提供一种隔热耐烧蚀复合材料的制备方法。
为了实现上述目的,本发明采用如下技术方案:
一种隔热耐烧蚀复合材料,包括基体板和压在基体板上的碳化硅纤维增强树脂复合材料,所述碳化硅纤维增强树脂复合材料是碳化硅纤维布/毡上下两面均涂覆隔热耐烧蚀改性树脂并被所述隔热耐烧蚀改性树脂浸润,固化后得到,
所述隔热耐烧蚀改性树脂由20%-60%重量份的环氧树脂、2%-10%重量份的固化剂、5%-15%重量份的催化剂、10%-15%重量份的成碳剂、3%-5%重量份的发泡剂、15%-20%重量份的阻燃剂、5%-15%重量份的助剂混合制得。
本发明采用的耐烧蚀改性树脂在300℃以上的温度中可同时发泡和碳化形成无机泡沫基体,可以有效的隔绝热量的传导,阻挡火焰的烧蚀,碳化硅纤维布/毡具有优异的高温抗氧化性,在高温下具有良好的机械性能,本发明通过采用耐烧蚀改性树脂和碳化硅纤维布/毡两者相结合,一方面耐烧蚀改性树脂可以在在300℃以上的温度中同时发泡和碳化形成无机泡沫基体,提升复合材料的厚度,进而提高隔热效果,同时碳化硅纤维布/毡能为泡沫结构提供了良好的强度支撑,增加了泡孔强度,提高了隔热耐烧蚀改性树脂发泡成为泡沫后的结构强度;另一方面碳化硅纤维布/毡能对在高温条件下进行发泡的耐烧蚀改性树脂进行紧固,控制其发泡倍率,同时发泡结构能延长高温条件下碳化硅纤维布/毡被氧化的时间,进而提升了复合材料整体的抗烧蚀性能。本发明所制备的一种隔热耐烧蚀复合材料,是隔热及耐烧蚀一体化的电池包壳体材料,通过隔热耐烧蚀改性树脂作为耐烧蚀基体,碳化硅纤维布/毡作为支撑骨架,两者相协同,实现防隔热耐烧蚀一体化,既能满足高温条件下的耐烧蚀、隔热问题,同时实现复合材料轻质低重,能满足高温条件下的力学性能要求。
进一步优选的技术方案,所述碳化硅纤维布/毡为碳化硅纤维布或碳化硅纤维毡,或碳化硅纤维布和碳化硅纤维毡的组合。
进一步优选的技术方案,所述碳化硅纤维布/毡中所述碳化硅纤维布和碳化硅纤维毡的体积比为1:5~5:1。当碳化硅纤维布和碳化硅纤维毡的体积比在范围内时,制备的电池包壳体材料经整体烧蚀30min后,发现样品不发生分层、开裂、烧穿等现象,复合材料在1300℃温度下烧蚀30min后,背板温度低于250℃,具有更好的隔热抗烧蚀效果。
进一步优选的技术方案,所述碳化硅纤维布为二代碳化硅纤维布;所述碳化硅纤维毡为二代碳化硅纤维毡。
进一步优选的技术方案,所述环氧蚀树脂为并不限于双酚A型环氧树脂、双酚F型环氧树脂、有机硅改性环氧树脂、氢化双酚A型环氧树脂中的一种或多种。
进一步优选的技术方案,所述固化剂为并不限于四乙烯五胺、二乙烯三胺、聚乙烯亚胺、聚酰胺中的一种。
进一步优选的技术方案,所述催化剂为并不限于磷酸二氢铵、硼酸盐、有机磷酸脂中的一种。
进一步优选的技术方案,所述成碳剂为并不限于环氧树脂、酚醛树脂、醛酮树脂、淀粉、纤维素中的一种或多种。
进一步优选的技术方案,所述发泡剂为并不限于三聚氰胺、尿素、偶氮二甲酰胺中的一种。
进一步优选的技术方案,所述阻燃剂为并不限于氢氧化铝、氢氧化镁、氧化铝、三氧化二锑、氧化锌中的一种或多种。
进一步优选的技术方案,所述助剂为并不限于硅油、聚二甲基硅氧烷、烷基改性有机硅氧烷、聚醚聚酯改性有机硅氧烷中的一种或多种。
进一步优选的技术方案,所述的基体板为并不限于铝板、钢板、纤维增强树脂基复合板中一种。
本发明还提供一种隔热抗烧蚀电池包壳的制备方法,其制备步骤如下:
(a)按所述隔热耐烧蚀改性树脂的配方配置组分,搅拌混合均匀后备用;
(b)将步骤(a)制得的隔热耐烧蚀改性树脂均匀喷涂在碳化硅纤维布/毡的上下两面,使碳化硅纤维布/毡完全浸润隔热耐烧蚀改性树脂,然后将浸润的碳化硅纤维布/毡放入烘箱中在60-200℃下预固化得到预浸料;
(c)将步骤(b)得到的预浸料裁剪为模具大小后,置于基体板上一起层铺装入模具中模压成型,模压温度120-300℃,压力为0.5-10Mpa,即得到隔热抗烧蚀电池包壳体材料。
进一步优选的技术方案,步骤(a)中的搅拌速率为150-200rpm,搅拌时间1-5h。
有益效果
(1)本发明提供的一种隔热耐烧蚀复合材料采用隔热耐烧蚀改性树脂与碳化硅纤维布/毡相结合,实现隔热耐烧蚀一体化,隔热耐烧蚀改性树脂在1300℃火焰烧蚀下,可发泡膨胀并无机化形成泡沫层,可阻挡火焰的烧蚀;发泡形成的泡沫层强度高,持续烧蚀30min后,泡孔不塌陷;同时本发明使用碳化硅纤维布/毡作为增强材料,可以降低改性树脂的膨胀倍率,增强泡沫基体强度,整体烧蚀30min后样品不发生分层、开裂、烧穿等现象,壳体背板温度低于300℃,具有良好隔热抗烧蚀效果。
(2)利用本发明制备的电池包壳体材料制备的电池包壳体,厚度薄质量轻,可有效的减少电动汽车整体质量,增加了其续航能力。
(3)本发明制备流程短,制备设备需求低,制备工艺简单易实现批量化生产,所制备的轻质防隔热抗烧蚀电池包壳体满足新能源电池需求。
附图说明
附图用来增强对本发明的进一步理解,且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
图1为对比例1无碳化硅纤维布/毡的复合材料1300℃烧蚀30min后的实物图
图2为实施例2的隔热耐烧蚀复合材料1300℃烧蚀30min后的实物图
图3为对比例3隔热耐烧蚀改性树脂制备中未添加发泡剂制备的复合材料烧蚀30min后的实物图
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
本实施例提供一种隔热耐烧蚀复合材料,包括基体板和压在基体板上的碳化硅纤维增强树脂复合材料,碳化硅纤维增强树脂复合材料是碳化硅纤维布/毡上下两面均涂覆隔热耐烧蚀改性树脂并被隔热耐烧蚀改性树脂浸润、固化得到;其中隔热耐烧蚀改性树脂是由下述重量百分比的成分组成:50%双酚A型环氧树脂,7%四乙烯五胺,10%磷酸二氢铵,10%酚醛树脂,3%三聚氰胺,15%氢氧化铝,5%聚二甲基硅氧烷。
本实施例提供的隔热耐烧蚀复合材料制备方法如下:
将上述材料通过如下步骤进行加工:
步骤一:
按照比例称取100g的双酚A型环氧树脂,倒入混合容器中,开启搅拌,搅拌速率150-200rpm,逐步按照上述比例加入上述其他材料,持续搅拌1h,得到改性树脂;
步骤二:
将所制备的改性树脂采用喷涂机均喷涂在碳化硅纤维布毡的上下两面,使碳化硅纤维布/毡完全浸润隔热耐烧蚀改性树脂,然后放入烘箱中于100℃预固化得到碳化硅纤维布毡预浸料。
步骤三:
将选用碳化硅纤维布和碳化硅纤维毡的体积比为2/3的碳化硅纤维布/毡预浸料裁剪成产品所需大小,置于基体板上一起层铺入模具中,利用平板压机于180℃下,0.5Mpa压力进行模压成型,制得1.5mm厚度的隔热耐烧蚀复合材料。
将所制备的隔热耐烧蚀复合材料,采用手持式喷枪持续烧蚀30min进行考核,隔热耐烧蚀复合材料正面温度为1300℃,烧蚀30min后,测试隔热耐烧蚀复合材料的背板温度为218℃,隔热耐烧蚀改性树脂的整体发泡倍率为2.2,最终烧蚀状态基本完好。
实施例2:
本实施例提供一种隔热耐烧蚀复合材料,与实施例1基本相同,不同点在于,隔热耐烧蚀改性树脂的成分组成配比有区别:
本实施例中,隔热耐烧蚀改性树脂是由下述重量百分比的成分组成:40%双酚A型环氧树脂,5%四乙烯五胺,10%磷酸二氢铵,15%酚醛树脂,5%三聚氰胺,20%氢氧化铝,5%聚二甲基硅氧烷
将上述材料通过如下步骤进行加工:
步骤一:
按照比例称取80g的双酚A型环氧树脂,倒入混合容器中,开启搅拌,搅拌速率150-200rpm,逐步按照比例加入上述其他材料,持续搅拌1h,得到改性树脂;步骤二:
将所制备的改性树脂采用喷涂机均喷涂在碳化硅纤维布毡的上下两面,使碳化硅纤维布/毡完全浸润隔热耐烧蚀改性树脂,然后放入烘箱中于100℃预固化得到预浸料。
步骤三:
将选用碳化硅纤维布和碳化硅纤维毡的体积比为2/3的碳化硅纤维布/毡预浸料裁剪成产品所需大小,置于基体板上一起层铺入模具中,利用平板压机于200℃下,压力不小于0.5Mpa进行模压成型,制得1.5mm厚度的隔热耐烧蚀复合材料。
将所制备的隔热耐烧蚀复合材料,采用手持式喷枪持续烧蚀30min进行考核,隔热耐烧蚀复合材料正面温度为1300℃,烧蚀30min后,如图2所示,测试隔热耐烧蚀复合材料的背板温度为156℃,隔热耐烧蚀改性树脂的整体发泡倍率为3.5,最终烧蚀状态基本完好。
纤维基体增强后的泡沫结构强度高,1300℃烧蚀后,烧蚀表面完整,泡孔未破裂,形状完好,起到了良好的隔热效果。
实施例3:
本实施例提供一种隔热耐烧蚀复合材料,与实施例1基本相同,不同点在于,隔热耐烧蚀改性树脂的成分组成配比有区别:
本实施例中,隔热耐烧蚀改性树脂是由下述重量百分比的成分组成:35%双酚A型环氧树脂,5%四乙烯五胺,10%磷酸二氢铵,10%酚醛树脂,5%三聚氰胺,20%氢氧化铝,15%聚二甲基硅氧烷。
将上述材料通过如下步骤进行加工:
步骤一:
按照比例称取75g的环氧树脂,倒入混合容器中,开启搅拌,搅拌速率150-200rpm,逐步加入上述其他材料,持续搅拌1h,得到改性树脂;
步骤二:
将所制备的改性树脂采用喷涂机均喷涂在碳化硅纤维布毡上,然后放入烘箱中于100℃预固化得到预浸料。
步骤三:
将选用碳化硅纤维布和碳化硅纤维毡的体积比为2/3的碳化硅纤维布/毡预浸料裁剪成产品所需大小,置于基体板上一起层铺入模具中,利用平板压机于150℃下,压力不小于0.5Mpa进行模压成型,制得1.5mm厚度的隔热耐烧蚀复合材料。
将所制备的隔热耐烧蚀复合材料,采用手持式喷枪持续烧蚀30min进行考核,隔热耐烧蚀复合材料正面温度为1300℃,烧蚀30min后,测试隔热耐烧蚀复合材料的背板温度为232℃,隔热耐烧蚀改性树脂的整体发泡倍率为4.5,最终只有2/5的发泡结构被烧穿。
实施例4:
本实施例提供一种隔热耐烧蚀复合材料,与实施例2基本相同,不同点在于,增强体为碳化硅纤维布。
隔热耐烧蚀改性树脂是由下述重量百分比的成分组成:40%双酚A型环氧树脂,5%四乙烯五胺,10%磷酸二氢铵,15%酚醛树脂,5%三聚氰胺,20%氢氧化铝,5%聚二甲基硅氧烷
将上述材料通过如下步骤进行加工:
步骤一:
按照比例称取80g双酚A型的环氧树脂,倒入混合容器中,开启搅拌,搅拌速率150-200rpm,逐步按照比例加入上述其他材料,持续搅拌1h,得到改性树脂;步骤二:
将所制备的改性树脂采用喷涂机均喷涂在碳化硅纤维布上,然后放入烘箱中于100℃预固化得到预浸料。
步骤三:
将碳化硅纤维布预浸料裁剪成产品所需大小,置于基体板上一起层铺入模具中,利用平板压机于200℃下,压力不小于0.5Mpa进行模压成型,制得1.5mm厚度的隔热耐烧蚀复合材料。
将所制备的隔热耐烧蚀复合材料,采用手持式喷枪持续烧蚀30min进行考核,隔热耐烧蚀复合材料正面温度为1300℃,烧蚀30min后,测试隔热耐烧蚀复合材料的背板温度为282℃,隔热耐烧蚀改性树脂的整体发泡倍率为1.5,最终烧蚀状态基本完好。
实施例5:
本实施例提供一种隔热耐烧蚀复合材料,与实施例2基本相同,不同点在于,增强体为碳化硅纤维毡。
隔热耐烧蚀改性树脂是由下述重量百分比的成分组成:40%双酚A型环氧树脂,5%四乙烯五胺,10%磷酸二氢铵,15%酚醛树脂,5%三聚氰胺,20%氢氧化铝,5%聚二甲基硅氧烷。
将上述材料通过如下步骤进行加工:
步骤一:
按照比例称取80g双酚A型的环氧树脂,倒入混合容器中,开启搅拌,搅拌速率150-200rpm,逐步按照比例加入上述其他材料,持续搅拌1h,得到改性树脂;步骤二:
将所制备的改性树脂采用喷涂机均喷涂在碳化硅纤维毡上,然后放入烘箱中于100℃预固化得到预浸料。
步骤三:
将碳化硅纤维毡预浸料裁剪成产品所需大小,置于基体板上一起层铺入模具中,利用平板压机于200℃下,压力不小于0.5Mpa进行模压成型,制得1.5mm厚度的隔热耐烧蚀复合材料。
将所制备的隔热耐烧蚀复合材料,采用手持式喷枪持续烧蚀30min进行考核,隔热耐烧蚀复合材料正面温度为1300℃,烧蚀30min后,测试隔热耐烧蚀复合材料的背板温度为274℃,隔热耐烧蚀改性树脂的整体发泡倍率为4.8,最终3/5的发泡结构被烧穿,多处显露出纤维毡骨架,但隔热耐烧蚀复合材料的基体板完好。
对比例1:
本对比例提供一种复合材料,与实施例2基本相同,不同点在于,本对比例直接将隔热耐烧蚀改性树脂喷涂在基体板上,本对比例制备的复合材料不含碳化硅纤维布/毡。
本对比例中,隔热耐烧蚀改性树脂的组成成分于实施例2一致,是由下述重量百分比的成分组成:40%双酚A型环氧树脂,5%四乙烯五胺,10%磷酸二氢铵,15%酚醛树脂,5%三聚氰胺,20%氢氧化铝,5%聚二甲基硅氧烷
将上述材料通过如下步骤进行加工:
步骤一:
按照比例称取80g的环氧树脂,倒入混合容器中,开启搅拌,搅拌速率150-200rpm,逐步按照比例加入上述其他材料,持续搅拌1h,得到改性树脂;
步骤二:
将所制备的改性树脂采用喷涂机均喷涂在基板上,在平板压机于200℃下,压力不小于0.5Mpa进行模压成型,制得1.5mm厚度的复合材料。
将所制备的复合材料采用手持式喷枪持续烧蚀30min进行考核,壳板正面温度为1300℃,烧蚀30min后,如图1所示,测试复合材料的背板温度为358℃,隔热耐烧蚀改性树脂的整体发泡倍率为6.2,发泡结构被烧穿,烧蚀后样品无强度。本对比例无碳化硅纤维布/毡增强体,发泡结构脆弱,1300℃烧蚀min后,泡孔逐渐被烧穿,隔热效果差。
对比例2:
本对比例提供一种复合材料,其结构与实施例1基本相同不同点在于,改性树脂的组成成分不在保护范围内,本对比例中的改性树脂是由下述重量百分比的成分组成:15%双酚A型环氧树脂,5%四乙烯五胺,10%磷酸二氢铵,15%酚醛树脂,5%三聚氰胺,30%氢氧化铝,20%聚二甲基硅氧烷
将上述材料通过如下步骤进行加工:
步骤一:
按照比例称取30g的双酚A型环氧树脂,倒入混合容器中,开启搅拌,搅拌速率150-200rpm,逐步按比例加入上述其他材料,持续搅拌1h,得到改性树脂;步骤二:
将所制备的改性树脂采用喷涂机均喷涂在碳化硅纤维布/毡上,然后放入烘箱中于100℃预固化得到预浸料。
步骤三:
将选用碳化硅纤维布和碳化硅纤维毡的体积比为2/3的碳化硅纤维布/毡预浸料裁剪成产品所需大小,置于基体板上一起层铺入模具中,利用平板压机于150℃下,压力不小于0.5Mpa进行模压成型,制得1.5mm厚度的复合材料。
将所制备的复合材料,采用手持式喷枪持续烧蚀30min进行考核,复合材料正面温度为1300℃,烧蚀30min后,测试复合材料的背板温度为308℃,隔热耐烧蚀改性树脂的整体发泡倍率为5.5,最终发泡2/3的发泡结构被烧穿。
对比例3:
本实施例提供一种复合材料,与实施例2基本相同,不同点在于,未采用本发明的隔热耐烧蚀改性树脂。
本对比例中,改性树脂是由下述重量百分比的成分组成(不含发泡剂):40%双酚A型环氧树脂,5%四乙烯五胺,10%磷酸二氢铵,15%酚醛树脂,20%氢氧化铝,5%聚二甲基硅氧烷
将上述材料通过如下步骤进行加工:
步骤一:
按照比例称取80g的双酚A型环氧树脂,倒入混合容器中,开启搅拌,搅拌速率150-200rpm,逐步按照比例加入上述其他材料,持续搅拌1h,得到改性树脂;步骤二:
将所制备的改性树脂采用喷涂机均喷涂在碳化硅纤维布毡的上下两面,使碳化硅纤维布/毡完全浸润改性树脂,然后放入烘箱中于100℃预固化得到预浸料。
步骤三:
将选用碳化硅纤维布和碳化硅纤维毡的体积比为2/3的碳化硅纤维布/毡预浸料裁剪成产品所需大小,置于基体板上一起层铺入模具中,利用平板压机于200℃下,压力不小于0.5Mpa进行模压成型,制得1.5mm厚度的复合材料。
将所制备的复合材料,采用手持式喷枪持续烧蚀30min进行考核,复合材料正面温度为1300℃,烧蚀30min后,如图3所示;复合材料的背板温度为370℃,背板温度高于300℃,隔热效果不好。本对比例未能反应生成隔热耐烧蚀改性树脂,未能形成发泡基体。本对比例,未添加发泡剂体系复,在烧蚀考核过程中未能发泡,基体虽也表现出良好的耐烧蚀性能,但隔热效果差,背板温度较高。对比例4:
本对比例提供一种耐烧蚀复合材料,与实施例2基本相同,不同点在于,未采用本发明的隔热耐烧蚀改性树脂。
本实施例中,改性树脂是由下述重量百分比的成分组成(不含成碳剂):40%双酚A型环氧树脂,5%四乙烯五胺,10%磷酸二氢铵,5%三聚氰胺,20%氢氧化铝,5%聚二甲基硅氧烷
将上述材料通过如下步骤进行加工:
步骤一:
按照比例称取80g的双酚A型环氧树脂,倒入混合容器中,开启搅拌,搅拌速率150-200rpm,逐步按照比例加入上述其他材料,持续搅拌1h,得到改性树脂;步骤二:
将所制备的改性树脂采用喷涂机均喷涂在碳化硅纤维布毡的上下两面,使碳化硅纤维布/毡完全浸润改性树脂,然后放入烘箱中于100℃预固化得到预浸料。
步骤三:
将选用碳化硅纤维布和碳化硅纤维毡的体积比为2/3的碳化硅纤维布/毡预浸料裁剪成产品所需大小,置于基体板上一起层铺入模具中,利用平板压机于200℃下,压力不小于0.5Mpa进行模压成型,制得1.5mm厚度的耐烧蚀复合材料。
将所制备的耐烧蚀复合材料,采用手持式喷枪持续烧蚀30min进行考核,耐烧蚀复合材料正面温度为1300℃,烧蚀30min后,耐烧蚀复合材料的背板温度为382℃,改性树脂发泡倍率为3.8,发泡基体强度低,4/5的结构被烧穿。本对比例的背板温度高于300℃,隔热效果不好。本对比例未能反应生成隔热耐烧蚀改性树脂,不能实现泡沫的无机化。

Claims (8)

1.一种隔热耐烧蚀复合材料,其特征在于,包括基体板和压在基体板上的碳化硅纤维增强树脂复合材料,所述碳化硅纤维增强树脂复合材料是碳化硅纤维布/毡上下两面均涂覆隔热耐烧蚀改性树脂并被所述隔热耐烧蚀改性树脂浸润、固化后得到,
所述隔热耐烧蚀改性树脂由20%-60%重量份的环氧树脂、2%-10%重量份的固化剂、5%-15%重量份的催化剂、10%-15%重量份的成碳剂、3%-5%重量份的发泡剂、15%-20%重量份的阻燃剂、5%-15%重量份的助剂混合制得。
2.根据权利要求1所述的一种隔热耐烧蚀复合材料,其特征在于,所述碳化硅纤维布/毡中所述碳化硅纤维布和碳化硅纤维毡的体积比为1:5~5:1。
3.根据权利要求1或2所述的一种隔热耐烧蚀复合材料,其特征在于,所述碳化硅纤维布为二代碳化硅纤维布;所述碳化硅纤维毡为二代碳化硅纤维毡。
4.根据权利要求1所述的一种隔热耐烧蚀复合材料,其特征在于,所述环氧树脂为双酚A型环氧树脂、双酚F型环氧树脂、有机硅改性环氧树脂、氢化双酚A型环氧树脂中的一种或多种;
所述固化剂为四乙烯五胺、二乙烯三胺、聚乙烯亚胺、聚酰胺中的一种;
所述催化剂为磷酸二氢铵、硼酸盐、有机磷酸脂中的一种;
所述成碳剂为环氧树脂、酚醛树脂、醛酮树脂、淀粉、纤维素中的一种或多种;所述发泡剂为三聚氰胺、尿素、偶氮二甲酰胺中的一种;
所述阻燃剂为氢氧化铝、氢氧化镁、氧化铝、三氧化二锑、氧化锌中的一种或多种;
所述助剂为硅油、聚二甲基硅氧烷、烷基改性有机硅氧烷、聚醚聚酯改性有机硅氧烷中的一种或多种。
5.根据权利要求1所述的一种隔热耐烧蚀复合材料,其特征在于,所述的基体板为铝板、钢板、纤维增强树脂基复合板中一种。
6.一种如权利要求1-5任一项所述的一种隔热耐烧蚀复合材料的制备方法,制备步骤如下:
(a)按所述隔热耐烧蚀改性树脂的配方配置组分,搅拌混合均匀后备用;
(b)将步骤(a)制得的隔热耐烧蚀改性树脂均匀喷涂在碳化硅纤维布/毡的上下两面,使碳化硅纤维布/毡完全浸润隔热耐烧蚀改性树脂,然后将浸润的碳化硅纤维布/毡放入烘箱中在60-200℃下预固化得到预浸料;
(c)将步骤(b)得到的预浸料裁剪为模具大小后,置于基体板上一起层铺装入模具中模压成型,模压温度为120-300℃,压力为0.5-10Mpa,即得到隔热耐烧蚀复合材料。
7.根据权利要求6所述的一种隔热耐烧蚀复合材料的制备方法,其特征在于,步骤(a)中的搅拌速率为150-200rpm,搅拌时间1-5h。
8.一种如权利要求1-5所述一种隔热耐烧蚀复合材料或由权利要求6-7所述的一种隔热耐烧蚀复合材料的制备方法制得的隔热耐烧蚀复合材料应用,所述隔热耐烧蚀复合材料用于制作电池包壳体。
CN202311844777.1A 2023-12-28 2023-12-28 一种隔热耐烧蚀复合材料及其制备方法与应用 Pending CN118003707A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311844777.1A CN118003707A (zh) 2023-12-28 2023-12-28 一种隔热耐烧蚀复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311844777.1A CN118003707A (zh) 2023-12-28 2023-12-28 一种隔热耐烧蚀复合材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN118003707A true CN118003707A (zh) 2024-05-10

Family

ID=90943955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311844777.1A Pending CN118003707A (zh) 2023-12-28 2023-12-28 一种隔热耐烧蚀复合材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN118003707A (zh)

Similar Documents

Publication Publication Date Title
CN109968757B (zh) 一种耐烧蚀轻质防热隔热一体化复合材料及其制备方法
CN113500830B (zh) 电池箱和用于电池箱的复合材料
CN111469446B (zh) 一种汽车复合材料防火电池箱的快速成型方法
CN111284035B (zh) 一种防热失控复合材料电池箱上盖的成型工艺方法及产品
CN112265347A (zh) 一种结构承载-烧蚀防热一体化复合材料及其制备方法
CN108032580B (zh) 一种制备夹层结构热防护材料的方法及由该方法制得的热防护材料
CN111907092A (zh) 汽车复合材料电池箱三明治结构的rtm成型方法
CN106517158A (zh) 由糠酮醛树脂制备石墨烯泡沫材料的方法、石墨烯泡沫材料及其用途
CN113224339A (zh) 柔性超薄石墨双极板及其制备方法
CN111331970A (zh) 一种汽车车身用树脂基复合板材及其制备方法
CN114806079B (zh) 一种石墨/环氧树脂复合材料的制备方法
CN111792911A (zh) 一种智能调温装饰陶瓷板材及其制备方法
CN118003707A (zh) 一种隔热耐烧蚀复合材料及其制备方法与应用
CN111844811A (zh) 汽车复合材料电池箱壳体层合结构的量产制备方法
CN106848133A (zh) 一种用于电动汽车的复合材料耐火电池包及其制备方法
CN111907088A (zh) 汽车复合材料电池箱三明治结构的量产方法
CN114683653B (zh) 一种耐烧蚀气凝胶复合材料及其制备方法
CN111574938B (zh) 一种自吸热核壳增韧材料、含有自吸热核壳增韧材料的热破结构胶膜及其制备方法与应用
CN212548044U (zh) 一种汽车复合材料电池箱防火结构
CN115416377A (zh) 一种新能源汽车动力电池用保护材料及其制备方法
CN108384120B (zh) 一种低介电常数高分子基复合材料的制备工艺
CN115107330B (zh) 一种铝合金发动机燃烧室复合内绝热层及其制备方法
CN220409910U (zh) 一种气凝胶复合电芯隔热片
WO2023050970A1 (zh) 箱体组件的加工方法及箱体组件
CN219789515U (zh) 一种陶瓷化防火隔热结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination