CN117956670A - 成像控制方法、装置、成像系统及可读存储介质 - Google Patents

成像控制方法、装置、成像系统及可读存储介质 Download PDF

Info

Publication number
CN117956670A
CN117956670A CN202410349830.9A CN202410349830A CN117956670A CN 117956670 A CN117956670 A CN 117956670A CN 202410349830 A CN202410349830 A CN 202410349830A CN 117956670 A CN117956670 A CN 117956670A
Authority
CN
China
Prior art keywords
detector
image
target
shooting
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410349830.9A
Other languages
English (en)
Inventor
文东方
刘喆
康宏辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Yofo Medical Technology Co ltd
Original Assignee
Hefei Yofo Medical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Yofo Medical Technology Co ltd filed Critical Hefei Yofo Medical Technology Co ltd
Priority to CN202410349830.9A priority Critical patent/CN117956670A/zh
Publication of CN117956670A publication Critical patent/CN117956670A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明涉及射线成像技术领域,具体提供了一种成像控制方法、装置、成像系统及可读存储介质,该方法首先控制探测器向预设的目标位置移动,在探测器完成向目标位置的移动后,执行拍摄步骤得到第一拍摄图像,然后以第一拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为当前位置特征,如果当前位置特征和预先设置的参考位置特征表征的标识物位置不同,则依据当前位置特征和参考位置特征对探测器进行位置校准,其中参考位置特征通过预先执行拍摄步骤并对得到的目标拍摄图像进行分析得到。根据本发明,无需额外设置复杂的机械结果并安装传感器来进行位置检测和原点位置的校准,降低了原点校准的成本。

Description

成像控制方法、装置、成像系统及可读存储介质
技术领域
本发明涉及射线成像技术领域,尤其涉及成像控制方法、装置、成像系统及可读存储介质。
背景技术
在利用探测器和射源进行CT拍摄时,对于不同的拍摄任务,探测器和射源的相对位置关系可能会发生变化,例如在执行拍摄任务A时,探测器的位置相对于射源的位置来说是零偏置的,而在执行拍摄任务B时,探测器的位置相对于射源的位置来说需要存在一定偏置量,此时就需要在一定范围内移动探测器从而实现偏置量的调节。具体可以通过为探测器配置相应的移动控制设备来控制探测器进行用于调节偏置量的移动。
由于移动控制设备可能存在机械方面或控制方面的误差,因此需要对探测器的位置进行校准。目前常见的校准方式需要安装传感器并通过传感信号控制来实现探测器的原点校准,这需要设计复杂的机械结构,且存在传感器失效的风险。
发明内容
为了解决上述技术问题中的至少一个,本发明提供了成像控制方法、装置、成像系统及可读存储介质。
本发明第一方面提出了一种成像控制方法,应用于成像设备,所述成像设备包括探测器、射源和至少一个标识物,所述探测器能够受控在所述探测器的探测面所在的平面内进行移动,所述成像控制方法包括:第一移动步骤,控制所述探测器向预设的目标位置移动,其中所述目标位置位于所述探测面所在的平面内;在所述探测器完成向所述目标位置的移动后,执行拍摄步骤得到第一拍摄图像,其中所述拍摄步骤包括控制所述射源和所述探测器进行拍摄得到拍摄图像;以所述第一拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为当前位置特征,其中所述当前位置特征表征所述标识物在所述第一拍摄图像中的位置情况;以及如果所述当前位置特征和预先设置的参考位置特征表征的标识物位置不同,则依据所述当前位置特征和所述参考位置特征对所述探测器进行位置校准,其中所述参考位置特征通过预先执行所述拍摄步骤并对得到的目标拍摄图像进行分析得到。
根据本发明的一个实施方式,所述参考位置特征的获取方式包括:控制所述探测器在所述探测面所在的平面内移动,以使目标条件在所述探测器到达期望的停止位置时能够被满足,所述目标条件包括:所述标识物至少部分地位于所述探测器的探测范围和所述射源的投射范围内;在所述目标条件被满足时,执行所述拍摄步骤得到目标拍摄图像,其中所述目标拍摄图像对应的所述探测器的位置为所述目标位置;以及以所述目标拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为参考位置特征。
根据本发明的一个实施方式,所述标识物呈球状或呈棒状。
根据本发明的一个实施方式,呈棒状的所述标识物具有至少一个折弯处。
根据本发明的一个实施方式,所述折弯处形成的边角朝向所述探测器的可移动范围的中心区域,其中所述可移动范围对应于所述探测器在所述探测面所在的平面内的移动范围。
根据本发明的一个实施方式,依据所述当前位置特征和所述参考位置特征对所述探测器进行位置校准,包括:位置关系获取步骤,依据所述当前位置特征和所述参考位置特征得到所述探测器的当前位置和目标位置之间的相对位置关系;以及依据所述相对位置关系控制所述探测器在所述探测面所在的平面内进行移动,以使所述探测器至少向所述目标位置靠近。
根据本发明的一个实施方式,依据所述相对位置关系控制所述探测器在所述探测面所在的平面内进行移动,包括:依据所述相对位置关系确定所述探测器的移动方向和移动量;以及按所述移动方向和所述移动量控制所述探测器在所述探测面所在的平面内进行移动。
根据本发明的一个实施方式,在按所述移动方向和所述移动量控制所述探测器在所述探测面所在的平面内进行移动之后,所述方法还包括:执行所述拍摄步骤得到当前拍摄图像;以所述当前拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为新的当前位置特征;以及依据新的当前位置特征执行所述位置关系获取步骤,直至新的当前位置特征和所述参考位置特征表征的标识物位置相同。
根据本发明的一个实施方式,依据待识别图像得到相应位置特征,包括:对所述待识别图像进行阈值分割得到目标区域,其中所述目标区域的形状与所述标识物的形状相对应;确定所述目标区域中的预设特征点,并将所述预设特征点在所述待识别图像中的位置作为所述待识别图像的相应位置特征,其中所述预设特征点的位置依据所述标识物的形状设置。
根据本发明的一个实施方式,在完成对所述探测器的位置校准之后,所述方法还包括:当满足第一条件时,开始执行所述第一移动步骤,其中所述第一条件包括:所述探测器与所述射源之间的相对位置关系发生变化的次数达到预设次数。
根据本发明的一个实施方式,所述射源处安装有限束器,所述限束器用于调节所述射源的射线出口的尺寸,所述方法还包括:当满足第二条件时,则在满足所述第二条件的相应拍摄结束后,获取新的参考位置特征,其中所述第二条件包括:所述限束器的开口尺寸发生变动。
本发明第二方面提出了一种成像控制装置,应用于成像设备,所述成像设备包括探测器、射源和至少一个标识物,所述探测器能够受控在所述探测器的探测面所在的平面内进行移动,所述成像控制装置包括:移动控制单元,用于控制所述探测器向预设的目标位置移动,其中所述目标位置位于所述探测面所在的平面内;拍摄控制单元,用于在所述探测器完成向所述目标位置的移动后,执行拍摄步骤得到第一拍摄图像,其中所述拍摄步骤包括控制所述射源和所述探测器进行拍摄得到拍摄图像;特征识别单元,用于以所述第一拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为当前位置特征,其中所述当前位置特征表征所述标识物在所述第一拍摄图像中的位置情况;以及校准控制单元,用于如果所述当前位置特征和预先设置的参考位置特征表征的标识物位置不同,则依据所述当前位置特征和所述参考位置特征对所述探测器进行位置校准,其中所述参考位置特征通过预先执行所述拍摄步骤并对得到的目标拍摄图像进行分析得到。
本发明第三方面提出了一种成像系统,包括:射源;移动控制单元;探测器,所述探测器受所述移动控制单元的控制在所述探测器的探测面所在的平面内进行移动;至少一个标识物;以及如上述任一实施方式所述的成像控制装置。
本发明第四方面提出了一种可读存储介质,所述可读存储介质中存储有执行指令,所述执行指令被处理器执行时用于实现上述任一实施方式所述的成像控制方法。
附图说明
附图示出了本发明的示例性实施方式,并与其说明一起用于解释本发明的原理,其中包括了这些附图以提供对本发明的进一步理解,并且附图包括在本说明书中并构成本说明书的一部分。
图1是根据本发明的一个实施方式的成像控制方法的流程示意图。
图2是根据本发明的一个实施方式的探测器开始向目标位置移动的示意图。
图3是根据本发明的一个实施方式的探测器移动到目标位置处的示意图。
图4是根据本发明的另一个实施方式的探测器移动到目标位置处的示意图。
图5是根据本发明的一个实施方式的获取参考位置特征的流程示意图。
图6是根据本发明的一个实施方式的对探测器进行位置校准的流程示意图。
图7是根据本发明的一个实施方式的依据相对位置关系控制探测器移动的流程示意图。
图8是根据本发明的另一个实施方式的对探测器进行位置校准的流程示意图。
图9是根据本发明的一个实施方式的触发位置校准的流程示意图。
图10是根据本发明的一个实施方式的更新参考位置特征的流程示意图。
图11是根据本发明的一个实施方式的采用处理系统的硬件实现方式的成像控制装置的示意图。
图12是根据本发明的一个实施方式的成像系统的结构框图。
具体实施方式
下面结合附图和实施方式对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施方式仅用于解释相关内容,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分。
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。下面将参考附图并结合实施方式来详细说明本发明的技术方案。
除非另有说明,否则示出的示例性实施方式/实施例将被理解为提供可以在实践中实施本发明的技术构思的一些方式的各种细节的示例性特征。因此,除非另有说明,否则在不脱离本发明的技术构思的情况下,各种实施方式/实施例的特征可以另外地组合、分离、互换和/或重新布置。
本文使用的术语是为了描述具体实施例的目的,而不是限制性的。如这里所使用的,除非上下文另外清楚地指出,否则单数形式“一个(种、者)”和“所述(该)”也意图包括复数形式。此外,当在本说明书中使用术语“包含”和/或“包括”以及它们的变型时,说明存在所陈述的特征、整体、步骤、操作、部件、组件和/或它们的组,但不排除存在或附加一个或更多个其它特征、整体、步骤、操作、部件、组件和/或它们的组。还要注意的是,如这里使用的,术语“基本上”、“大约”和其它类似的术语被用作近似术语而不用作程度术语,如此,它们被用来解释本领域普通技术人员将认识到的测量值、计算值和/或提供的值的固有偏差。
在目前常见的校准方式中,可以在探测器附近安装光电开关,通过光电开关来检测探测器的位置,从而实现对探测器进行原点校准。但这需要针对探测器的移动特点以及工作特点来设置光电开关的数量和位置,设计的机械结构会较为复杂,使得原点校准的成本较高,且传感器能够会失效导致无法进行校准。
下面参考附图描述本发明的成像控制方法、装置、成像系统及计算机可读存储介质。
图1是根据本发明的一个实施方式的成像控制方法的流程示意图。参阅图1,本发明提供了成像控制方法M10,本实施方式的成像控制方法M10应用于成像设备,成像设备可以包括探测器、射源和至少一个标识物。探测器能够受控在探测器的探测面所在的平面内进行移动。本实施方式的成像控制方法M10可以包括以下步骤S100、步骤S200、步骤S300和步骤S400。
第一移动步骤S100,控制探测器向预设的目标位置移动。
S200,在探测器完成向目标位置的移动后,执行拍摄步骤得到第一拍摄图像。其中,拍摄步骤包括控制射源和探测器进行拍摄得到拍摄图像。
S300,以第一拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为当前位置特征。其中,当前位置特征表征标识物在第一拍摄图像中的位置情况。
S400,如果当前位置特征和预先设置的参考位置特征表征的标识物位置不同,则依据当前位置特征和参考位置特征对探测器进行位置校准。其中,参考位置特征通过预先执行拍摄步骤并对得到的目标拍摄图像进行分析得到。
根据本发明的实施方式提出的成像控制方法,利用标识物在拍摄图像中的位置来判断探测器是否位于原点位置,无需额外设置复杂的机械结果并安装传感器来进行位置检测和原点位置的校准,降低了原点校准的成本,提升了原点校准的可操作性、便捷性和可靠性。
图2是根据本发明的一个实施方式的探测器开始向目标位置移动的示意图。参阅图2,D为探测器,探测器D在当前时刻对应的机械坐标为(x1,y1),机械坐标指的是:用于控制探测器在探测器所在平面内移动的移动控制单元(图中未示出)的位置坐标。N1和N2均为标识物,R0为探测器D在移动控制单元的控制下所允许的最大移动范围,即探测器D的可移动范围。当前时刻下,探测器D刚完成了对某被检体的拍摄,此时可以开始对探测器D进行原点位置的校准,从而对控制探测器D移动的移动控制单元进行位置校零。
目标位置是预先设置的,例如以(x0,y0)为目标位置的机械坐标。当探测器D需要进行原点位置校准时,可以向移动控制单元发送相应指令,使得移动控制单元从坐标(x1,y1)处移动到坐标(x0,y0)处,从而带动探测器D进行相应移动。由于移动控制单元可能存在机械方面或控制方面的误差,因此在完成本次移动后,探测器D的位置可能不是与坐标(x0,y0)相对应,而是与坐标(x0,y0)附近的另一个坐标点相对应。
图3是根据本发明的一个实施方式的探测器移动到目标位置处的示意图。参阅图3,在探测器D完成向目标位置的移动后停止在图3所示的位置处。此时控制射源(图中未示出)和探测器D配合进行拍摄,得到第一拍摄图像。在拍摄时,射源和探测器D之间无需放置模体或其他被检体,而是使用标识物N1来作为期望拍摄对象。
当探测器D按第一移动步骤完成移动之后,标识物N1的位置被设置为使得标识物N1能够出现在第一拍摄图像中。此时对第一拍摄图像进行分析,识别出标识物N1在第一拍摄图像中的位置坐标,该位置坐标可以为像素坐标。由于本实施方式是通过对拍摄图像进行分析来进行标识物在图像中位置的识别,因此识别的准确性能够受到高分辨率拍摄图像的增益,通过图像的高分辨率来实现高精度的坐标计算和距离计算。
将本次识别出的标识物N1的像素坐标与预先设置的像素坐标进行比较,预先设置的像素坐标即为标准值。在理想情况下,移动控制单元未存在任何一些机械方面或控制方面(例如电机丢步)的误差,则比较的结果为N1的像素坐标与作为标准值的预设像素坐标相一致。
图4是根据本发明的另一个实施方式的探测器移动到目标位置处的示意图。参阅图4,假设图3所示的情况为比较结果相一致的情况,图4所示情况为比较结果不一致的情况,探测器D实际对应的机械坐标为(x2,y2)。若N1的像素坐标与作为标准值的预设像素坐标不一致,说明移动控制单元存在误差,使得探测器D按目标位置移动后到达的位置与期望位置之间存在一定误差距离,从而在第一拍摄图像中将存在的误差距离通过位置特征反映出来。如图4所示,相比于图3中探测器D的正确位置,图4中移动控制单元并未真正移动至坐标(x0,y0),而是由于电机丢步等原因移动至与坐标(x0,y0)之间存在微小差距的坐标(x2,y2)。
此时,当前位置特征和参考位置特征表征的标识物位置N1不同。当前位置特征和参考位置特征均可以为标识物在拍摄图像中的位置坐标、若标识物N1在第一拍摄图像中的位置与标准的位置不同,则可以依据当前位置特征和参考位置特征来对探测器D进行位置校准,也就是对移动控制单元进行位置校零。通过位置校准使得移动控制单元的期望移动目的坐标和实际移动后的目的坐标相一致,从而在成像设备的使用过程中保证成像范围的准确并保证图像质量的可靠。
图5是根据本发明的一个实施方式的获取参考位置特征的流程示意图。参阅图5,参考位置特征的获取方式可以包括步骤S010、步骤S020和步骤S030。对参考位置特征进行获取的步骤先于步骤100执行,因此成像控制方法M10可以包括步骤S010、步骤S020和步骤S030。
S010,控制探测器在探测面所在的平面内移动,以使目标条件在探测器到达期望的停止位置时能够被满足。其中,目标条件包括:标识物至少部分地位于探测器的探测范围和射源的投射范围内。
S020,在目标条件被满足时,执行拍摄步骤得到目标拍摄图像。其中,目标拍摄图像对应的探测器的位置为目标位置。
S030,以目标拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为参考位置特征。
停止位置可以是任意设置的,只要能够使得探测器D在停止位置时进行拍摄得到的拍摄图像中能够出现标识物M的至少一部分结构即可。为了提升标识物M的可识别性和降低识别标识物M的困难程度,可以选取一个能够在拍摄图像中出现标识物M的全部结构的位置作为停止位置。可以理解的是,可以是多次控制探测器D朝向标识物M所在的方向移动,直至目标条件被满足。
参阅图3,标识物N1位于可移动范围R0内并靠近R0的其中一个边角,探测器D移动到与可移动范围R0的上述边角相重合的临界位置,在该临界位置下进行拍摄得到的目标拍摄图像中,标识物N1刚好能够完全位于目标拍摄图像内。在得到目标拍摄图像后,对目标拍摄图像进行分析,识别出标识物N1在目标拍摄图像中的位置坐标(例如像素坐标),从而得到参考位置特征。
参阅图2,标识物可以呈球状或呈棒状。图2中,标识物N1呈圆球状,N1可以采用钢珠球;标识物N2呈棒状,N2可以采用塑料棒。成像设备可以设置有多个标识物,也可以仅设置一个标识物。在设置有多个标识物时,可以将不同的标识物单独作为一个能够辅助进行校准的工具,探测器D可以移动至不同的标识物处并通过相应的参考位置特征来进行校正,例如图2中,探测器D可以向与标识物N1对应的目标位置移动,并将拍摄的图像与对应于标识物N1的参考位置特征进行比较来进行校准,探测器D可以向与标识物N2对应的目标位置移动,并将拍摄的图像与对应于标识物N2的参考位置特征进行比较来进行校准。另外,在设置有多个标识物时,也可以将多个标识物共同作为一个整体工具来辅助校准,此时相应参考位置特征则可以包括该多个标识物的位置坐标。
呈棒状的标识物可以具有至少一个折弯处。图2中,标识物N2具有一个折弯处,对应于标识物N2的参考位置特征则可以为该折弯处的拐点处的位置坐标,以增加参考位置特征的可辨识度。
折弯处形成的边角可以朝向探测器D的可移动范围的中心区域,其中可移动范围对应于探测器D在探测面所在的平面内的移动范围。图2中,标识物N2的边角为90度,且朝向可移动范围R0的中心区域,利于在探测器D向标识物N2的位置移动后使该边角出现在拍摄图像中,进一步增加参考位置特征的可辨识度。
标识物可以位置可调节地安装于移动控制单元的固定结构上,例如,移动控制单元设置有与可移动范围相对应的实体框架作为固定部,移动控制单元的移动部与探测器D连接。在图2中,该实体框架的内边缘与可移动范围R0相适配。标识物N1和N2可以安装于该实体框架上并位于实体框架与射源之间。这样就无需单独设置一个完整的固定结构来作为标识物的支撑,降低了设计成本和结构成本。并且,这样可以将标识物的位置设置为任意位置,能够依据需要调整标识物的位置,便于对位置校准的场景进行改动。可以理解的是,若标识物的位置发生了变动,则相应的参考位置特征无法沿用,需要重新拍摄目标拍摄图像并得到新的与标识物当前位置相适配的参考位置特征。
图6是根据本发明的一个实施方式的对探测器进行位置校准的流程示意图。参阅图6,步骤S400中,依据当前位置特征和参考位置特征对探测器进行位置校准的方式可以包括以下步骤S410和步骤S420。
位置关系获取步骤S410,依据当前位置特征和参考位置特征得到探测器的当前位置和目标位置之间的相对位置关系。
S420,依据相对位置关系控制探测器在探测面所在的平面内进行移动,以使探测器至少向目标位置靠近。
当前位置特征表征了探测器D在拍摄第一拍摄图像时所处的位置,即当前位置。参考位置特征表征了探测器D在拍摄目标拍摄图像时所处的位置,即参考位置。在得到当前位置特征后,将其与参考位置特征进行对比,得到探测器的当前位置和参考位置之间的相对位置关系。之后利用相对位置关系来控制探测器D向参考位置(即目标位置)移动,从而将探测器D的实际位置与期望的目标位置之间的距离缩小至零,从而实现位置校准。
图7是根据本发明的一个实施方式的依据相对位置关系控制探测器移动的流程示意图。参阅图7,步骤S420可以包括步骤S421和步骤S423。
S421,依据相对位置关系确定探测器的移动方向和移动量。
S423,按移动方向和移动量控制探测器在探测面所在的平面内进行移动。
参阅图3和图4,图4中探测器D的当前位置对应的机械坐标为(x2,y2),探测器D的目标位置对应的机械坐标为(x0,y0),得到从坐标(x2,y2)至(x0,y0)的移动方向和移动距离,该移动距离即为需要进行位置校准的误差距离。然后按上述移动方向和移动距离控制探测器D向图4所示视角下的右上方移动。
在完成步骤S423之后,相当于本次位置校准过程中完成了两次探测器D的移动,第一次移动为执行第一移动步骤S100,第二次移动为执行步骤S423。为了保证最终能够使探测器D实际移动到相应的目标位置上,可以在第二次移动之后再次进行位置确认,并在和目标位置之间依旧存在差距时再次移动,直至探测器D实际位置即为目标位置,以保证位置校准的精确性。
图8是根据本发明的另一个实施方式的对探测器进行位置校准的流程示意图。参阅图8,在通过步骤S423按移动方向和移动量控制探测器在探测面所在的平面内进行移动之后,步骤S400还包括以下步骤S430、步骤S440和步骤S450。
S430,执行拍摄步骤得到当前拍摄图像。
S440,以当前拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为新的当前位置特征。
S450,依据新的当前位置特征执行位置关系获取步骤,直至新的当前位置特征和参考位置特征表征的标识物位置相同。
在完成上述第二次移动之后,控制射源和探测器D配合进行图像拍摄,并对拍摄的到的图像进行特征识别,得到探测器D位置更新后标识物在拍摄图像中的像素坐标。若更新后的像素坐标与标准值一致,则说明已经完成了位置校准。若更新后的像素坐标与标准值仍然不一致,则以迭代的方式继续控制探测器D移动,直至最新的标识物像素坐标与标准值一致。
在步骤S300、步骤S030和步骤S440中,均涉及到依据待识别图像得到相应位置特征。示例性地,依据待识别图像得到相应位置特征的方式可以包括:首先对待识别图像进行阈值分割得到目标区域,其中目标区域的形状与标识物的形状相对应;然后确定目标区域中的预设特征点,并将预设特征点在待识别图像中的位置作为待识别图像的相应位置特征,其中预设特征点的位置依据标识物的形状设置。
在标识物采用钢珠球时,拍摄到的钢珠球可以为黑色。如果钢珠球整体都在拍摄图像中,则拍摄图像会是背景为白色且一个边角处存在一个完整的黑色实心圆,黑色实心圆与钢珠球的形状对应。此时,预设特征点可以为黑色实心圆的圆心,该圆心的像素坐标即为位置特征。
在标识物采用L型塑料棒时,拍摄到的塑料棒可以为灰色。如果L型塑料棒整体都在拍摄图像中,则拍摄图像会是背景为白色且一个边角处存在一个L型的灰色区域,L型灰色区域与L型塑料棒的形状对应。此时,预设特征点可以为L型灰色区域的拐弯处的中心点,该中心点的像素坐标即为位置特征。
图9是根据本发明的一个实施方式的触发位置校准的流程示意图。参阅图9,在通过步骤S400完成对探测器的位置校准之后,成像控制方法M10还可以包括以下步骤S500。
S500,当满足第一条件时,开始执行第一移动步骤。其中第一条件包括:探测器与射源之间的相对位置关系发生变化的次数达到预设次数。
例如,当完成对探测器的位置校准后,控制探测器移动到某位置处并开始控制射源和探测器对被检体进行拍摄,此时探测器与射源之间的相对位置关系发生变化的次数为1次。
若预设次数为1次,则每当完成5次需要预先改变探测器位置的拍摄,就需要执行步骤S100至步骤S400从而进行1次位置校准,然后才能开始进行下一次对被检体的拍摄。这样能够最大程度保证探测器D的位置准确性。
若预设次数为多次,则在完成该多次需要预先改变探测器位置的拍摄之后才需要执行步骤S100至步骤S400以进行1次位置校准。这样能够提升对被检体的拍摄效率。如果连续多次拍摄过程中,探测器与射源之间的相对位置关系未发生变化,则直至下一次需要预先改变探测器位置的拍摄之前,这些连续多次的拍摄仅视为1次相对位置关系发生变化的拍摄。可以理解的是,预设次数可以设置为一个较小的数字,避免探测器的理论位置和实际位置之间的误差随着移动次数的增多而逐渐变大。
射源处可以安装有限束器。限束器用于调节射源的射线出口的尺寸。在需要改变成像视野时,可能需要调节限束器从而改变射源的射线出口尺寸,以此来改变成像视野的大小。如果成像视野被改变,则射源和探测器拍摄得到的图像的尺寸会发生变化,因此目标拍摄图像及相应的参考位置特征失效。即使将限束器调回原位,也可能使得拍摄得到的图像与目标拍摄图像的尺寸之间存在细微差距。因此为了保证位置校准的精度、准确性和可靠性,在每当限束器发生过调节动作,则都需要重新获取并更新作为标准值的参考位置特征。
图10是根据本发明的一个实施方式的更新参考位置特征的流程示意图。参阅图10,成像控制方法M10还可以包括以下步骤S600。
S600,当满足第二条件时,则在与满足第二条件相对应的拍摄过程结束后,获取新的参考位置特征。其中第二条件包括:限束器的开口尺寸发生变动。
当限束器的开口尺寸发生变动时,则在需要限束器开口尺寸变动从而才能进行拍摄的拍摄任务结束之后,开始执行步骤S010至步骤S030从而得到新的参考位置特征,以保证后续进行位置校准时的准确性。在调节限束器开口尺寸之前可以先通过步骤S100至步骤S400进行一次位置校准,以保证后续获取到的新的参考位置特征的准确性。
以下为成像控制方法的其中一种实施方式。
1、首先是获取到参考位置特征。控制探测器移动,以在探测器到达期望的停止位置时,球状标识物能够至少部分地位于探测器的探测范围和射源的投射范围内。然后控制射源和探测器进行拍摄得到目标拍摄图像,并将本次拍摄时探测器的位置作为目标位置。之后对目标拍摄图像进行阈值分割得到圆形的第一目标区域。然后确定第一目标区域中作为预设特征点的圆心,并将圆心在目标拍摄图像中的位置作为目标拍摄图像的参考位置特征。
2、在成像设备对被检体进行拍摄时,控制探测器移动以形成探测器与射源之间的有角度偏置,并在完成偏置后开始对被检体进行拍摄。
3、在完成对被检体的拍摄之后,探测器与射源之间的相对位置关系发生变化的次数达到预设次数(1次),因此开始执行第一移动步骤从而开始进行位置校准。
4、第一移动步骤为控制探测器向上述目标位置移动。在探测器完成向目标位置的移动后,控制射源和探测器进行拍摄得到第一拍摄图像。之后对第一拍摄图像进行阈值分割得到圆形的第二目标区域。然后确定第二目标区域中作为预设特征点的圆心,并将圆心在第一拍摄图像中的位置作为第一拍摄图像的当前位置特征。如果当前位置特征和参考位置特征表征的球状标识物位置不同,说明探测器的实际位置和理论位置之间存在误差,因此开始执行位置关系获取步骤,以对探测器进行位置校准。
5、位置关系获取步骤为依据当前位置特征和参考位置特征得到探测器的当前位置和参考位置之间的相对位置关系。然后依据相对位置关系确定探测器的移动方向和移动量。之后按移动方向和移动量控制探测器进行移动,以使探测器至少向目标位置靠近。然后控制射源和探测器进行拍摄得到当前拍摄图像。之后对当前拍摄图像进行阈值分割得到圆形的第三目标区域。确定第三目标区域中作为预设特征点的圆心,并将圆心在第三拍摄图像中的位置作为当前拍摄图像的新的当前位置特征。依据新的当前位置特征执行位置关系获取步骤,直至当前位置特征和参考位置特征表征的球状标识物位置相同,从而完成对探测器的位置校准。
6、之后再次控制成像设备对被检体进行拍摄,并且本次拍摄需要调节限束器的开口尺寸,因此则本次拍摄完成之后,开始获取新的参考位置特征,参见上述步骤1,在此不做赘述。
图11是根据本发明的一个实施方式的采用处理系统的硬件实现方式的成像控制装置的示意图。参阅图11,本发明还提供了成像控制装置1000,本实施方式的成像控制装置1000应用于成像设备,成像设备可以包括探测器、射源和至少一个标识物,探测器能够受控在探测器的探测面所在的平面内相对于射源进行移动。成像控制装置1000可以包括移动控制单元1002、拍摄控制单元1004、特征识别单元1006和校准控制单元1008。
移动控制单元1002用于控制探测器向预设的目标位置移动,其中目标位置位于探测面所在的平面内。
拍摄控制单元1004用于在探测器完成向目标位置的移动后,执行拍摄步骤得到第一拍摄图像,其中拍摄步骤包括控制射源和探测器进行拍摄得到拍摄图像。
特征识别单元1006用于以第一拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为当前位置特征,其中当前位置特征表征标识物在第一拍摄图像中的位置情况。
校准控制单元1008用于如果当前位置特征和预先设置的参考位置特征表征的标识物位置不同,则依据当前位置特征和参考位置特征对探测器进行位置校准,其中参考位置特征通过预先执行拍摄步骤并对得到的目标拍摄图像进行分析得到。
在参考位置特征的获取过程中:移动控制单元1002还可以用于控制探测器在探测面所在的平面内移动,以使目标条件在探测器到达期望的停止位置时能够被满足。其中,目标条件包括:标识物至少部分地位于探测器的探测范围和射源的投射范围内。拍摄控制单元1004还可以用于在目标条件被满足时,执行拍摄步骤得到目标拍摄图像。其中,目标拍摄图像对应的探测器的位置为目标位置。特征识别单元1006还可以用于以目标拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为参考位置特征。
标识物可以呈球状或呈棒状。呈棒状的标识物可以具有至少一个折弯处。折弯处形成的边角可以朝向探测器D的可移动范围的中心区域,其中可移动范围对应于探测器D在探测面所在的平面内的移动范围。
校准控制单元1008对探测器进行位置校准的方式可以包括以下步骤:位置关系获取步骤,依据当前位置特征和参考位置特征得到探测器的当前位置和目标位置之间的相对位置关系;以及依据相对位置关系控制探测器在探测面所在的平面内进行移动,以使探测器至少向目标位置靠近。校准控制单元1008依据相对位置关系控制探测器移动的方式可以包括以下步骤:首先依据相对位置关系确定探测器的移动方向和移动量,然后按移动方向和移动量控制探测器在探测面所在的平面内进行移动。
在按移动方向和移动量控制探测器在探测面所在的平面内进行移动之后,校准控制单元1008还可以执行拍摄步骤得到当前拍摄图像,并以当前拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为新的当前位置特征,之后依据新的当前位置特征执行位置关系获取步骤,直至新的当前位置特征和参考位置特征表征的标识物位置相同。
特征识别单元1006和校准控制单元1008依据待识别图像得到相应位置特征的方式可以包括:首先对待识别图像进行阈值分割得到目标区域,其中目标区域的形状与标识物的形状相对应;然后确定目标区域中的预设特征点,并将预设特征点在待识别图像中的位置作为待识别图像的相应位置特征,其中预设特征点的位置依据标识物的形状设置。
当满足第一条件时,移动控制单元1002开始执行第一移动步骤,即控制探测器向预设的目标位置移动。其中第一条件包括:探测器与射源之间的相对位置关系发生变化的次数达到预设次数。
射源处可以安装有限束器。限束器用于调节射源的射线出口的尺寸。当满足第二条件时,则在满足第二条件的相应拍摄结束后,成像控制装置1000获取新的参考位置特征,其中第二条件包括:限束器的开口尺寸发生变动。
需要说明的是,本实施方式的成像控制装置1000中未披露的细节,可参照本发明提出的上述实施方式的成像控制方法M10中所披露的细节,此处不再赘述。
该成像控制装置1000可以包括执行上述流程图中各个或几个步骤的相应模块。因此,可以由相应模块执行上述流程图中的每个步骤或几个步骤,并且该装置可以包括这些模块中的一个或多个模块。模块可以是专门被配置为执行相应步骤的一个或多个硬件模块、或者由被配置为执行相应步骤的处理器来实现、或者存储在计算机可读介质内用于由处理器来实现、或者通过某种组合来实现。
该成像控制装置1000的硬件结构可以利用总线架构来实现。总线架构可以包括任何数量的互连总线和桥接器,这取决于硬件的特定应用和总体设计约束。总线1100将包括一个或多个处理器1200、存储器1300和/或硬件模块的各种电路连接到一起。总线1100还可以将诸如外围设备、电压调节器、功率管理电路、外部天线等的各种其他电路1400连接。
总线1100可以是工业标准体系结构(ISA,Industry Standard Architecture)总线、外部设备互连(PCI,Peripheral Component)总线或扩展工业标准体系结构(EISA,Extended Industry Standard Component)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,该图中仅用一条连接线表示,但并不表示仅有一根总线或一种类型的总线。
图12是根据本发明的一个实施方式的成像系统的结构框图。参阅图12,本发明还提供了成像系统,本实施方式的成像系统10可以包括射源S,移动控制单元C,探测器D,至少一个标识物N,以及上述任一实施方式所述的成像控制装置1000。探测器D受移动控制单元C的控制在探测器D的探测面所在的平面内进行移动。例如,移动控制单元C受成像控制装置1000的控制进行动作,从而带动探测器D在探测面所在的平面内进行移动。成像系统还可以包括限束器X。限束器X受成像控制装置1000的控制进行动作,从而控制射源S的线束发射范围。
需要说明的是,本实施方式的成像系统中未披露的细节,可参照本发明提出的上述实施方式的成像控制方法M10中所披露的细节,此处不再赘述。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施方式所属技术领域的技术人员所理解。处理器执行上文所描述的各个方法和处理。例如,本发明中的方法实施方式可以被实现为软件程序,其被有形地包含于机器可读介质,例如存储器。在一些实施方式中,软件程序的部分或者全部可以经由存储器和/或通信接口而被载入和/或安装。当软件程序加载到存储器并由处理器执行时,可以执行上文描述的方法中的一个或多个步骤。备选地,在其他实施方式中,处理器可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行上述方法之一。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,可以具体实现在任何可读存储介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。
应当理解,本发明的各部分可以用硬件、软件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施方式方法的全部或部分步骤是可以通过程序来指令相关的硬件完成,该程序可以存储于一种可读存储介质中,该程序在执行时,包括方法实施方式的步骤之一或其组合。该存储介质可以是易失性/非易失性存储介质。
此外,在本发明各个实施方式中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个可读存储介质中。存储介质可以是只读存储器,磁盘或光盘等。
本发明还提供了一种电子设备,包括:存储器,存储器存储执行指令;以及处理器或其他硬件模块,处理器或其他硬件模块执行存储器存储的执行指令,使得处理器或其他硬件模块执行上述实施方式的成像控制方法。
本发明还提供了一种可读存储介质,可读存储介质中存储有执行指令,所述执行指令被处理器执行时用于实现上述任一实施方式的成像控制方法。
就本说明书而言,“可读存储介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。可读存储介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式只读存储器(CDROM)。另外,可读存储介质甚至可以是可在其上打印程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得程序,然后将其存储在存储器中。
本发明还提供了一种计算机程序产品,包括计算机程序/指令,所述计算机程序/指令被处理器执行时实现上述任一实施方式的成像控制方法。
在本说明书的描述中,参考术语“一个实施方式/方式”、“一些实施方式/方式”、“具体示例”、或“一些示例”等的描述意指结合该实施方式/方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式/方式或示例中。在本说明书中,对上述术语的示意性表述不必须是相同的实施方式/方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施方式/方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施方式/方式或示例以及不同实施方式/方式或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
本领域的技术人员应当理解,上述实施方式仅仅是为了清楚地说明本发明,而并非是对本发明的范围进行限定。对于所属领域的技术人员而言,在上述公开的基础上还可以做出其它变化或变型,并且这些变化或变型仍处于本发明的范围内。

Claims (14)

1.一种成像控制方法,应用于成像设备,其特征在于,所述成像设备包括探测器、射源和至少一个标识物,所述探测器能够受控在所述探测器的探测面所在的平面内进行移动,所述成像控制方法包括:
第一移动步骤,控制所述探测器向预设的目标位置移动,其中所述目标位置位于所述探测面所在的平面内;
在所述探测器完成向所述目标位置的移动后,执行拍摄步骤得到第一拍摄图像,其中所述拍摄步骤包括控制所述射源和所述探测器进行拍摄得到拍摄图像;
以所述第一拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为当前位置特征,其中所述当前位置特征表征所述标识物在所述第一拍摄图像中的位置情况;以及
如果所述当前位置特征和预先设置的参考位置特征表征的标识物位置不同,则依据所述当前位置特征和所述参考位置特征对所述探测器进行位置校准,其中所述参考位置特征通过预先执行所述拍摄步骤并对得到的目标拍摄图像进行分析得到。
2.根据权利要求1所述的成像控制方法,其特征在于,所述参考位置特征的获取方式包括:
控制所述探测器在所述探测面所在的平面内移动,以使目标条件在所述探测器到达期望的停止位置时能够被满足,所述目标条件包括:所述标识物至少部分地位于所述探测器的探测范围和所述射源的投射范围内;
在所述目标条件被满足时,执行所述拍摄步骤得到目标拍摄图像,其中所述目标拍摄图像对应的所述探测器的位置为所述目标位置;以及
以所述目标拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为参考位置特征。
3.根据权利要求1所述的成像控制方法,其特征在于,所述标识物呈球状或呈棒状。
4.根据权利要求3所述的成像控制方法,其特征在于,呈棒状的所述标识物具有至少一个折弯处。
5.根据权利要求4所述的成像控制方法,其特征在于,所述折弯处形成的边角朝向所述探测器的可移动范围的中心区域,其中所述可移动范围对应于所述探测器在所述探测面所在的平面内的移动范围。
6.根据权利要求1所述的成像控制方法,其特征在于,依据所述当前位置特征和所述参考位置特征对所述探测器进行位置校准,包括:
位置关系获取步骤,依据所述当前位置特征和所述参考位置特征得到所述探测器的当前位置和目标位置之间的相对位置关系;以及
依据所述相对位置关系控制所述探测器在所述探测面所在的平面内进行移动,以使所述探测器至少向所述目标位置靠近。
7.根据权利要求6所述的成像控制方法,其特征在于,依据所述相对位置关系控制所述探测器在所述探测面所在的平面内进行移动,包括:
依据所述相对位置关系确定所述探测器的移动方向和移动量;以及
按所述移动方向和所述移动量控制所述探测器在所述探测面所在的平面内进行移动。
8.根据权利要求7所述的成像控制方法,其特征在于,在按所述移动方向和所述移动量控制所述探测器在所述探测面所在的平面内进行移动之后,所述方法还包括:
执行所述拍摄步骤得到当前拍摄图像;
以所述当前拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为新的当前位置特征;以及
依据新的当前位置特征执行所述位置关系获取步骤,直至新的当前位置特征和所述参考位置特征表征的标识物位置相同。
9.根据权利要求1、2或8所述的成像控制方法,其特征在于,依据待识别图像得到相应位置特征,包括:
对所述待识别图像进行阈值分割得到目标区域,其中所述目标区域的形状与所述标识物的形状相对应;
确定所述目标区域中的预设特征点,并将所述预设特征点在所述待识别图像中的位置作为所述待识别图像的相应位置特征,其中所述预设特征点的位置依据所述标识物的形状设置。
10.根据权利要求1所述的成像控制方法,其特征在于,在完成对所述探测器的位置校准之后,所述方法还包括:
当满足第一条件时,开始执行所述第一移动步骤,其中所述第一条件包括:所述探测器与所述射源之间的相对位置关系发生变化的次数达到预设次数。
11.根据权利要求1或2所述的成像控制方法,其特征在于,所述射源处安装有限束器,所述限束器用于调节所述射源的射线出口的尺寸,所述方法还包括:
当满足第二条件时,则在与满足所述第二条件相对应的拍摄过程结束后,获取新的参考位置特征,其中所述第二条件包括:所述限束器的开口尺寸发生变动。
12.一种成像控制装置,应用于成像设备,其特征在于,所述成像设备包括探测器、射源和至少一个标识物,所述探测器能够受控在所述探测器的探测面所在的平面内进行移动,所述成像控制装置包括:
移动控制单元,用于控制所述探测器向预设的目标位置移动,其中所述目标位置位于所述探测面所在的平面内;
拍摄控制单元,用于在所述探测器完成向所述目标位置的移动后,执行拍摄步骤得到第一拍摄图像,其中所述拍摄步骤包括控制所述射源和所述探测器进行拍摄得到拍摄图像;
特征识别单元,用于以所述第一拍摄图像为待识别图像,依据待识别图像得到相应位置特征并作为当前位置特征,其中所述当前位置特征表征所述标识物在所述第一拍摄图像中的位置情况;以及
校准控制单元,用于如果所述当前位置特征和预先设置的参考位置特征表征的标识物位置不同,则依据所述当前位置特征和所述参考位置特征对所述探测器进行位置校准,其中所述参考位置特征通过预先执行所述拍摄步骤并对得到的目标拍摄图像进行分析得到。
13.一种成像系统,其特征在于,包括:
射源;
移动控制单元;
探测器,所述探测器受所述移动控制单元的控制在所述探测器的探测面所在的平面内进行移动;
至少一个标识物;以及
如权利要求12所述的成像控制装置。
14.一种可读存储介质,其特征在于,所述可读存储介质中存储有执行指令,所述执行指令被处理器执行时用于实现如权利要求1至11中任一项所述的成像控制方法。
CN202410349830.9A 2024-03-26 2024-03-26 成像控制方法、装置、成像系统及可读存储介质 Pending CN117956670A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410349830.9A CN117956670A (zh) 2024-03-26 2024-03-26 成像控制方法、装置、成像系统及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410349830.9A CN117956670A (zh) 2024-03-26 2024-03-26 成像控制方法、装置、成像系统及可读存储介质

Publications (1)

Publication Number Publication Date
CN117956670A true CN117956670A (zh) 2024-04-30

Family

ID=90798492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410349830.9A Pending CN117956670A (zh) 2024-03-26 2024-03-26 成像控制方法、装置、成像系统及可读存储介质

Country Status (1)

Country Link
CN (1) CN117956670A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060094027A1 (en) * 2004-11-03 2006-05-04 Warren Scott R Multiaxis focusing mechanism for microarray analysis
JP2007018494A (ja) * 2005-06-10 2007-01-25 Fast:Kk XYθステージによる位置アライメントシステム
US20100168562A1 (en) * 2008-12-31 2010-07-01 Intuitive Surgical, Inc. Fiducial marker design and detection for locating surgical instrument in images
CN113100793A (zh) * 2021-03-25 2021-07-13 上海奕瑞光电子科技股份有限公司 射线拍摄过程中的自动定位系统及方法
CN115509225A (zh) * 2022-09-13 2022-12-23 岭澳核电有限公司 位置校正方法、装置、计算机设备和存储介质
CN115550555A (zh) * 2022-11-28 2022-12-30 杭州华橙软件技术有限公司 云台校准方法及相关装置、摄像器件和存储介质
CN117297633A (zh) * 2023-11-29 2023-12-29 有方(合肥)医疗科技有限公司 成像视野调节方法、装置、成像系统及可读存储介质
CN117537839A (zh) * 2023-11-20 2024-02-09 苏州科技大学 一种巡逻机器人导航定位检测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060094027A1 (en) * 2004-11-03 2006-05-04 Warren Scott R Multiaxis focusing mechanism for microarray analysis
JP2007018494A (ja) * 2005-06-10 2007-01-25 Fast:Kk XYθステージによる位置アライメントシステム
US20100168562A1 (en) * 2008-12-31 2010-07-01 Intuitive Surgical, Inc. Fiducial marker design and detection for locating surgical instrument in images
CN113100793A (zh) * 2021-03-25 2021-07-13 上海奕瑞光电子科技股份有限公司 射线拍摄过程中的自动定位系统及方法
CN115509225A (zh) * 2022-09-13 2022-12-23 岭澳核电有限公司 位置校正方法、装置、计算机设备和存储介质
CN115550555A (zh) * 2022-11-28 2022-12-30 杭州华橙软件技术有限公司 云台校准方法及相关装置、摄像器件和存储介质
CN117537839A (zh) * 2023-11-20 2024-02-09 苏州科技大学 一种巡逻机器人导航定位检测系统
CN117297633A (zh) * 2023-11-29 2023-12-29 有方(合肥)医疗科技有限公司 成像视野调节方法、装置、成像系统及可读存储介质

Similar Documents

Publication Publication Date Title
US11541881B2 (en) Automatic parking method, device, system, and vehicle
US10171802B2 (en) Calibration method and calibration device
JP6034775B2 (ja) カメラ校正装置
CN107598977B (zh) 使用视觉和激光测距仪实现机器人自动示教的方法和系统
US10571254B2 (en) Three-dimensional shape data and texture information generating system, imaging control program, and three-dimensional shape data and texture information generating method
CN114174006B (zh) 机器人手眼标定方法、装置、计算设备、介质以及产品
US8196461B2 (en) Method and device for checking the referencing of measuring heads in a chassis measuring system
EP2437495A1 (en) Calibration target detection apparatus, calibration target detecting method for detecting calibration target, and program for calibration target detection apparatus
CN112017205B (zh) 一种激光雷达和相机传感器空间位置自动标定方法及系统
US20170211930A1 (en) 3d scanning apparatus and 3d scanning method
US10569418B2 (en) Robot controller for executing calibration, measurement system and calibration method
CN108627178B (zh) 机器人手眼标定方法和系统
CN117297633B (zh) 成像视野调节方法、装置、成像系统及可读存储介质
CN117956670A (zh) 成像控制方法、装置、成像系统及可读存储介质
JP3666108B2 (ja) 外観検査装置
CN116543088B (zh) Cbct图像重建方法及装置
CN117249847A (zh) 圆光栅偏心调整方法、装置和计算机可读存储介质
CN107835361B (zh) 基于结构光的成像方法、装置和移动终端
JP2021110630A (ja) 検出器の姿勢・位置検出システムおよび検出器の姿勢・位置検出方法
CN111686378B (zh) 床体运动精度检测方法、装置、设备及存储介质
CN115103124A (zh) 一种用于摄像头模组主动对准的方法
CN115401688A (zh) 机械臂的控制方法、装置、机械臂系统和存储介质
JP3238989B2 (ja) セグメント自動組立装置及び方法
WO2023007770A1 (ja) 航空機の乗降部を検出するための検出システム
CN117537710A (zh) 显微扫描的坐标标定方法、装置、显微扫描系统及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination