CN117913130A - 辅助栅极横向绝缘栅双极型晶体管及其制造方法 - Google Patents

辅助栅极横向绝缘栅双极型晶体管及其制造方法 Download PDF

Info

Publication number
CN117913130A
CN117913130A CN202211232262.1A CN202211232262A CN117913130A CN 117913130 A CN117913130 A CN 117913130A CN 202211232262 A CN202211232262 A CN 202211232262A CN 117913130 A CN117913130 A CN 117913130A
Authority
CN
China
Prior art keywords
region
conductivity type
bipolar transistor
auxiliary
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211232262.1A
Other languages
English (en)
Inventor
刘腾
何乃龙
张森
章文通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSMC Technologies Fab2 Co Ltd
Original Assignee
CSMC Technologies Fab2 Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSMC Technologies Fab2 Co Ltd filed Critical CSMC Technologies Fab2 Co Ltd
Priority to CN202211232262.1A priority Critical patent/CN117913130A/zh
Publication of CN117913130A publication Critical patent/CN117913130A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及一种辅助栅极横向绝缘栅双极型晶体管及其制造方法,所述晶体管包括:漂移区;集电区,位于漂移区中;第二导电类型掺杂区,设于漂移区中;绝缘介质层,位于沟槽的内表面,沟槽位于集电区和第二导电类型掺杂区之间;辅助栅极,位于沟槽中,且被绝缘介质层包围;阳极区,与漂移区直接接触;第一电极,将阳极区与第二导电类型掺杂区短路连接;主栅结构。本发明在LIGBT导通时,辅助栅极关断,消除了单极模式,仅从双极模式开始导通,无电压折回的风险;在LIGBT关断时,由辅助栅极开启导电沟道,为漂移区的非平衡载流子提供抽出通道,减小了电流拖尾的时间。且沟槽栅结构的辅助栅极在结构上能够实现更好的隔离。

Description

辅助栅极横向绝缘栅双极型晶体管及其制造方法
技术领域
本发明涉及半导体制造领域,特别是涉及一种辅助栅极横向绝缘栅双极型晶体管,还涉及一种辅助栅极横向绝缘栅双极型晶体管的制造方法。
背景技术
绝缘栅双极型晶体管(IGBT)是金属氧化物半导体场效应晶体管(简称MOSFET)和双极结型晶体管(简称BJT)组成的复合型功率半导体器件,其中横向IGBT(LIGBT)易于集成在硅基、尤其是SOI(绝缘体上硅)基的功率集成电路中。LIGBT不仅具有MOS器件的栅控能力强和输入阻抗高的优点,同时电导调制效应使其具有大电流处理能力和低导通压降等优点。然而电导调制效应是一把双刃剑,导通期间存储在漂移区中的大量的非平衡载流子在关断过程形成拖尾电流。阳极短路技术对于解决在关断时形成的拖尾电流有重要的意义,通过在阳极端引入N型阳极区,存储在漂移区内的大量电子可通过该N型阳极区快速抽取,电流拖尾时间减小,关断速度加快,从而减小其关断损耗,进而也获得导通压降和关断损耗的良好折中。
然而,短路阳极结构的引入会使器件出现电压折回(Snapback)现象。SA-LIGBT在单极工作模式下电流小电压大,在双极模式下电压大电流小,由单极模式转变到双极模式下会经历一段电流增大而电压减小的过程,出现负阻区域,称为Snapback现象;Snapback现象会使器件的正向导通压降升高,特别是低温条件下,导致部分原胞不能开启,电流分布不均匀,不利于器件并联工作。
发明内容
基于此,有必要提供一种能够抑制电压折回现象的辅助栅极横向绝缘栅双极型晶体管及其制造方法。
一种辅助栅极横向绝缘栅双极型晶体管,其特征在于,包括:漂移区,具有第一导电类型;集电区,位于所述漂移区中,具有第二导电类型,所述第一导电类型和第二导电类型为相反的导电类型;第二导电类型掺杂区,设于所述漂移区中;绝缘介质层,位于沟槽的内表面,所述沟槽位于所述集电区和第二导电类型掺杂区之间;辅助栅极,位于所述沟槽中,且被所述绝缘介质层包围;阳极区,具有第一导电类型,与所述漂移区直接接触;第一电极,将所述阳极区与第二导电类型掺杂区短路连接;主栅结构;其中,在所述辅助栅极横向绝缘栅双极型晶体管导通时,所述辅助栅极上施加的电压使所述辅助栅极关断;在所述辅助栅极横向绝缘栅双极型晶体管关断时,所述辅助栅极上施加的电压使所述辅助栅极打开。
上述辅助栅极横向绝缘栅双极型晶体管,在LIGBT导通时,辅助栅极关断,消除了单极模式,仅从双极模式开始导通,无电压折回的风险;在LIGBT关断时,由辅助栅极开启导电沟道,为漂移区的非平衡载流子提供抽出通道,减小了电流拖尾的时间。且沟槽栅结构阻挡了原本的单极通路,从而拉长了漂移区到阳极区的电流路径,相当于增大了漂移区到阳极区的电阻,起到抑制电压折回的效果。
在其中一个实施例中,所述辅助栅极与所述绝缘介质层、集电区、第二导电类型掺杂区及漂移区一起构成第二导电类型沟道的金属氧化物半导体场效应管。
在其中一个实施例中,所述沟槽的深度大于所述集电区的深度和所述第二导电类型掺杂区的深度。
在其中一个实施例中,所述辅助栅极横向绝缘栅双极型晶体管还包括位于所述漂移区内且处于所述第二导电类型掺杂区下方的埋藏区,所述埋藏区具有第一导电类型,所述埋藏区的掺杂浓度大于所述漂移区的掺杂浓度,所述埋藏区的底部位于比所述沟槽的底部更深的位置。
在其中一个实施例中,所述辅助栅极横向绝缘栅双极型晶体管还包括位于所述漂移区中的集电区阱,所述集电区位于所述集电极阱区中,所述集电区阱具有第一导电类型。
在其中一个实施例中,所述集电区阱的掺杂浓度大于所述漂移区的掺杂浓度。
在其中一个实施例中,所述沟槽的深度大于所述集电区阱的深度。
在其中一个实施例中,所述辅助栅极横向绝缘栅双极型晶体管是SOI器件,所述辅助栅极横向绝缘栅双极型晶体管还包括:衬底;掩埋介质层,设于所述衬底上;其中,所述漂移区设于所述掩埋介质层上。
在其中一个实施例中,所述辅助栅极横向绝缘栅双极型晶体管还包括位于所述漂移区内且处于所述第二导电类型掺杂区下方的埋藏区,所述埋藏区具有第一导电类型,所述埋藏区的掺杂浓度大于所述漂移区的掺杂浓度,所述埋藏区的底部延伸至所述掩埋介质层。
在其中一个实施例中,所述辅助栅极横向绝缘栅双极型晶体管还包括:第二导电类型阱区,所述集电区位于所述第二导电类型阱区和所述沟槽之间;发射极衬底引出,具有第二导电类型,位于所述第二导电类型阱区中;发射区,具有第一导电类型,位于所述第二导电类型阱区中;其中,所述主栅结构位于所述发射区和所述集电区之间的结构的上方,且靠近所述发射区设置。
一种辅助栅极横向绝缘栅双极型晶体管的制造方法,包括:获取基底,所述基底形成有第一导电类型的漂移区;从所述漂移区的上表面向下刻蚀形成沟槽;在所述沟槽的内表面形成绝缘介质层;形成位于所述沟槽内的辅助栅极,以及形成主栅结构;形成集电区、第二导电类型掺杂区及阳极区;所述集电区和第二导电类型掺杂区形成于所述漂移区中,所述集电区位于所述沟槽的一侧、所述第二导电类型掺杂区位于所述沟槽的另一侧,所述集电区具有第二导电类型;所述阳极区具有第一导电类型;所述第一导电类型和第二导电类型为相反的导电类型。
上述辅助栅极横向绝缘栅双极型晶体管的制造方法,在LIGBT导通时,辅助栅极关断,消除了单极模式,仅从双极模式开始导通,无电压折回的风险;在LIGBT关断时,由辅助栅极开启导电沟道,为漂移区的非平衡载流子提供抽出通道,减小了电流拖尾的时间。且沟槽栅结构阻挡了原本的单极通路,从而拉长了漂移区到阳极区的电流路径,相当于增大了漂移区到阳极区的电阻,起到抑制电压折回的效果。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1是一实施例中辅助栅极横向绝缘栅双极型晶体管的结构示意图;
图2是一实施例中辅助栅极横向绝缘栅双极型晶体管的制造方法的流程图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本发明的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
这里参考作为本发明的理想实施例(和中间结构)的示意图的横截面图来描述发明的实施例。这样,可以预期由于例如制造技术和/或容差导致的从所示形状的变化。因此,本发明的实施例不应当局限于在此所示的区的特定形状,而是包括由于例如制造导致的形状偏差。例如,显示为矩形的注入区在其边缘通常具有圆的或弯曲特征和/或注入浓度梯度,而不是从注入区到非注入区的二元改变。同样,通过注入形成的埋藏区可导致该埋藏区和注入进行时所经过的表面之间的区中的一些注入。因此,图中显示的区实质上是示意性的,它们的形状并不意图显示器件的区的实际形状且并不意图限定本发明的范围。
本文所使用的半导体领域词汇为本领域技术人员常用的技术词汇,例如对于P型和N型杂质,为区分掺杂浓度,简易的将P+型代表重掺杂浓度的P型,P型代表中掺杂浓度的P型,P-型代表轻掺杂浓度的P型,N+型代表重掺杂浓度的N型,N型代表中掺杂浓度的N型,N-型代表轻掺杂浓度的N型。
本申请提出一种新型的辅助栅极LIGBT,能够有效抑制Snapback现象。
图1是一实施例中辅助栅极横向绝缘栅双极型晶体管的结构示意图,包括漂移区104、集电区111、阳极区113、第二导电类型掺杂区112、绝缘介质层105、辅助栅极106、第一电极119以及主栅结构。其中,集电区111设于漂移区104中,且具有第二导电类型。第二导电类型掺杂区112也设于漂移区104中。集电区111和第二导电类型掺杂区112之间形成有沟槽栅结构,具体包括沟槽内表面的绝缘介质层105及沟槽中的辅助栅极106,沟槽侧壁和底部的绝缘介质层105将辅助栅极106包围。阳极区113具有第一导电类型,与漂移区104直接接触;在图1所示的实施例中,阳极区113位于漂移区104中。第一电极119将阳极区113与第二导电类型掺杂区112短路连接,第一电极119的材质可以是金属或合金等导电材料。主栅结构包括栅极介电层125和栅极126。在图1所示的实施例中,第一导电类型是N型,第二导电类型是P型;在本申请的另一个实施例中,第一导电类型是P型,第二导电类型是N型。辅助栅极106与绝缘介质层105、集电区111、第二导电类型掺杂区112及漂移区104一起构成第二导电类型沟道的金属氧化物半导体场效应管(在图1所示的实施例中为PMOSFET)。在辅助栅极横向绝缘栅双极型晶体管导通(通过栅极端口116控制)时,输入使辅助栅极106关断(即其对应的MOS管关断)的电压;在辅助栅极横向绝缘栅双极型晶体管关断(通过栅极端口116控制)时,输入使辅助栅极106打开(即其对应的MOS管导通)的电压。
发明人认为,SA-LIGBT发生的Snapback现象的原因,是SA-LIGBT在单极模式下,发射极到漂移区的电阻值与漂移区到N+阳极区的电阻值相近,因此电阻上的电压分压也相近,而在双极模式下电导调制效应导致漂移区电阻大大降低,从而发生电压折回的现象。上述辅助栅极横向绝缘栅双极型晶体管,在LIGBT导通时,辅助栅极106关断,消除了单极模式,仅从双极模式开始导通,无电压折回的风险;在LIGBT关断时,由辅助栅极106开启导电沟道,为漂移区的非平衡载流子提供抽出通道,使得电子快速抽取,减小了电流拖尾的时间。且沟槽栅结构阻挡了原本的单极通路,从而拉长了漂移区104到阳极区103的电流路径,相当于增大了漂移区到阳极区的电阻,起到抑制电压折回的效果。
在本申请的一个实施例中,辅助栅极横向绝缘栅双极型晶体管还包括位于漂移区104内且处于第二导电类型掺杂区112下方的埋藏区103。埋藏区103具有第一导电类型,且埋藏区103的掺杂浓度大于漂移区104的掺杂浓度。埋藏区103的底部位于比辅助栅极106的底部更深的位置。设置埋藏区103,能够在辅助栅极横向绝缘栅双极型晶体管关断时的少数载流子(在图1所示的实施例中为电子)抽取过程中降低导通电阻。
在本申请的一个实施例中,辅助栅极106的深度大于集电区111的深度和第二导电类型掺杂区112的深度。
在本申请的一个实施例中,辅助栅极横向绝缘栅双极型晶体管还包括位于漂移区104中的集电区阱108。集电区111位于集电极阱区108中,集电区阱108具有第一导电类型且掺杂浓度大于漂移区104的掺杂浓度。设置集电区阱108可以进一步提高器件的击穿电压。在本申请的一个实施例中,集电区阱108与集电区111位于沟槽栅的同一侧。在图1所示的实施例中,辅助栅极106的深度大于集电区阱108的深度。通过调节沟槽栅的深度,可以控制辅助栅极横向绝缘栅双极型晶体管在双极模式下的击穿电压以及集电极的注入效率。
在图1所示的实施例中,阳极区113靠近漂移区104的上表面设置,第二导电类型掺杂区112靠近漂移区104的上表面设置,集电区111靠近集电区阱105的上表面设置。
在图1所示的实施例中,辅助栅极横向绝缘栅双极型晶体管是SOI器件,包括衬底101以及衬底101上的掩埋介质层102,漂移区104设于掩埋介质层102上。在本申请的一个实施例中,掩埋介质层102为埋氧层,其材质可以是硅氧化物,例如二氧化硅。在本申请的一个实施例中,衬底101为第二导电类型的硅衬底。在图1所示的实施例中,埋藏区103的底部延伸至掩埋介质层102的顶部。
本申请提供的辅助栅极横向绝缘栅双极型晶体管的阴极结构可以采用本领域技术人员习知的LIGBT的阴极结构。在图1所示的实施例中,辅助栅极横向绝缘栅双极型晶体管还包括第二导电类型阱区107、发射极衬底引出109及发射区110。第二导电类型阱区107具有第二导电类型,集电区阱108位于第二导电类型阱区107和辅助栅极106之间。发射极衬底引出109位于第二导电类型阱区107中,具有第二导电类型。发射区110位于第二导电类型阱区107中,作为器件发射极的引出,具有第一导电类型。第二导电类型阱区107是反型层沟道形成的区域,直接影响到栅极阈值电压,同时对漂移区耗尽也有影响。在图1所示的实施例中,第二导电类型阱区107位于漂移区104中。发射区110位于发射极衬底引出109和集电区阱108之间。发射极衬底引出109和发射区110靠近第二导电类型阱区107的上表面设置。
在图1所示的实施例中,主栅结构为设于发射区108和集电区阱105之间的平面栅结构,且靠近发射区108设置。栅极介电层125覆盖部分第二导电类型阱区107,栅极126位于栅极介电层125上。在本申请的一个实施例中,栅极介电层125和绝缘介质层105可以包括传统的电介质材料诸如具有电介质常数从大约4到大约20(真空中测量)的硅的氧化物、氮化物和氮氧化物,或者,栅极介电层125和绝缘介质层105可以包括具有电介质常数从大约20到至少大约100的通常较高电介质常数电介质材料。这种较高电介质常数电介质材料可以包括但不限于:氧化铪、硅酸铪、氧化钛、钛酸锶钡(BSTs)和锆钛酸铅(PZTs)。在本申请的一个实施例中,栅极126和辅助栅极106为多晶硅材料,通过对多晶硅的掺杂可调节阈值电压;在其他实施例中也可使用金属、金属氮化物、金属硅化物或类似化合物作为栅极126和辅助栅极106的材料。
在图1所示的实施例中,漂移区103为N-漂移区,发射区110和阳极区113均为N+区,发射极衬底引出109、集电区111及第二导电类型掺杂区112均为P+区,集电区阱108为N阱,埋藏区103为N型埋层。
在图1所示的实施例中,辅助栅极横向绝缘栅双极型晶体管还包括电极114、电极117及电极119。电极114连接发射极衬底引出109及发射区110,电极117为集电区电极,电极118为辅助栅电极。
本申请相应提供一种辅助栅极横向绝缘栅双极型晶体管的制造方法,可以用于制造前述任一实施例的辅助栅极横向绝缘栅双极型晶体管。图2是一实施例中辅助栅极横向绝缘栅双极型晶体管的制造方法的流程图,包括下列步骤:
S210,获取基底。
获取作为基底的晶圆,基底形成有第一导电类型的漂移区。
在本申请的一个实施例中,步骤S210是获取在衬底上形成有掩埋介质层、在掩埋介质层上形成有漂移区的SOI晶圆。
在本申请的一个实施例中,第一导电类型为N型、第二导电类型为P型;相应地,衬底为P型硅衬底,漂移区为N-漂移区。在其他的实施例中,也可以是第一导电类型为P型、第二导电类型为N型。
在本申请的一个实施例中,掩埋介质层为埋氧层,其材质为硅氧化物,例如二氧化硅。
S220,从漂移区的上表面向下刻蚀形成沟槽。
在本申请的一个实施例中,是光刻并对漂移区进行深槽刻蚀。
S230,在沟槽的内表面形成绝缘介质层。
在本申请的一个实施例中,通过热氧化对沟槽进行槽壁氧化,在沟槽内表面形成二氧化硅从而作为辅助栅极的栅氧化层。
S240,形成位于沟槽内的辅助栅极,并形成主栅结构。
在本申请的一个实施例中,在晶圆正面沉积多晶硅,多晶硅填入深槽中,回刻形成沟槽栅结构的辅助栅极。并且可以通过沉积多晶硅后进行光刻及刻蚀形成主栅结构中的多晶硅栅。
S250,形成集电区、第二导电类型掺杂区及阳极区。
通过光刻及离子注入形成集电区、第二导电类型掺杂区及阳极区。集电区和第二导电类型掺杂区形成于漂移区中,集电区位于沟槽的一侧、第二导电类型掺杂区位于沟槽的另一侧,集电区具有第二导电类型。阳极区具有第一导电类型。
上述辅助栅极横向绝缘栅双极型晶体管的制造方法,在LIGBT导通时,辅助栅极关断,消除了单极模式,仅从双极模式开始导通,无电压折回的风险;在LIGBT关断时,由辅助栅极开启导电沟道,为漂移区的非平衡载流子提供抽出通道,减小了电流拖尾的时间。且沟槽栅结构阻挡了原本的单极通路,从而拉长了漂移区到阳极区的电流路径,相当于增大了漂移区到阳极区的电阻,起到抑制电压折回的效果。
在本申请的一个实施例中,还包括在漂移区中形成第一导电类型的埋藏区的步骤。步骤S250的第二导电类型掺杂区形成于埋藏区上方。在本申请的一个实施例中,可以在掩埋介质层上外延形成埋藏区,也可以对漂移区进行第一导电类型离子注入后推阱形成埋藏区。
在本申请的一个实施例中,在形成辅助栅极之后、形成主栅结构之前,还包括通过光刻及离子注入形成集电区阱的步骤。集电区阱形成于漂移区中,具有第一导电类型。步骤S250的集电区形成于集电区阱中。
在本申请的一个实施例中,在形成辅助栅极之后、形成主栅结构之前,还包括形成第二导电类型阱区的步骤。第二导电类型阱区具有第二导电类型,可以通过光刻及离子注入在漂移区中形成第二导电类型阱区。集电区阱位于第二导电类型阱区和沟槽栅之间。
在本申请的一个实施例中,步骤S240之后还包括在第二导电类型阱区中形成发射极衬底引出和发射区的步骤。发射极衬底引出具有第二导电类型,发射区具有第一导电类型。在本申请的一个实施例中,发射极衬底引出可以和集电区同时形成。在本申请的一个实施例中,发射区可以和阳极区、第二导电类型掺杂区同时形成。
在本申请的一个实施例中,还可以在形成集电区阱和第二导电类型阱区之后、形成主栅结构之前进行场氧化,在有源区外形成一层氧化层。
在本申请的一个实施例中,在步骤S250之后,还包括在晶圆表面形成层间介质层(ILD)的步骤。然后通过刻蚀工艺,在需要引出至器件表面的结构处刻蚀形成贯穿ILD的接触孔,最后形成金属电极(阳极区、集电区、发射区、发射极衬底引出、辅助栅极等的电极)。
应该理解的是,虽然本申请的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,本申请的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种辅助栅极横向绝缘栅双极型晶体管,其特征在于,包括:
漂移区,具有第一导电类型;
集电区,位于所述漂移区中,具有第二导电类型,所述第一导电类型和第二导电类型为相反的导电类型;
第二导电类型掺杂区,设于所述漂移区中;
绝缘介质层,位于沟槽的内表面,所述沟槽位于所述集电区和第二导电类型掺杂区之间;
辅助栅极,位于所述沟槽中,且被所述绝缘介质层包围;
阳极区,具有第一导电类型,与所述漂移区直接接触;
第一电极,将所述阳极区与第二导电类型掺杂区短路连接;
主栅结构;
其中,在所述辅助栅极横向绝缘栅双极型晶体管导通时,所述辅助栅极上施加的电压使所述辅助栅极关断;在所述辅助栅极横向绝缘栅双极型晶体管关断时,所述辅助栅极上施加的电压使所述辅助栅极打开。
2.根据权利要求1所述的辅助栅极横向绝缘栅双极型晶体管,其特征在于,所述辅助栅极与所述绝缘介质层、集电区、第二导电类型掺杂区及漂移区一起构成第二导电类型沟道的金属氧化物半导体场效应管。
3.根据权利要求1所述的辅助栅极横向绝缘栅双极型晶体管,其特征在于,所述沟槽的深度大于所述集电区的深度和所述第二导电类型掺杂区的深度。
4.根据权利要求1所述的辅助栅极横向绝缘栅双极型晶体管,其特征在于,还包括位于所述漂移区内且处于所述第二导电类型掺杂区下方的埋藏区,所述埋藏区具有第一导电类型,所述埋藏区的掺杂浓度大于所述漂移区的掺杂浓度,所述埋藏区的底部位于比所述沟槽的底部更深的位置。
5.根据权利要求1所述的辅助栅极横向绝缘栅双极型晶体管,其特征在于,还包括位于所述漂移区中的集电区阱,所述集电区位于所述集电极阱区中,所述集电区阱具有第一导电类型。
6.根据权利要求5所述的辅助栅极横向绝缘栅双极型晶体管,其特征在于,所述沟槽的深度大于所述集电区阱的深度。
7.根据权利要求1所述的辅助栅极横向绝缘栅双极型晶体管,其特征在于,所述辅助栅极横向绝缘栅双极型晶体管是SOI器件,所述辅助栅极横向绝缘栅双极型晶体管还包括:
衬底;
掩埋介质层,设于所述衬底上;
其中,所述漂移区设于所述掩埋介质层上。
8.根据权利要求7所述的辅助栅极横向绝缘栅双极型晶体管,其特征在于,还包括位于所述漂移区内且处于所述第二导电类型掺杂区下方的埋藏区,所述埋藏区具有第一导电类型,所述埋藏区的掺杂浓度大于所述漂移区的掺杂浓度,所述埋藏区的底部延伸至所述掩埋介质层。
9.根据权利要求1所述的辅助栅极横向绝缘栅双极型晶体管,其特征在于,还包括:
第二导电类型阱区,所述集电区位于所述第二导电类型阱区和所述沟槽之间;
发射极衬底引出,具有第二导电类型,位于所述第二导电类型阱区中;
发射区,具有第一导电类型,位于所述第二导电类型阱区中;
其中,所述主栅结构位于所述发射区和所述集电区之间的结构的上方,且靠近所述发射区设置。
10.一种辅助栅极横向绝缘栅双极型晶体管的制造方法,包括:
获取基底,所述基底形成有第一导电类型的漂移区;
从所述漂移区的上表面向下刻蚀形成沟槽;
在所述沟槽的内表面形成绝缘介质层;
形成位于所述沟槽内的辅助栅极,以及形成主栅结构;
形成集电区、第二导电类型掺杂区及阳极区;所述集电区和第二导电类型掺杂区形成于所述漂移区中,所述集电区位于所述沟槽的一侧、所述第二导电类型掺杂区位于所述沟槽的另一侧,所述集电区具有第二导电类型;所述阳极区具有第一导电类型;所述第一导电类型和第二导电类型为相反的导电类型。
CN202211232262.1A 2022-10-10 2022-10-10 辅助栅极横向绝缘栅双极型晶体管及其制造方法 Pending CN117913130A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211232262.1A CN117913130A (zh) 2022-10-10 2022-10-10 辅助栅极横向绝缘栅双极型晶体管及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211232262.1A CN117913130A (zh) 2022-10-10 2022-10-10 辅助栅极横向绝缘栅双极型晶体管及其制造方法

Publications (1)

Publication Number Publication Date
CN117913130A true CN117913130A (zh) 2024-04-19

Family

ID=90691012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211232262.1A Pending CN117913130A (zh) 2022-10-10 2022-10-10 辅助栅极横向绝缘栅双极型晶体管及其制造方法

Country Status (1)

Country Link
CN (1) CN117913130A (zh)

Similar Documents

Publication Publication Date Title
US9306018B2 (en) Trench shielding structure for semiconductor device and method
US6800897B2 (en) Integrated circuit power devices having junction barrier controlled schottky diodes therein
US7915672B2 (en) Semiconductor device having trench shield electrode structure
US7968940B2 (en) Insulated gate bipolar transistor device comprising a depletion-mode MOSFET
US8362548B2 (en) Contact structure for semiconductor device having trench shield electrode and method
TWI534902B (zh) 功率半導體裝置及形成功率半導體裝置之方法
US7999343B2 (en) Semiconductor component with a space-saving edge termination, and method for production of such component
US7446354B2 (en) Power semiconductor device having improved performance and method
TW201351602A (zh) 用於製造具有一屏蔽電極結構之一絕緣閘極半導體裝置之方法
CN108258039B (zh) 电导率调制漏极延伸mosfet
TW202006956A (zh) 具有整合的偽肖特基二極體於源極接觸溝槽之功率金屬氧化物半導體場效電晶體
US11393901B2 (en) Cell layouts for MOS-gated devices for improved forward voltage
US20070215914A1 (en) Power semiconductor device having improved performance and method
US20110220961A1 (en) Semiconductor device
US20220238698A1 (en) Mos-gated trench device using low mask count and simplified processing
CN108155230B (zh) 一种横向rc-igbt器件及其制备方法
CN110943124A (zh) Igbt芯片及其制造方法
CN113130650A (zh) 功率半导体器件及其制备工艺
US20220045189A1 (en) Insulated trench gates with multiple layers for improved performance of semiconductor devices
CN110504315B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN117913130A (zh) 辅助栅极横向绝缘栅双极型晶体管及其制造方法
CN117690947A (zh) 耗尽型阳极短路横向绝缘栅双极型晶体管及其制造方法
CN117690948A (zh) 阳极短路横向绝缘栅双极型晶体管及其制造方法
WO2024001197A1 (zh) 阳极短路横向绝缘栅双极型晶体管及其制造方法
JPH0818041A (ja) 高耐圧半導体装置およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination