CN117897140A - 用于制备脂质体制剂的方法 - Google Patents

用于制备脂质体制剂的方法 Download PDF

Info

Publication number
CN117897140A
CN117897140A CN202280059250.5A CN202280059250A CN117897140A CN 117897140 A CN117897140 A CN 117897140A CN 202280059250 A CN202280059250 A CN 202280059250A CN 117897140 A CN117897140 A CN 117897140A
Authority
CN
China
Prior art keywords
inhibitor
therapeutic agent
liposome
lipid
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280059250.5A
Other languages
English (en)
Inventor
P·塔蒂
L·万
S·M·加格
高均
P·莱格罗斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celator Pharmaceuticals Inc
Original Assignee
Celator Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celator Pharmaceuticals Inc filed Critical Celator Pharmaceuticals Inc
Publication of CN117897140A publication Critical patent/CN117897140A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1277Processes for preparing; Proliposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/63Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide
    • A61K31/635Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide having a heterocyclic ring, e.g. sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/186Quaternary ammonium compounds, e.g. benzalkonium chloride or cetrimide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/28Steroids, e.g. cholesterol, bile acids or glycyrrhetinic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Detergent Compositions (AREA)

Abstract

本文提供了通过用酸性水溶液洗涤来纯化脂质体制剂的方法。

Description

用于制备脂质体制剂的方法
相关申请的交叉引用
本申请要求2021年7月16日提交的美国临时专利申请第63/222,887号的优先权权益,该申请的公开内容特此以全文引用的方式并入本文。
技术领域
本文提供了用于制备包含经包封的疏水性药物的脂质体制剂的方法,所述脂质体制剂可以是用于治疗诸如过度增殖性病症的疾病的有用制剂。
背景技术
脂质体是具有至少一个围绕水性核的脂质双层的封闭囊泡。脂质体内空间和一个或多个脂质层可包埋多种物质,包括药物、化妆品、诊断试剂、遗传物质和生物活性化合物。由于无毒脂质充当脂质体的基础,因此它们通常表现出低毒性。低毒性加上脂质体增加剂的血浆循环寿命的能力使脂质体成为特别可用于递送药物活性剂的媒介物。在许多情况下,经脂质体递送的药物产生优越的临床功效,并且同时毒性降低。
亲脂性以及较小程度上两亲性功能化合物的被动装载比亲水性功能化合物稍微更有效,因为它们在脂质双层和脂质体内(内部)水性介质两者中都有分配。然而,采用被动装载,最终功能化合物与脂质的比率以及包封效率通常较低。药物在脂质体中的浓度等于周围流体的浓度,并且未包埋在内部水性介质中的药物在包封后被洗掉。此外,当将脂质体注射到受试者内时,装载到双层中的药物非常快速地从脂质体中释放。为了在患者体内持续释放药物,优选将药物包封在脂质体的内部之内。
可采用跨膜pH梯度或离子梯度将某些亲水或两亲性化合物装载到预先形成的脂质体中(D.Zucker等人,Journal of Controlled Release(2009)139:73-80)。这种技术被称为主动或远程装载。适合主动装载的化合物应该能够从可以跨脂质体膜扩散的不带电的形式变为不能够跨脂质体膜扩散的带电形式。通常,通过将功能化合物添加到制备成具有较低的内部/较高的外部pH梯度或离子梯度的脂质体的悬浮液中来装载功能化合物。经由主动装载,可以实现高的功能化合物与脂质的质量比率和高装载效率(高达100%)。实例有抗癌药物多柔比星、道诺霉素和长春新碱的主动装载(P.R.Cullis等人,Biochimica etBiophysicaActa,(1997)1331:187-211,以及其中的参考文献)。
疏水性药物主要被认为能够经由被动装载/组装机制通过膜嵌入而装载到脂质体中。Wasan等人在描述使用胶束将微溶性剂转移到脂质体双层中时指出“具有疏水属性的剂可嵌入到脂质双层中,并且这可以通过将剂添加到预先形成的脂质体中来实现。”(US2009/0028931)。然而,这种装载依赖于疏水性药物与脂质双层缔合或被截留在脂质双层中,并且药物可能容易从脂质体中漏出,导致体内保留差,并且药代动力学不太理想。特别地,当药物与脂质双层缔合或截留在脂质双层中而不是包封在脂质体的水性核中时,在将脂质体施用给患者后可能会发生向血流中的快速释放。这对于临床上关注剂量限制性毒性和/或低治疗指数的某些药物来说可能是特别成问题的,正如许多抗赘生物剂的情况。尤其是由于这些原因,在脂质体药物递送领域中需要制备不具有与脂质双层缔合的药物的经脂质体包封的药物的改进方法。这种改进的脂质体制剂可提供有利的药代动力学性质和更大的临床价值。
发明内容
本公开涉及制备经纯化的脂质体组合物的方法。
一方面,提供了制备经纯化的脂质体组合物的方法,所述经纯化的脂质体组合物包含:
脂质体,所述脂质体包含:
(a)脂质双层;
(b)内部介质;和
(c)包封在脂质体的内部介质中的治疗剂,
其中治疗剂具有低水溶性,并且可以被质子化为质子化形式;
所述方法包括:
(i)提供粗脂质体组合物;以及
(ii)用酸化的水溶液纯化粗脂质体组合物。
在一些实施方案中,脂质双层包含第一脂质和第一固醇;且内部介质包含第一装载助剂。
在一些实施方案中,第一脂质是聚合物缀合的脂质。例如,在一些实施方案中,第一脂质选自由1,2-二硬脂酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DSG-PEG2000)、1,2-二肉豆蔻酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DMG-PEG2000)、1,2-二棕榈酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DPG-PEG2000)和1,2-二硬脂酰基-sn-甘油-3-磷酸乙醇胺-聚(乙二醇)(如DSPE-PEG2000)组成的组。在一些实施方案中,第一脂质是DSG-PEG2000。
在一些实施方案中,脂质双层进一步包含第二脂质。在一些实施方案中,第二脂质是磷脂。在一些实施方案中,第二脂质是二硬脂酰磷脂酰胆碱(DSPC)。在一些实施方案中,第二脂质是氢化鞘磷脂。
在一些实施方案中,内部介质是水性内部介质。在一些实施方案中,水性内部介质是酸性水性内部介质。在一些实施方案中,内部介质进一步包含另外的溶剂。在一些实施方案中,该另外的溶剂是有机溶剂。在一些实施方案中,该另外的溶剂是二甲亚砜(DMSO)。
在一些实施方案中,第一装载助剂是离子装载助剂。在一些实施方案中,第一装载助剂选自由硫酸铵(AS)、蔗糖八硫酸铵(NH4SOS)、蔗糖八硫酸钾(KSOS)、蔗糖八硫酸三乙醇铵(TEA(OH)SOS)、蔗糖八硫酸三乙铵(TEASOS)和柠檬酸钠组成的组。在一些实施方案中,第一装载助剂是硫酸铵(AS)。在一些实施方案中,第一装载助剂是蔗糖八硫酸三乙铵(TEASOS)。
在一些实施方案中,内部介质进一步包含第二装载助剂。在一些实施方案中,第二装载助剂是离子装载助剂。在一些实施方案中,第二装载助剂选自由硫酸铵(AS)、蔗糖八硫酸铵(NH4SOS)、蔗糖八硫酸钾(KSOS)、蔗糖八硫酸三乙铵(TEASOS)和柠檬酸钠组成的组。
在一些实施方案中,第一装载助剂是蔗糖八硫酸钾(KSOS),且第二装载助剂是柠檬酸钠。
在一些实施方案中,第一固醇是胆固醇或β-谷固醇。
在一些实施方案中,治疗剂具有大于约2的cLogP。在一些实施方案中,治疗剂的质子化形式具有大于约2的pKa。
在一些实施方案中,治疗剂是抗血管生成剂、抗代谢物、细胞凋亡诱导剂、细胞周期抑制剂、细胞周期控制抑制剂、检查点抑制剂、细胞周期蛋白依赖性激酶抑制剂、细胞毒性剂、DNA损伤剂、DNA修复抑制剂、线粒体毒物、端粒酶抑制剂、信号转导抑制剂、转录抑制剂、Bcl抑制剂、PARP抑制剂、HSP90抑制剂、JAK抑制剂、ATR抑制剂、酪氨酸激酶抑制剂、受体酪氨酸激酶抑制剂、BTK抑制剂、烷化剂、SMO抑制剂、抗微管蛋白剂、MEK抑制剂、拓扑异构酶抑制剂、RAF抑制剂、BRAF抑制剂或蛋白酶体抑制剂。在一些实施方案中,治疗剂是选自由Bcl-2抑制剂、Bcl-XL抑制剂和Bcl-2/Bcl-XL双重抑制剂组成的组的Bcl抑制剂。
在一些实施方案中,脂质体进一步包含另外的治疗剂。在一些实施方案中,该另外的治疗剂被包封在脂质体中。在一些实施方案中,该另外的治疗剂是抗血管生成剂、抗代谢物、细胞凋亡诱导剂、细胞周期抑制剂、细胞周期控制抑制剂、检查点抑制剂、细胞周期蛋白依赖性激酶抑制剂、细胞毒性剂、DNA损伤剂、DNA修复抑制剂、线粒体毒物、端粒酶抑制剂、信号转导抑制剂、转录抑制剂、Bcl抑制剂、PARP抑制剂、HSP90抑制剂、JAK抑制剂、ATR抑制剂、酪氨酸激酶抑制剂、受体酪氨酸激酶抑制剂、BTK抑制剂、烷化剂、SMO抑制剂、抗微管蛋白剂、MEK抑制剂、拓扑异构酶抑制剂、RAF抑制剂、BRAF抑制剂或蛋白酶体抑制剂。
在一些实施方案中,脂质体具有约50nm与约250nm之间的平均直径。
在一些实施方案中,酸化的水溶液包含糖。在一些实施方案中,酸化的水溶液包含右旋糖。在一些实施方案中,酸化的水溶液包含蔗糖。在一些实施方案中,酸化的水溶液中的糖的浓度在约5重量%与20重量%之间。在一些实施方案中,酸化的水溶液中的酸的浓度在约1mM与100mM之间。在一些实施方案中,酸化的水溶液包含甲磺酸。
附图说明
图1A示出与使用游离药物相比,使用各种脂质体制剂时化合物2的归一化血浆浓度随时间推移的演变。
图1B示出与采用根据先前公布的方法制备的脂质体制剂相比以及与使用游离药物相比,使用本公开的示例性脂质体制剂时化合物2的归一化血浆浓度随时间推移的演变。
图2A示出使用各种脂质体制剂时化合物9的归一化血浆浓度随时间推移的演变。
图2B示出与采用根据先前公布的方法制备的脂质体制剂相比以及与使用游离药物相比,使用本公开的示例性脂质体制剂时化合物9的归一化血浆浓度随时间推移的演变。
图3描绘在本公开的示例性脂质体制剂的纯化期间化合物9的渗透浓度作为洗涤体积的函数。
图4示出与采用根据先前公布的方法制备的脂质体制剂相比,使用本公开的示例性脂质体制剂时化合物7的归一化血浆浓度随时间推移的演变。
具体实施方式
除另有定义外,本文使用的所有技术术语、符号及其它科学术语或专有名词具有与本公开所属领域的普通技术人员通常所理解的含义相同的含义。在一些情况下,为了清楚和/或便于参考,本文中定义了具有通常理解的含义的术语,并且本文中包含这类定义不一定应当被解释为代表与本领域中通常所理解的有实质性差异。本文所描述或提及的许多技术和程序能被本领域技术人员很好地理解,且通常被本领域技术人员使用常规方法来采用。除另有说明外,在适当情况下,涉及使用市售试剂盒和试剂的程序通常按照制造商限定的方案和/或参数进行。本文提及的所有专利、申请、公布的申请及其它出版物以引用的方式全文并入。如果本节中阐述的定义与以引用的方式并入本文的专利、申请、公布的申请及其它出版物中阐述的定义相反或以其它方式不一致,则本节中阐述的定义优先于以引用的方式并入本文的定义。
定义
对于本文中的使用,除明确另指出外,术语“一个(种)”等的使用是指一个(种)或多个(种)。
本文提到“约”某一值或参数包括(并描述)涉及该值或参数本身的实施方案。例如,提到“约X”的描述包括对“X”的描述。
如本文所用的术语“治疗剂”或“药物”是指在多种治疗药物(包括药物应用)中使用的化学部分。
术语“药学上可接受的盐”是指已知无毒且在药学文献中常用的任何本文的化合物的盐。在一些实施方案中,化合物的药学上可接受的盐保留本文所述的化合物的生物学有效性,并且不是生物学上或其它方面不可取的。药学上可接受的盐的实例可见于Berge等人,Pharmaceutical Salts,J.Pharmaceutical Sciences,1977年1月,66(1),1-19中。药学上可接受的酸加成盐可以用无机酸和有机酸形成。盐可衍生自的无机酸包括例如盐酸、氢溴酸、硫酸、硝酸和磷酸。盐可衍生自的有机酸包括例如乙酸、丙酸、乙醇酸、丙酮酸、乳酸、草酸、苹果酸、马来酸、丙二酸、琥珀酸、富马酸、酒石酸、柠檬酸、苯甲酸、肉桂酸、扁桃酸、甲磺酸、乙磺酸、2-羟乙基磺酸、对甲苯磺酸、硬脂酸和水杨酸。药学上可接受的碱加成盐可以用无机碱和有机碱形成。盐可来衍生自的无机碱包括例如钠、钾、锂、铵、钙、镁、铁、锌、铜、锰和铝。盐可衍生自的有机碱包括例如伯胺、仲胺和叔胺;取代的胺,包括天然存在的取代的胺;环胺;和碱性离子交换树脂。有机碱的实例包括异丙胺、三甲胺、二乙胺、三乙胺、三丙胺和乙醇胺。在一些实施方案中,药学上可接受的碱加成盐选自铵盐、钾盐、钠盐、钙盐和镁盐。
如本文所用,术语“受试者”是指动物,如哺乳动物、鸟或鱼。在一些实施方案中,受试者是哺乳动物。哺乳动物包括例如小鼠、大鼠、狗、猫、猪、绵羊、马、母牛和人。在一些实施方案中,受试者是人,例如已经是或将要是治疗、观察或实验的对象的人。
术语“治疗有效量”或“有效量”是指本文公开和/或描述的化合物的量,当对需要这种治疗的受试者施用时,该量足以影响如本文所定义的治疗。治疗有效量将根据例如所治疗的受试者和疾病状况、受试者的体重和年龄、疾病状况的严重程度、特定化合物、要遵循的给药方案、施用的时间安排、施用方式而变化,所有这些都可以由本领域普通技术人员很容易地确定。治疗有效量可通过实验来确定,例如通过测定化学实体的血液浓度,或者通过计算生物利用度在理论上确定。
“治疗”(以及相关术语,诸如“治疗(treat)”、“治疗(treated)”、“治疗(treating)”)包括以下中的一者或多者:预防疾病或病症(即,使疾病或病症的临床症状不发生1;抑制疾病或病症;减缓或阻抑疾病或病症的临床症状的发展;和/或缓解疾病或病症(即,使临床症状缓解或消退)。该术语涵盖受试者已经历疾病或病症的情况,以及当前未经历疾病或病症但预计会出现疾病或病症的情况。该术语涵盖完全和部分减轻或预防病状或病症,以及完全或部分减轻疾病或病症的临床症状。因此,本文所述和/或公开的化合物可预防现有疾病或病症恶化,帮助管理疾病或病症,或者减轻或消除疾病或病症。当以预防疾病方式使用时,本文公开和/或描述的化合物可预防疾病或病症的发生,或者减弱可能发生的疾病或病症的程度。
不受理论的束缚,推测将治疗剂包封到脂质体中导致治疗剂的一些部分变得与脂质双层缔合或截留在脂质双层内,特别是当包封具有低水溶性或高疏水性的治疗剂时。用酸化的水溶液纯化脂质体组合物可移除与脂质双层缔合或截留在脂质双层内的治疗剂,从而产生含有仅包封在脂质体的内部介质内的治疗剂的脂质体制剂。例如,如图3中所示,随着用酸化的糖水溶液洗涤含有化合物9的示例性脂质体制剂,在渗透物中检测到化合物9。随着洗涤体积的增加,也就是说,随着用不断增加的量的酸化的糖水溶液洗涤脂质体组合物,在渗透物中检测到的化合物9的量达到峰值,并然后减少。该峰值被认为是由于与脂质双层缔合或截留在脂质双层中的化合物9快速释放到酸化的糖水溶液中产生的。图3进一步显示在用约300-400mL酸化的糖水溶液洗涤后,在渗透物中检测到很少的化合物9,这意味着此时大部分或所有的化合物9已经从脂质双层中被移除。换言之,用酸化的水溶液纯化脂质体组合物可允许仅与脂质双层缔合或截留在脂质双层内的任何治疗剂释放到酸化的水溶液中,从而防止施用后在患者的血流中发生快速释放。因此,可以预期根据本文所述的各种实施方案制备的脂质体组合物表现出优异的药代动力学性质和增强的临床价值。
在第一方面,提供了制备经纯化的脂质体组合物的方法,所述经纯化的脂质体组合物包含:
脂质体,所述脂质体包含:
(a)脂质双层;
(b)内部介质;和
(c)包封在脂质体的内部介质中的治疗剂,
其中治疗剂具有低水溶性,并且可以被质子化为质子化形式;
所述方法包括:
(i)提供粗脂质体组合物;以及
(ii)用酸化的水溶液纯化粗脂质体组合物。
在另一方面,提供了如本文所述制备的包含一种或多种脂质体的脂质体组合物,其中所述一种或多种脂质体中的每一种均包含:
(a)包含第一脂质和第一固醇的脂质双层;
(b)包含第一装载助剂和第一溶剂的内部介质;和
(c)包封在所述脂质体的内部介质中的治疗剂。
在另一方面,提供了药物组合物,其包含一种或多种如本文所述制备的包含一种或多种脂质体的脂质体组合物,其中所述一种或多种脂质体中的每一种均包含:
(a)包含第一脂质和第一固醇的脂质双层;
(b)包含第一装载助剂和第一溶剂的内部介质;和
(c)包封在所述脂质体的内部介质中的治疗剂;和
在所述一种或多种脂质体外部的治疗剂。
在另一方面,提供了用于向受试者递送治疗有效量的治疗剂的方法,其包括对所述受试者施用如本文所述制备的包含一种或多种脂质体的脂质体组合物,其中所述一种或多种脂质体中的每一种均包含:
(a)包含第一脂质和第一固醇的脂质双层;
(b)包含第一装载助剂和第一溶剂的内部介质;和
(c)包封在所述脂质体的内部介质中的治疗剂。
在另一方面,提供了用于治疗有需要的受试者的过度增殖性病症的方法,所述方法包括对所述受试者施用如本文所述制备的包含一种或多种脂质体的脂质体组合物,其中所述一种或多种脂质体中的每一种均包含:
(a)包含第一脂质和第一固醇的脂质双层;
(b)包含第一装载助剂和第一溶剂的内部介质;和
(c)包封在所述脂质体的内部介质中的治疗剂。
在所有前述方面的一些实施方案中,第一脂质是聚合物缀合的脂质。在一些实施方案中,聚合物缀合的脂质选自由1,2-二硬脂酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DSG-PEG2000)、1,2-二肉豆蔻酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DMG-PEG2000)、1,2-二棕榈酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DPG-PEG2000)和1,2-二硬脂酰基-sn-甘油-3-磷酸乙醇胺-聚(乙二醇)(如DSPE-PEG2000)组成的组。在一些实施方案中,聚合物缀合的脂质是1,2-二硬脂酰基-外消旋-甘油-3-甲氧基聚(乙二醇)或1,2-二肉豆蔻酰基-外消旋-甘油-3-甲氧基聚(乙二醇)。在一些实施方案中,聚合物缀合的脂质是1,2-二硬脂酰基-外消旋-甘油-3-甲氧基聚(乙二醇)。在一些实施方案中,聚合物缀合的脂质是DSG-PEG2000。在一些实施方案中,脂质双层进一步包含第二脂质。在一些实施方案中,第二脂质是磷脂。在一些实施方案中,磷脂选自由磷脂酰胆碱、鞘脂和氢化鞘脂组成的组。在一些实施方案中,第二脂质是二硬脂酰磷脂酰胆碱(DSPC)。在一些实施方案中,第二脂质是鞘磷脂。在一些实施方案中,第二脂质是氢化鞘磷脂(二氢鞘磷脂)。在一些实施方案中,第二脂质是卵鞘磷脂。在一些实施方案中,第二脂质是氢化鞘磷脂(二氢鞘磷脂)或卵鞘磷脂。
在所有前述方面的一些实施方案中,第一脂质是第一磷脂。在一些实施方案中,磷脂选自由磷脂酰胆碱、鞘脂和氢化鞘脂组成的组。在一些实施方案中,第一脂质是二硬脂酰磷脂酰胆碱(DSPC)。在一些实施方案中,第一脂质是鞘磷脂。在一些实施方案中,第一脂质是氢化鞘磷脂(二氢鞘磷脂)。在一些实施方案中,脂质双层进一步包含第二脂质。在一些实施方案中,第二脂质是第二磷脂。在一些实施方案中,第二磷脂选自由磷脂酰胆碱、鞘脂和氢化鞘脂(二氢鞘磷脂)组成的组。在一些实施方案中,第二脂质是二硬脂酰磷脂酰甘油(DSPG)。在一些实施方案中,第二脂质是鞘磷脂。在一些实施方案中,第二脂质是氢化鞘磷脂(二氢鞘磷脂)。
在所有前述方面的一些实施方案中,第一溶剂是水性溶剂。在一些实施方案中,水性溶剂是酸性水性溶剂。
在所有前述方面的一些实施方案中,内部介质进一步包含第二溶剂。在一些实施方案中,第二溶剂是有机溶剂。在一些实施方案中,有机溶剂是非质子有机溶剂。在一些实施方案中,第二溶剂是二甲亚砜(DMSO)。
在所有前述方面的一些实施方案中,第一装载助剂是离子装载助剂。在一些实施方案中,第一装载助剂跨脂质双层形成离子梯度。在一些实施方案中,离子梯度是pH梯度、硫酸盐梯度、磷酸盐梯度、柠檬酸盐梯度、乙酸盐梯度、EDTA-离子梯度、铵梯度、烷基铵梯度、戊基铵梯度、Ca梯度、Cu梯度、Fe梯度、Mg梯度、Mn梯度、Zn梯度、Na梯度或K梯度。在一些实施方案中,第一装载助剂是硫酸盐、蔗糖八硫酸盐或柠檬酸盐。在一些实施方案中,第一装载助剂选自由硫酸铵(AS)、蔗糖八硫酸铵(NH4SOS)、蔗糖八硫酸钾(KSOS)、蔗糖八硫酸三乙铵(TEASOS)、蔗糖八硫酸三乙醇铵(TEA(OH)SOS)、柠檬酸铵和柠檬酸钠组成的组。在一些实施方案中,第一装载助剂选自由硫酸铵(AS)、蔗糖八硫酸铵(NH4SOS)、蔗糖八硫酸钾(KSOS)、蔗糖八硫酸三乙铵(TEASOS)和柠檬酸钠组成的组。在一些实施方案中,第一装载助剂是硫酸铵(AS)。在一些实施方案中,第一装载助剂是蔗糖八硫酸铵(NH4SOS)。在一些实施方案中,第一装载助剂是蔗糖八硫酸钾(KSOS)。在一些实施方案中,第一装载助剂是蔗糖八硫酸三乙铵(TEASOS)。在一些实施方案中,第一装载助剂是柠檬酸钠。在一些实施方案中,内部介质进一步包含第二装载助剂。在一些实施方案中,第二装载助剂是离子装载助剂。在一些实施方案中,第二装载助剂是硫酸盐、蔗糖八硫酸盐或柠檬酸盐。在一些实施方案中,第二装载助剂选自由硫酸铵(AS)、蔗糖八硫酸铵(NH4SOS)、蔗糖八硫酸钾(KSOS)、蔗糖八硫酸三乙铵(TEASOS)、蔗糖八硫酸三乙醇铵(TEA(OH)SOS)、柠檬酸铵和柠檬酸钠组成的组。在一些实施方案中,第二装载助剂是硫酸铵(AS)。在一些实施方案中,第二装载助剂是蔗糖八硫酸铵(NH4SOS)。在一些实施方案中,第二装载助剂是蔗糖八硫酸钾(KSOS)。在一些实施方案中,第二装载助剂是蔗糖八硫酸三乙铵(TEASOS)。在一些实施方案中,第二装载助剂是柠檬酸钠。在一些实施方案中,第一装载助剂是蔗糖八硫酸钾(KSOS),且第二装载助剂是柠檬酸钠。
在所有前述方面的一些实施方案中,第一固醇是胆固醇或植物固醇(诸如β-谷固醇)。在一些实施方案中,第一固醇是胆固醇。在一些实施方案中,第一固醇是β-谷固醇。
在一些实施方案中,其中提供的脂质体和脂质体组合物包含包封在脂质体中的治疗剂。在一些实施方案中,其中提供的脂质体和脂质体组合物包含包封在脂质体中的疏水性治疗剂。
在一些实施方案中,治疗剂是抗血管生成剂、抗代谢物、细胞凋亡诱导剂、细胞周期抑制剂、细胞周期控制抑制剂、检查点抑制剂、细胞周期蛋白依赖性激酶抑制剂、细胞毒性剂、DNA损伤剂、DNA修复抑制剂、线粒体毒物、端粒酶抑制剂、信号转导抑制剂、转录抑制剂、Bcl抑制剂、PARP抑制剂、PI3K抑制剂、HSP90抑制剂、JAK抑制剂、ATR抑制剂、HDAC抑制剂、酪氨酸激酶抑制剂、受体酪氨酸激酶抑制剂、BTK抑制剂、烷化剂、SMO抑制剂、抗微管蛋白剂、MEK抑制剂、拓扑异构酶抑制剂、RAF抑制剂、BRAF抑制剂或蛋白酶体抑制剂。
在一些实施方案中,治疗剂是HSP90抑制剂。在一些实施方案中,HSP90抑制剂是芦米司匹(Luminespib)。
治疗剂是烷化剂。在一些实施方案中,治疗剂是选自由苯达莫司汀和苯丁酸氮芥组成的组的烷化剂。
在一些实施方案中,治疗剂是抗微管蛋白剂。在一些实施方案中,治疗剂是选自由长春新碱、长春瑞滨和多西他赛组成的组的抗微管蛋白剂。
在一些实施方案中,治疗剂是ATR抑制剂。
在一些实施方案中,治疗剂是RAF抑制剂。在一些实施方案中,RAF抑制剂是达拉非尼。在一些实施方案中,治疗剂是BRAF抑制剂。在一些实施方案中,BRAF抑制剂是维莫非尼。
在一些实施方案中,治疗剂是BTK抑制剂。在一些实施方案中,BTK抑制剂是依鲁替尼。
在一些实施方案中,治疗剂是HDAC抑制剂。在一些实施方案中,HDAC抑制剂是帕比司他。
在一些实施方案中,治疗剂是JAK抑制剂。在一些实施方案中,JAK抑制剂是鲁索替尼。
在一些实施方案中,治疗剂是MEK抑制剂。在一些实施方案中,治疗剂是选自由司美替尼和考比替尼组成的组的MEK抑制剂。
在一些实施方案中,治疗剂是PARP抑制剂。在一些实施方案中,治疗剂是选自由他拉唑帕尼(Talazoparib)、尼拉帕尼和卢卡帕尼(Rucaparib)组成的组的PARP抑制剂。
在一些实施方案中,治疗剂是PI3K抑制剂。在一些实施方案中,PI3K抑制剂是艾代拉利司(Idelalisib)。
在一些实施方案中,治疗剂是蛋白酶体抑制剂。在一些实施方案中,蛋白酶体抑制剂是卡非佐米。
在一些实施方案中,治疗剂是SMO抑制剂。在一些实施方案中,治疗剂是选自由索尼德吉和维莫德吉组成的组的SMO抑制剂。
在一些实施方案中,治疗剂是酪氨酸激酶抑制剂。在一些实施方案中,治疗剂是选自由布加替尼、乐伐替尼、阿法替尼、阿昔替尼、卡博替尼、普纳替尼、索拉非尼、奥希替尼、瑞戈非尼、博舒替尼、克唑替尼、凡德他尼、尼洛替尼、阿来替尼、塞瑞替尼、达沙替尼、帕唑帕尼、舒尼替尼、埃罗替尼、伊马替尼、吉非替尼、拉帕替尼组成的组的酪氨酸激酶抑制剂。
在一些实施方案中,治疗剂是拓扑异构酶抑制剂。在一些实施方案中,治疗剂是拓扑异构酶I抑制剂。在一些实施方案中,拓扑异构酶抑制剂是伊立替康。
在一些实施方案中,治疗剂是Bcl抑制剂。在一些实施方案中,Bcl抑制剂是Bcl-2抑制剂。在一些实施方案中,Bcl抑制剂是Bcl-XL抑制剂。在一些实施方案中,Bcl抑制剂是Bcl-2/Bcl-XL双重抑制剂。在一些实施方案中,Bcl抑制剂是式(I)的化合物:
或其立体异构体、互变异构体或药学上可接受的盐,其中:
V是
W是H或
X是
Y是-NO2或-SO2CF3
Z选自由
和/>组成的组。在一些实施方案中,V是/>在一些实施方案中,V是/>在一些实施方案中,W是H。在一些实施方案中,W是/>在一些实施方案中,X是/>在一些实施方案中,X是/>在一些实施方案中,Y是-NO2。在一些实施方案中,Y是-SO2CF3
在一些实施方案中,Z是在一些实施方案中,Z是/>在一些实施方案中,Z是/>在一些实施方案中,Z是/>在一些实施方案中,Z是/>在一些实施方案中,Z是/>在一些实施方案中,Z是/>在一些实施方案中,Z是/>
在一些实施方案中,Bcl抑制剂选自由以下组成的组:
/>
/>
/>
维奈托克(venetoclax)(ABT-199)、那维托克(navitoclax)(ABT-263)、ABT-737、甲磺酸奥巴托克(obatoclax mesylate)(GX15-070)、沙布托克(sabutoclax)、TW-37、(R)-(-)-棉子酚乙酸、HA14-1、BH3模拟物和奥利默森(oblimersen)。在一些实施方案中,Bcl抑制剂选自由以下组成的组:
/>
维奈托克(ABT-199)、那维托克(ABT-263)、甲磺酸奥巴托克(GX15-070)、沙布托克、TW-37、(R)-(-)-棉子酚乙酸、HA14-1、BH3模拟物和奥利默森。在一些实施方案中,Bcl抑制剂选自由以下组成的组:维奈托克(ABT-199)、那维托克(ABT-263)、甲磺酸奥巴托克(GX15-070)、沙布托克、TW-37、(R)-(-)-棉子酚乙酸、HA14-1、BH3模拟物和奥利默森。在一些实施方案中,Bcl抑制剂选自由以下组成的组:
维奈托克(ABT-199)和那维托克(ABT-263)。在一些实施方案中,Bcl抑制剂选自由以下组成的组:/>
维奈托克(ABT-199)和那维托克(ABT-263)。在一些实施方案中,Bc1抑制剂是/>在一些实施方案中,Bcl抑制剂是/>在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂剂是/>在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是/>在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是/>在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是/>在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是维奈托克。在一些实施方案中,Bcl抑制剂是那维托克。
在一些实施方案中,其中提供的脂质体组合物包含治疗剂。在一些实施方案中,治疗剂是疏水性治疗剂。在一些实施方案中,治疗剂具有大于约2的cLogP。在一些实施方案中,治疗剂具有约2与约12之间的cLogP。在一些实施方案中,治疗剂具有约3与约12之间的cLogP。在一些实施方案中,治疗剂具有约2与约4之间的cLogP。在一些实施方案中,治疗剂具有约2与约8之间的cLogP。在一些实施方案中,治疗剂具有约4与约12之间的cLogP。在一些实施方案中,治疗剂具有约4与约8之间的cLogP。在一些实施方案中,治疗剂具有约8与约12之间的cLogP。在一些实施方案中,治疗剂具有约10与约12之间的cLogP。
在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有大于约2的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约3与约11之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约6与约11之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约8与约11之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约3与约6之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约6与约8之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约3与约8之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约2与约12之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约2与约8之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约2与约4之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约4与约12之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约4与约8之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约8与约12之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约10与约12之间的pKa
在一些实施方案中,其中提供的脂质体组合物包含另外的治疗剂。在一些实施方案中,该另外的治疗剂是疏水性治疗剂。在一些实施方案中,该另外的治疗剂是亲水性治疗剂。在一些实施方案中,该另外的治疗剂被包封在脂质体中。在一些实施方案中,该另外的治疗剂位于脂质体外部。在所有前述方面的一些实施方案中,脂质体进一步包含另外的治疗剂。在一些实施方案中,该另外的治疗剂被包封在脂质体中。
在一些实施方案中,另外的治疗剂是抗血管生成剂、抗代谢物、细胞凋亡诱导剂、细胞周期抑制剂、细胞周期控制抑制剂、检查点抑制剂、细胞周期蛋白依赖性激酶抑制剂、细胞毒性剂、DNA损伤剂、DNA修复抑制剂、线粒体毒物、端粒酶抑制剂、信号转导抑制剂、转录抑制剂、Bcl抑制剂、PARP抑制剂、PI3K抑制剂、HSP90抑制剂、JAK抑制剂、ATR抑制剂、HDAC抑制剂、酪氨酸激酶抑制剂、受体酪氨酸激酶抑制剂、BTK抑制剂、烷化剂、SMO抑制剂、抗微管蛋白剂、MEK抑制剂、拓扑异构酶抑制剂、RAF抑制剂、BRAF抑制剂或蛋白酶体抑制剂。
在一些实施方案中,该另外的治疗剂是HSP90抑制剂。在一些实施方案中,HSP90抑制剂是芦米司匹。
在一些实施方案中,该另外的治疗剂是烷化剂。在一些实施方案中,该另外的治疗剂是选自由苯达莫司汀和苯丁酸氮芥组成的组的烷化剂。
在一些实施方案中,该另外的治疗剂是抗微管蛋白剂。在一些实施方案中,该另外的治疗剂是选自由长春新碱、长春瑞滨和多西他赛组成的组的抗微管蛋白剂。
在一些实施方案中,该另外的治疗剂是ATR抑制剂。
在一些实施方案中,该另外的治疗剂是RAF抑制剂。在一些实施方案中,RAF抑制剂是达拉非尼。在一些实施方案中,该另外的治疗剂是BRAF抑制剂。在一些实施方案中,BRAF抑制剂是维莫非尼。
在一些实施方案中,该另外的治疗剂是BTK抑制剂。在一些实施方案中,BTK抑制剂是依鲁替尼。
在一些实施方案中,该另外的治疗剂是HDAC抑制剂。在一些实施方案中,HDAC抑制剂是帕比司他。
在一些实施方案中,该另外的治疗剂是JAK抑制剂。在一些实施方案中,JAK抑制剂是鲁索替尼。
在一些实施方案中,该另外的治疗剂是MEK抑制剂。在一些实施方案中,该另外的治疗剂是选自由司美替尼和考比替尼组成的组的MEK抑制剂。
在一些实施方案中,该另外的治疗剂是PARP抑制剂。在一些实施方案中,该另外的治疗剂是选自由他拉唑帕尼、尼拉帕尼和卢卡帕尼组成的组的PARP抑制剂。
在一些实施方案中,该另外的治疗剂是PI3K抑制剂。在一些实施方案中,PI3K抑制剂是艾代拉利司。
在一些实施方案中,该另外的治疗剂是蛋白酶体抑制剂。在一些实施方案中,蛋白酶体抑制剂是卡非佐米。
在一些实施方案中,该另外的治疗剂是SMO抑制剂。在一些实施方案中,该另外的治疗剂是选自由索尼德吉和维莫德吉组成的组的SMO抑制剂。
在一些实施方案中,该另外的治疗剂是酪氨酸激酶抑制剂。在一些实施方案中,该另外的治疗剂是选自由布加替尼、乐伐替尼、阿法替尼、阿昔替尼、卡博替尼、普纳替尼、索拉非尼、奥希替尼、瑞戈非尼、博舒替尼、克唑替尼、凡德他尼、尼洛替尼、阿来替尼、塞瑞替尼、达沙替尼、帕唑帕尼、舒尼替尼、埃罗替尼、伊马替尼、吉非替尼、拉帕替尼组成的组的酪氨酸激酶抑制剂。
在一些实施方案中,该另外的治疗剂是拓扑异构酶抑制剂。在一些实施方案中,该另外的治疗剂是拓扑异构酶I抑制剂。在一些实施方案中,拓扑异构酶抑制剂是伊立替康。
在一些实施方案中,该另外的治疗剂是Bcl抑制剂,如上文所述的那些。
脂质体和脂质体组合物
脂质体包含包围内部隔室的一个或多个脂质双层。这些脂质体可以是多层、双层或单层囊泡。单层脂质体(也称为单层囊泡或“ULV”)包围单个内部水性隔室,并且被分类为小单层囊泡(SUV)或大单层囊泡(LUV)。LUV和SUV的尺寸范围分别是约50至500nm和20至50nm。双层脂质体具有两个脂质膜,其中内膜围绕单个内部水性隔室,且第二个较大的外膜围绕内膜,从而产生第二内部水性隔室。
在一些实施方案中,脂质体具有约20nm与约500nm之间的平均直径。在一些实施方案中,脂质体具有约50nm与约250nm之间的平均直径。在一些实施方案中,脂质体具有约80nm与约250nm之间的平均直径。在一些实施方案中,脂质体具有约50nm与约150nm之间的平均直径。在一些实施方案中,脂质体具有约80nm与约150nm之间的平均直径。在一些实施方案中,脂质体具有约50nm与约120nm之间的平均直径。在一些实施方案中,脂质体具有约80nm与约120nm之间的平均直径。在一些实施方案中,脂质体具有约50nm、约80nm、约100nm、约120nm、约150nm或约250nm的平均直径。在一些实施方案中,脂质体具有约80nm的平均直径。
可以通过获得粒度分布在实验上评估维持脂质体在脂质体组合物中的尺寸分布。通过准弹性光散射确定的尺寸分布通常作为示出脂质体的平均直径的直方图呈现。本领域中最常用的重要尺寸分布测量值是D10、D90、D99或标准偏差或多分散指数(PDI)。“D99”值表示99%的脂质体小于参考尺寸或大于参考尺寸。这在例如排除上限或下限尺寸很重要时特别有用。例如,在某些实施方案中,期望确保不存在平均直径在200nm以上的脂质体。
在一些实施方案中,使用多分散指数(PDI)对脂质体在脂质体组合物中的尺寸分布进行定量。在一些实施方案中,脂质体组合物具有约0.001与约0.5之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.001与约0.4之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.001与约0.3之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.005与约0.5之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.005与约0.4之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.005与约0.3之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.001与约0.2之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.001与约0.1之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.005与约0.2之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.005与约0.1之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.01与约0.5之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.01与约0.4之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.01与约0.2之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.01与约0.1之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.1与约0.5之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.1与约0.3之间的多分散指数(PDI)。在一些实施方案中,脂质体组合物具有约0.3与约0.5之间的多分散指数(PDI)。
在一些实施方案中,脂质体组合物可进一步包含载体介质。在一些实施方案中,该一种或多种脂质体悬浮在载体介质中。在一些实施方案中,载体介质是药学上可接受的溶液。在一些实施方案中,载体介质是右旋糖水溶液。在一些实施方案中,载体介质是蔗糖水溶液。在一些实施方案中,载体介质是盐水溶液。在一些实施方案中,载体介质进一步包含缓冲液。在一些实施方案中,缓冲液是HEPES缓冲液。在一些实施方案中,缓冲液是PBS缓冲液。在一些实施方案中,缓冲液是Tris缓冲液。在一些实施方案中,缓冲液是MES缓冲液。
治疗剂
在一些实施方案中,脂质体和在脂质体中提供的脂质体组合物包含包封在脂质体中的治疗剂。在一些实施方案中,其中提供的脂质体和脂质体组合物包含包封在脂质体中的疏水性治疗剂。
在一些实施方案中,治疗剂是抗血管生成剂、抗代谢物、细胞凋亡诱导剂、细胞周期抑制剂、细胞周期控制抑制剂、检查点抑制剂、细胞周期蛋白依赖性激酶抑制剂、细胞毒性剂、DNA损伤剂、DNA修复抑制剂、线粒体毒物、端粒酶抑制剂、信号转导抑制剂、转录抑制剂、Bcl抑制剂、PARP抑制剂、PI3K抑制剂、HSP90抑制剂、JAK抑制剂、ATR抑制剂、HDAC抑制剂、酪氨酸激酶抑制剂、受体酪氨酸激酶抑制剂、BTK抑制剂、烷化剂、SMO抑制剂、抗微管蛋白剂、MEK抑制剂、拓扑异构酶抑制剂、RAF抑制剂、BRAF抑制剂或蛋白酶体抑制剂。
在一些实施方案中,治疗剂是HSP90抑制剂。在一些实施方案中,HSP90抑制剂是芦米司匹。
在一些实施方案中,疗剂是烷化剂。在一些实施方案中,治疗剂是选自由苯达莫司汀和苯丁酸氮芥组成的组的烷化剂。
在一些实施方案中,治疗剂是抗微管蛋白剂。在一些实施方案中,治疗剂是选自由长春新碱、长春瑞滨和多西他赛组成的组的抗微管蛋白剂。
在一些实施方案中,治疗剂是ATR抑制剂。
在一些实施方案中,治疗剂是RAF抑制剂。在一些实施方案中,RAF抑制剂是达拉非尼。在一些实施方案中,治疗剂是BRAF抑制剂。在一些实施方案中,BRAF抑制剂是维莫非尼。
在一些实施方案中,治疗剂是BTK抑制剂。在一些实施方案中,BTK抑制剂是依鲁替尼。
在一些实施方案中,治疗剂是HDAC抑制剂。在一些实施方案中,HDAC抑制剂是帕比司他。
在一些实施方案中,治疗剂是JAK抑制剂。在一些实施方案中,JAK抑制剂是鲁索替尼。
在一些实施方案中,治疗剂是MEK抑制剂。在一些实施方案中,治疗剂是选自由司美替尼和考比替尼组成的组的MEK抑制剂。
在一些实施方案中,治疗剂是PARP抑制剂。在一些实施方案中,治疗剂是选自由他拉唑帕尼、尼拉帕尼和卢卡帕尼组成的组的PARP抑制剂。
在一些实施方案中,治疗剂是PI3K抑制剂。在一些实施方案中,PI3K抑制剂是艾代拉利司。
在一些实施方案中,治疗剂是蛋白酶体抑制剂。在一些实施方案中,蛋白酶体抑制剂是卡非佐米。
在一些实施方案中,治疗剂是SMO抑制剂。在一些实施方案中,治疗剂是选自由索尼德吉和维莫德吉组成的组的SMO抑制剂。
在一些实施方案中,治疗剂是酪氨酸激酶抑制剂。在一些实施方案中,治疗剂是选自由布加替尼、乐伐替尼、阿法替尼、阿昔替尼、卡博替尼、普纳替尼、索拉非尼、奥希替尼、瑞戈非尼、博舒替尼、克唑替尼、凡德他尼、尼洛替尼、阿来替尼、塞瑞替尼、达沙替尼、帕唑帕尼、舒尼替尼、埃罗替尼、伊马替尼、吉非替尼、拉帕替尼组成的组的酪氨酸激酶抑制剂。
在一些实施方案中,治疗剂是拓扑异构酶抑制剂。在一些实施方案中,治疗剂是拓扑异构酶I抑制剂。在一些实施方案中,拓扑异构酶抑制剂是伊立替康。
在一些实施方案中,治疗剂是Bcl抑制剂。在一些实施方案中,Bcl抑制剂是Bcl-2抑制剂。在一些实施方案中,Bcl抑制剂是Bcl-XL抑制剂。在一些实施方案中,Bcl抑制剂是Bcl-2/Bcl-XL双重抑制剂。在一些实施方案中,Bcl抑制剂是式(I)的化合物:
或其立体异构体、互变异构体或药学上可接受的盐,其中:
V是/>
W是H或
X是
Y是-NO2或-SO2CF3
Z选自由和/>组成的组。在一些实施方案中,V是/>在一些实施方案中,V是/>在一些实施方案中,W是H。在一些实施方案中,W是/>在一些实施方案中,X是/>在一些实施方案中,X是/>在一些实施方案中,Y是-NO2。在一些实施方案中,Y是-SO2CF3
在一些实施方案中,Z是在一些实施方案中,Z是/>在一些实施方案中,Z是/>在一些实施方案中,Z是/>在一些实施方案中,Z是/>在一些实施方案中,Z是/>在一些实施方案中,Z是/>在一些实施方案中,Z是/>/>
在一些实施方案中,Bcl抑制剂选自由以下组成的组:
/>
/>
/>
维奈托克(ABT-199)、那维托克(ABT-263)、ABT-737、甲磺酸奥巴托克(GX15-070)、沙布托克、TW-37、(R)-(-)-棉子酚乙酸、HA14-1、BH3模拟物和奥利默森。在一些实施方案中,Bcl抑制剂选自由以下组成的组:
维奈托克(ABT-199)、那维托克(ABT-263)、甲磺酸奥巴托克(GX15-070)、沙布托克、TW-37、(R)-(-)-棉子酚乙酸、HA14-1、BH3模拟物和奥利默森。在一些实施方案中,Bcl抑制剂选自由/>
维奈托克(ABT-199)、那维托克(ABT-263)、甲磺酸奥巴托克(GX15-070)、沙布托克、TW-37、(R)-(-)-棉子酚乙酸、HA14-1、BH3模拟物和奥利默森组成的组。在一些实施方案中,Bcl抑制剂选自由以下组成的组:
维奈托克(ABT-199)和那维托克(ABT-263)。在一些实施方案中,Bcl抑制剂选自由以下组成的组:
/>
维奈托克(ABT-199)和那维托克(ABT-263)。在一些实施方案中,Bcl抑制剂是/>在一些实施方案中,Bcl抑制剂是/>在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是/>在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是/>在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是/>在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bc1抑制剂是在一些实施方案中,Bcl抑制剂是/>在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是在一些实施方案中,Bcl抑制剂是维奈托克。在一些实施方案中,Bcl抑制剂是那维托克。
在一些实施方案中,其中提供的脂质体组合物包含治疗剂。在一些实施方案中,治疗剂是疏水性治疗剂。在一些实施方案中,治疗剂被包封在脂质体中。在一些实施方案中,治疗剂位于脂质体外部。在所有前述方面的一些实施方案中,脂质体进一步包含治疗剂。在一些实施方案中,治疗剂被包封在脂质体中。在一些实施方案中,其中提供的脂质体组合物包含治疗剂。在一些实施方案中,治疗剂是疏水性治疗剂。在一些实施方案中,治疗剂具有大于约2的cLogP。在一些实施方案中,治疗剂具有约2与约12之间的cLogP。在一些实施方案中,治疗剂具有约3与约12之间的cLogP。在一些实施方案中,治疗剂具有约2与约4之间的cLogP。在一些实施方案中,治疗剂具有约2与约8之间的cLogP。在一些实施方案中,治疗剂具有约4与约12之间的cLogP。在一些实施方案中,治疗剂具有约4与约8之间的cLogP。在一些实施方案中,治疗剂具有约8与约12之间的cLogP。在一些实施方案中,治疗剂具有约10与约12之间的cLogP。
在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有大于约2的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约3与约11之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约6与约11之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约8与约11之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约3与约6之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约6与约8之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约3与约8之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约2与约12之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约2与约8之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约2与约4之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约4与约12之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约4与约8之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约8与约12之间的pKa。在一些实施方案中,治疗剂可以被质子化,且其质子化形式具有约10与约12之间的pKa
在一些实施方案中,其中提供的脂质体组合物包含另外的治疗剂。在一些实施方案中,该另外的治疗剂是疏水性治疗剂。在一些实施方案中,该另外的治疗剂是亲水性治疗剂。在一些实施方案中,该另外的治疗剂被包封在脂质体中。在一些实施方案中,该另外的治疗剂位于脂质体外部。在所有前述方面的一些实施方案中,脂质体进一步包含另外的治疗剂。在一些实施方案中,该另外的治疗剂被包封在脂质体中。
在一些实施方案中,另外的治疗剂是抗血管生成剂、抗代谢物、细胞凋亡诱导剂、细胞周期抑制剂、细胞周期控制抑制剂、检查点抑制剂、细胞周期蛋白依赖性激酶抑制剂、细胞毒性剂、DNA损伤剂、DNA修复抑制剂、线粒体毒物、端粒酶抑制剂、信号转导抑制剂、转录抑制剂、Bcl抑制剂、PARP抑制剂、PI3K抑制剂、HSP90抑制剂、JAK抑制剂、ATR抑制剂、HDAC抑制剂、酪氨酸激酶抑制剂、受体酪氨酸激酶抑制剂、BTK抑制剂、烷化剂、SMO抑制剂、抗微管蛋白剂、MEK抑制剂、拓扑异构酶抑制剂、RAF抑制剂、BRAF抑制剂或蛋白酶体抑制剂。
在一些实施方案中,该另外的治疗剂是HSP90抑制剂。在一些实施方案中,HSP90抑制剂是芦米司匹。
在一些实施方案中,该另外的治疗剂是烷化剂。在一些实施方案中,该另外的治疗剂是选自由苯达莫司汀和苯丁酸氮芥组成的组的烷化剂。
在一些实施方案中,该另外的治疗剂是抗微管蛋白剂。在一些实施方案中,该另外的治疗剂是选自由长春新碱、长春瑞滨和多西他赛组成的组的抗微管蛋白剂。
在一些实施方案中,该另外的治疗剂是ATR抑制剂。
在一些实施方案中,该另外的治疗剂是RAF抑制剂。在一些实施方案中,RAF抑制剂是达拉非尼。在一些实施方案中,该另外的治疗剂是BRAF抑制剂。在一些实施方案中,BRAF抑制剂是维莫非尼。
在一些实施方案中,该另外的治疗剂是BTK抑制剂。在一些实施方案中,BTK抑制剂是依鲁替尼。
在一些实施方案中,该另外的治疗剂是HDAC抑制剂。在一些实施方案中,HDAC抑制剂是帕比司他。
在一些实施方案中,该另外的治疗剂是JAK抑制剂。在一些实施方案中,JAK抑制剂是鲁索替尼。
在一些实施方案中,该另外的治疗剂是MEK抑制剂。在一些实施方案中,该另外的治疗剂是选自由司美替尼和考比替尼组成的组的MEK抑制剂。
在一些实施方案中,该另外的治疗剂是PARP抑制剂。在一些实施方案中,该另外的治疗剂是选自由他拉唑帕尼、尼拉帕尼和卢卡帕尼组成的组的PARP抑制剂。
在一些实施方案中,该另外的治疗剂是PI3K抑制剂。在一些实施方案中,PI3K抑制剂是艾代拉利司。
在一些实施方案中,该另外的治疗剂是蛋白酶体抑制剂。在一些实施方案中,蛋白酶体抑制剂是卡非佐米。
在一些实施方案中,该另外的治疗剂是SMO抑制剂。在一些实施方案中,该另外的治疗剂是选自由索尼德吉和维莫德吉组成的组的SMO抑制剂。
在一些实施方案中,该另外的治疗剂是酪氨酸激酶抑制剂。在一些实施方案中,该另外的治疗剂是选自由布加替尼、乐伐替尼、阿法替尼、阿昔替尼、卡博替尼、普纳替尼、索拉非尼、奥希替尼、瑞戈非尼、博舒替尼、克唑替尼、凡德他尼、尼洛替尼、阿来替尼、塞瑞替尼、达沙替尼、帕唑帕尼、舒尼替尼、埃罗替尼、伊马替尼、吉非替尼、拉帕替尼组成的组的酪氨酸激酶抑制剂。
在一些实施方案中,该另外的治疗剂是拓扑异构酶抑制剂。在一些实施方案中,该另外的治疗剂是拓扑异构酶I抑制剂。在一些实施方案中,拓扑异构酶抑制剂是伊立替康。
在一些实施方案中,该另外的治疗剂是Bcl抑制剂,如上文所述的那些。在一些实施方案中,该另外的治疗剂是抗赘生物剂。合适的抗赘生物剂的非限制性实例有:
干扰或阻止导致癌细胞生长或分裂的信号的“信号转导抑制剂”;
“细胞毒性剂”;
“细胞周期抑制剂”或“细胞周期控制抑制剂”,其干扰细胞通过它的从给予细胞起源的有丝分裂到有丝分裂之后将细胞分裂成子细胞的事件的正常细胞周期(即,细胞的生命跨度)的进展;
干扰细胞周期检查点例如S/G2检查点、G2/M检查点和G1/S检查点的正常功能的“检查点抑制剂”,如S/G2或G2/M检查点抑制剂,如博来霉素、多西他赛、多柔比星、依托泊苷、紫杉醇、长春花碱、长春新碱、长春地辛和长春瑞滨;G1/早期-S检查点抑制剂;和G2/M检查点抑制剂;
干扰拓扑异构酶I或II活性(这两种酶是DNA复制和转录所需的)的“拓扑异构酶抑制剂”,如喜树碱、伊立替康和拓扑替康;
干扰具有酪氨酸激酶活性的生长因子受体的活性的“受体酪氨酸激酶抑制剂”,如金雀异黄素、曲妥珠单抗、ZD1839;
促进程序性细胞死亡的“细胞凋亡诱导剂”;
“抗代谢物”,如胞苷类似物,如阿糖胞苷、5-氮杂胞苷和吉西他滨(2’,2’-二氟脱氧胞苷)或羟基脲,其与基本代谢物非常相似,并因此干扰涉及其的生理反应;
“端粒酶抑制剂”,其干扰端粒酶的活性,端粒酶是一种延长端粒长度并扩展细胞的寿命及其复制能力的酶;
“细胞周期蛋白依赖性激酶抑制剂”,其干扰细胞周期蛋白依赖性激酶,该细胞周期蛋白依赖性激酶通过细胞蛋白如组蛋白、细胞骨架蛋白、转录因子、肿瘤抑制基因等的磷酸化控制细胞周期的不同阶段之间的主要步骤;
“DNA损伤剂”,如卡铂、顺铂、环磷酰胺、多柔比星、道诺霉素、表柔比星、丝裂霉素C、米托蒽醌;
“DNA修复抑制剂”,包括5-氟尿嘧啶(5-FU)或FUDR、吉西他滨和甲氨蝶呤:
刺激或抑制免疫系统并且可帮助身体对抗癌症、感染或其它疾病的“免疫调节剂”,例如影响免疫系统的特定部分的特异性免疫调节剂(如单克隆抗体、细胞因子和疫苗);和以一般方式影响免疫系统的非特异性免疫调节剂(如BCG和左旋咪唑);
“抗血管生成剂”,其干扰在肿瘤生长期间发生的新血管的生成或现有血管的生长;和
直接或间接破坏线粒体呼吸链功能的“线粒体毒物”。
这些剂中的一种或多种剂的作用机制可能不是已知的,或者可能被错误地识别。
其它抗赘生物剂包括紫杉醇、依托泊苷化合物、喜树碱化合物、伊达比星、卡铂、奥沙利铂、阿霉素、丝裂霉素、安丝菌素、博来霉素、胞嘧啶阿拉伯糖苷(cytosinearabinoside)、阿糖腺嘌呤、巯基聚赖氨酸、长春新碱、白消安、苯丁酸氮芥、美法仑、巯基嘌呤、米托坦、盐酸丙卡巴肼、放线菌素、丝裂霉素、普卡霉素、氨鲁米特、雌莫司汀磷酸钠、氟他胺、醋酸亮丙瑞林、醋酸甲地孕酮、柠檬酸他莫昔芬、睾内酯、曲洛司坦、安吖啶、天冬酰胺酶、干扰素、替尼泊苷、硫酸长春花碱、硫酸长春新碱、博来霉素、甲氨蝶呤、戊柔比星、卡折来新、紫杉醇、taxotane、喜树碱、多柔比星、道诺霉素、顺铂、5氟尿嘧啶、甲氨蝶呤;抗炎剂,如吲哚美辛、布洛芬、酮洛芬、氟比洛芬、双氯芬酸、吡罗昔康、替诺昔康、萘普生、阿司匹林和对乙酰氨基酚;性激素,如睾酮、雌激素、孕酮、雌二醇;抗高血压剂,如卡托普利、雷米普利、特拉唑嗪、米诺地尔和哌唑嗪;止吐剂,如昂丹司琼和格拉司琼;抗生素,如甲硝唑和夫西地酸;环孢菌素;前列腺素;联苯二甲基二甲酸、卡铂;抗真菌剂,如伊曲康唑、酮康唑和两性霉素;类固醇,如曲安奈德(triamcinolone acetonide)、氢化可的松、地塞米松、泼尼松龙和倍他米松;环孢素及其功能等效类似物、衍生物或组合。
在一些实施方案中,其中提供的脂质体组合物包含另外的治疗剂。在一些实施方案中,该另外的治疗剂是疏水性治疗剂。在一些实施方案中,该另外的治疗剂被包封在脂质体中。在一些实施方案中,该另外的治疗剂位于脂质体外部。在所有前述方面的一些实施方案中,脂质体进一步包含另外的治疗剂。在一些实施方案中,该另外的治疗剂被包封在脂质体中。在一些实施方案中,该另外的治疗剂具有大于约2的cLogP。在一些实施方案中,该另外的治疗剂具有约-6与约12之间的cLogP。在一些实施方案中,该另外的治疗剂具有约-6与约0之间的cLogP。在一些实施方案中,该另外的治疗剂具有约-3与约0之间的cLogP。在一些实施方案中,该另外的治疗剂具有约0与约2之间的cLogP。在一些实施方案中,该另外的治疗剂具有约-1与约12之间的cLogP。在一些实施方案中,该另外的治疗剂具有约3与约12之间的cLogP。在一些实施方案中,该另外的治疗剂具有约-6与约-1之间的cLogP。在一些实施方案中,该另外的治疗剂具有约-1与约3之间的cLogP。在一些实施方案中,该另外的治疗剂具有约2与约12之间的cLogP。在一些实施方案中,该另外的治疗剂具有约2与约4之间的cLogP。在一些实施方案中,该另外的治疗剂具有约2与约8之间的cLogP。在一些实施方案中,该另外的治疗剂具有约4与约12之间的cLogP。在一些实施方案中,该另外的治疗剂具有约4与约8之间的cLogP。在一些实施方案中,该另外的治疗剂具有约8与约12之间的cLogP。在一些实施方案中,该另外的治疗剂具有约10与约12之间的cLogP。
在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有大于约2的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约-6与约12之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约-6与约11之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约3与约11之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约6与约11之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约8与约11之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约-6与约3之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约3与约6之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约6与约8之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约-6与约8之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约3与约8之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约-6与约6之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约2与约12之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约2与约8之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约2与约4之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约4与约12之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约4与约8之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约8与约12之间的pKa。在一些实施方案中,该另外的治疗剂可以被质子化,并且其质子化形式具有约10与约12之间的pKa
用于制备脂质体和脂质体组合物的工艺
可以如“Liposomes:Rational Design”(A.S.Janoff编著,Marcel Dekker,Inc.,New York,NY)中所述或通过本领域技术人员已知的另外的技术来制备脂质体。合适的脂质体包括大单层囊泡(LUV)、多层囊泡(MLV)、小单层囊泡(SUV)和交错融合(interdigitatingfusion)脂质体。
脂质
脂质体可含有治疗性脂质,其实例包括醚脂质、磷脂酸、膦酸酯、神经酰胺和神经酰胺类似物、鞘氨醇和鞘氨醇类似物以及含有丝氨酸的脂质。脂质体也可以含有双脂族链脂质,例如磷脂,如磷脂酸脂质、磷脂酰甘油、磷脂酰肌醇、磷脂酰胆碱脂质、磷脂酰乙醇胺脂质、磷脂酰丝氨酸脂质和磷脂酰甘油脂质。脂质体也可以含有甘油二酯、双脂族糖脂或单一脂质。脂质体可以被制备成含有磷脂酰胆碱脂质,如二硬脂酰磷脂酰胆碱(DSPC)。磷脂可选自由磷脂酰胆碱、鞘脂和氢化鞘脂组成的组。例如,磷脂可以是卵磷脂酰胆碱(卵PC)、1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱(POPC)、1,2-二棕榈酰基-sn-甘油-3-磷酸胆碱(DPPC)、卵鞘磷脂、1,2-二油酰基-sn-甘油-3-磷酸乙醇胺(DOPE)、1,2-二硬脂酰基-sn-甘油-3-磷酸-L-丝氨酸(DSPS)、1,2-二硬脂酰基-sn-甘油-3-磷酸-L-丝氨酸钠盐(DSPS-Na)、2-油酰基-1-棕榈酰基-sn-甘油-3-磷酸-L-丝氨酸(POPS)和2-油酰基-1-棕榈酰基-sn-甘油-3-磷酸-L-丝氨酸钠盐(POPS-Na)。
也可以用表面稳定亲水性聚合物-脂质缀合物来制备脂质体。亲水性聚合物-脂质缀合物包含聚合物部分和脂质部分。聚合物部分可以是PEG部分。脂质部分可基于磷脂。磷脂可选自由磷脂酰胆碱、鞘脂和氢化鞘脂组成的组。例如,磷脂可以是卵磷脂酰胆碱(卵PC)、1-棕榈酰基-2-油酰基-sn-甘油-3-磷酸胆碱(POPC)、1,2-二棕榈酰基-sn-甘油-3-磷酸胆碱(DPPC)、卵鞘磷脂、1,2-二油酰基-sn-甘油-3-磷酸乙醇胺(DOPE)、1,2-二硬脂酰基-sn-甘油-3-磷酸-L-丝氨酸(DSPS)、1,2-二硬脂酰基-sn-甘油-3-磷酸-L-丝氨酸钠盐(DSPS-Na)、2-油酰基-1-棕榈酰基-sn-甘油-3-磷酸-L-丝氨酸(POPS)和2-油酰基-1-棕榈酰基-sn-甘油-3-磷酸-L-丝氨酸钠盐(POPS-Na)。示例性聚合物-脂质缀合物可以是1,2-二硬脂酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DSG-PEG2000或DSG-PEG 1000)、1,2-二肉豆蔻酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DMG-PEG2000或DMG-PEG 1000)、1,2-二棕榈酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DPG-PEG2000或DPG-PEG 1000)、1,2-二硬脂酰基-sn-甘油-3-磷酸乙醇胺-聚(乙二醇)(如DSPE-PEG2000或DSPE-PEG 1000),N-棕榈酰基-鞘氨醇-1-{琥珀酰基[甲氧基(聚乙二醇)]}(如C16 PEG2000神经酰胺)、PEG衍生的胆固醇(如mPEG胆固醇)、鞘磷脂或二氢鞘磷脂。聚合物-脂质缀合物的聚合物部分的平均分子量可以从约1000g/mol至约5000g/mol变化。聚合物-脂质缀合物的聚合物部分的平均分子量可以从约1000g/mol至约2000g/mol变化。聚合物-脂质缀合物的聚合物部分的平均分子量可以为约1000g/mol。聚合物-脂质缀合物的聚合物部分的平均分子量可以为约2000g/mol。聚合物-脂质缀合物的聚合物部分的平均分子量可以为约5000g/mol。
还可以向脂质体制剂中添加掺入带负电荷的脂质,如磷脂酰甘油(PG)和磷脂酰肌醇(PI),以延长载体的循环寿命。这些脂质可用来替代亲水性聚合物-脂质缀合物作为表面稳定剂,或者与亲水性聚合物-脂质缀合物组合使用。
固醇
脂质体还可以含有固醇,如胆固醇、胆固醇衍生物或植物固醇(如β-谷固醇)。
用于装载脂质体的工艺
可利用各种方法将活性剂包封在脂质体中。“包封”包括剂与脂质体的共价或非共价缔合。例如,这可以通过以下方式来进行:剂与脂质体的一个或多个外层相互作用或者剂包埋在脂质体内、在脂质体的不同部分之间实现平衡。因此,剂的包封可通过以下方式进行,剂通过经由与脂质组分的共价或非共价相互作用而与脂质体的双层相互作用或者包埋在脂质体的水性内部中来缔合,或在内部水相与双层之间达成平衡。“装载”是指将一种或多种剂包封到递送媒介物中的动作。
当寻求治疗剂的组合时,本领域技术人员显而易见的是,可通过包封在分开的递送媒介物中或包封在同一递送媒介物内实现所需组合的包封。在需要包封到分开的脂质体中的情况下,每种脂质体的脂质组成可完全不同,以允许协调药代动力学。通过改变媒介物组成,可以匹配包封药物的释放速率,以允许将所需比率的药物递送到肿瘤部位。改变释放速率的手段包括增加形成囊泡的脂质的酰基链长度以改善药物保留、控制表面接枝的亲水性聚合物(如PEG)交换到脂质体膜外和将膜硬化剂如固醇掺入到膜中。对于本领域技术人员来说应当显而易见的是,如果需要以特定的药物比率施用第一药物和第二药物,并且如果第二药物在第一药物的脂质体组合物内保留较差,则可以通过将第二药物包封在第二脂质体组合物中来实现改善的药代动力学。可替代地,可以将两种或更多种剂包封在同一脂质体内。
用于包封的技术取决于递送媒介物的性质和要包封的治疗剂的性质。例如,可以采用被动和主动两种装载方法将治疗剂装载到脂质体中。将活性剂包封在脂质体中的被动方法涉及在脂质体的制备期间包封剂。这包括Bangham等人描述的被动包埋方法(J.Mol.Biol.(1965)12:238)。此技术导致形成多层囊泡(MLV),其在挤压后可以被转化为大单层囊泡(LUV)或小单层囊泡(SUV)。被动包封的另一种合适方法包括Deamer和Bangham描述的醚注射技术(Biochim.Biophys.Acta(1976)443:629)和如由Szoka和Paphadjopoulos描述的反相蒸发技术(P.N.A.S.(1978)75:4194)。此外,被动包封的另一种合适方法涉及脂质体形成后的被动平衡。此工艺涉及在改变的或非环境(基于温度、压力等)条件下温育预先形成的脂质体,以及向该脂质体的外部添加治疗剂。然后治疗剂跨脂质体膜平衡到脂质体的内部中。然后使脂质体恢复到环境条件,并经由透析或另一种合适的方法去除未经包封的治疗剂(如果存在的话)。
主动包封方法包括美国专利第5,616,341、5,736,155和5,785,987号中描述的pH梯度装载技术以及活性金属装载。pH梯度装载的一种方法是利用柠檬酸盐作为pH为4.0的内部缓冲液和中性外部缓冲液的檬酸盐-碱装载方法。用来跨脂质体建立和维持pH梯度的其它方法涉及使用可插入到脂质体膜中并跨膜转运离子以交换质子的离子载运体(参见美国专利第5,837,282号)。也可以采用另一种利用过渡金属在不存在离子载运体的情况下经由络合驱动将药物吸收到脂质体中的技术。此技术依赖于药物-金属络合物的形成而不是建立pH梯度来驱动药物的吸收。
包封水溶性差的化合物的优选方法是本领域技术人员已知的,并且描述于例如美国专利第9,737,485、10,507,182和10,722,467号中。在这类方法中,将要包封的剂溶解在装载溶剂中,并将所得溶液添加到包含装载助剂的脂质体的悬浮液中从而产生包含要装载的剂的混合物作为无定形固体,或者以无定形固体形式提供并添加到包含装载助剂的脂质体的悬浮液中。Li等人,Pharmaceutics(2019),11,465中描述了包封水溶性差的化合物的其它优选方法。
也可以联合被动和主动包埋方法,以便制备含有多于一种经包封的剂的脂质体制剂。
脂质体的纯化
一方面,提供了制备经纯化的脂质体组合物的方法,所述经纯化的脂质体组合物包含:
脂质体,所述脂质体包含:
(a)脂质双层;
(b)内部介质;和
(c)包封在脂质体的内部介质中的治疗剂,
其中治疗剂具有低水溶性,并且可以被质子化为质子化形式;
所述方法包括:
(i)提供粗脂质体组合物;以及
(ii)用酸化的水溶液纯化粗脂质体组合物。
在一些实施方案中,酸化的水溶液包含糖。在一些实施方案中,酸化的水溶液包含右旋糖或蔗糖。在一些实施方案中,酸化的水溶液包含右旋糖。在一些实施方案中,酸化的水溶液包含约5重量%与约20重量%之间的右旋糖。在一些实施方案中,酸化的水溶液包含5重量%的右旋糖。在一些实施方案中,酸化的水溶液包含9重量%的右旋糖。在一些实施方案中,酸化的水溶液包含蔗糖。在一些实施方案中,酸化的水溶液包含约5重量%与约20重量%之间的蔗糖。在一些实施方案中,酸化的水溶液包含5重量%的蔗糖。在一些实施方案中,酸化的水溶液包含9重量%的蔗糖。
在一些实施方案中,酸化的水溶液包含无机酸,如矿物酸。在一些实施方案中,酸化的水溶液包含盐酸。在一些实施方案中,酸化的水溶液包含约1mM与100mM之间的盐酸。在一些实施方案中,酸化的水溶液包含有机酸,如磺酸或羧酸。在一些实施方案中,酸化的水溶液包含甲磺酸。在一些实施方案中,酸化的水溶液包含约1mM与100mM之间的有机酸。在一些实施方案中,酸化的水溶液包含约1mM与100mM之间的甲磺酸。在一些实施方案中,酸化的水溶液包含约1mM的甲磺酸。在一些实施方案中,酸化的水溶液包含约5mM的甲磺酸。在一些实施方案中,酸化的水溶液包含约10mM的甲磺酸。在一些实施方案中,酸化的水溶液包含乙酸。在一些实施方案中,酸化的水溶液包含约1mM与100mM之间的乙酸。在一些实施方案中,酸化的水溶液包含约25mM的乙酸。在一些实施方案中,酸化的水溶液包含乙酸钠。在一些实施方案中,酸化的水溶液包含约1mM与100mM之间的乙酸钠。在一些实施方案中,酸化的水溶液包含约25mM的乙酸钠。在一些实施方案中,酸化的水溶液包含乙酸盐。在一些实施方案中,酸化的水溶液包含约1mM与100mM之间的乙酸盐。在一些实施方案中,酸化的水溶液包含约25mM的乙酸盐。
在一些实施方案中,酸化的水溶液包含盐。在一些实施方案中,酸化的水溶液包含盐,其中所述盐包含碱金属或碱土金属。在一些实施方案中,酸化的水溶液包含钠盐。在一些实施方案中,酸化的水溶液包含NaF、NaCl、NaBr或NaI。在一些实施方案中,酸化的水溶液包含NaCl。在一些实施方案中,酸化的水溶液包含钾盐。在一些实施方案中,酸化的水溶液包含锂盐。在一些实施方案中,酸化的水溶液包含镁盐。在一些实施方案中,酸化的水溶液包含钙盐。
在一些实施方案中,酸化的水溶液的pH在约1与约6之间。在一些实施方案中,酸化的水溶液的pH在约2与约5之间。在一些实施方案中,酸化的水溶液的pH为约2.3。在一些实施方案中,酸化的水溶液的pH为约3。在一些实施方案中,酸化的水溶液的pH为约4。
在一些实施方案中,用酸化的水溶液纯化粗脂质体组合物被执行多次。在一些实施方案中,用酸化的水溶液纯化粗脂质体组合物被执行8次与24次之间的次数。在一些实施方案中,用酸化的水溶液纯化粗脂质体组合物被执行8次与12次之间的次数。在一些实施方案中,用酸化的水溶液纯化粗脂质体组合物被执行12次与24次之间的次数。在一些实施方案中,用酸化的水溶液纯化粗脂质体组合物被执行至少8次。在一些实施方案中,用酸化的水溶液纯化粗脂质体组合物被执行8次。在一些实施方案中,用酸化的水溶液纯化粗脂质体组合物被执行至少12次。在一些实施方案中,用酸化的水溶液纯化粗脂质体组合物被执行12次。
使用方法
还提供了用于递送治疗有效量的治疗剂的方法,其包括对受试者施用如本文所述制备的包含一种或多种脂质体的脂质体组合物,其中所述一种或多种脂质体中的每一种均包含:
(a)包含第一脂质和第一固醇的脂质双层;
(b)包含第一装载助剂和第一溶剂的内部介质;和
(c)包封在所述脂质体的内部介质中的治疗剂。
可以对包括人在内的温血动物以及家养和/或禽类物种施用本发明的组合物。除了药物组合物之外,还可以制备用于兽医用途的合适制剂,其以适合于受试者的方式施用。优选的兽医学受试者包括哺乳动物物种,例如非人灵长类动物、狗、猫、牛、马、绵羊和家禽。受试者也可以包括实验室动物,例如特别是大鼠、兔、小鼠和豚鼠。对于人类病痛的治疗,有资质的医师将采用已经确立的方案在施用剂量、时间安排和途径方面确定应如何利用本发明的组合物。如果包封在本发明的递送媒介物组合物中的剂对受试者的健康组织表现出降低的毒性,则这类应用也可以利用剂量递增。
优选地,本发明的药物组合物是经肠胃外施用,即动脉内、静脉内、腹膜内、皮下或肌内施用。更优选地,通过推注的方式静脉内或腹膜内施用药物组合物。例如参见Rahman等人,美国专利第3,993,754号;Sears,美国专利第4,145,410号;Papahadjopoulos等人,美国专利第4,235,871号;Schneider,美国专利第4,224,179号;Lenk等人,美国专利第4,522,803号;和Fountain等人,美国专利第4,588,578号。
在其它方法中,可以通过将本发明的药物制备物直接施加于靶组织而使该制备物与该组织接触。该施加可通过外用、“开放”或“封闭”程序进行。所谓“外用”意指将药物制备物直接施加至暴露于环境的组织,如皮肤、口咽、外耳道等。“开放”程序是包括切开患者的皮肤以及直接使待施加药物制备物的底层组织可视化的那些程序。这通常通过手术程序来完成,该手术程序诸如用于接近肺部的开胸术、用于接近腹部脏器的剖腹手术,或针对目标组织的其它直接手术方法。“封闭”程序是侵入性程序,其中不直接使内部目标组织可视化,而是经由穿过皮肤中的小伤口插入仪器而接近内部目标组织。例如,可以通过针头灌洗将该制备物施用至腹膜。类似地,可以在腰椎穿刺期间通过输注对脑膜或脊髓施用药物制备物,接着如通常用于脊椎麻醉或脊髓的甲泛葡胺(metrazamide)成像所实践的那样适当地定位患者。可替代地,可以通过内窥镜装置施用制备物(preparation)。
包含本发明的递送媒介物的药物组合物是根据标准技术制备的,并且可以包含水、缓冲水、0.9%盐水、0.3%甘氨酸、5%右旋糖等,包括用于增强稳定性的糖蛋白,如白蛋白、脂蛋白、球蛋白等。这些组合物可通过常规熟知的灭菌技术进行灭菌。所得水溶液可以被包装以供使用或在无菌条件下过滤并冻干,冻干的制备物在施用之前与无菌水溶液合并。组合物可含有接近生理条件所需的药学上可接受的辅助物质,如pH调节剂和缓冲剂,张力调节剂等,例如乙酸钠、乳酸钠、氯化钠、氯化钾、氯化钙等。另外,递送媒介物悬浮液可包括脂质保护剂,其保护脂质在储存时免受自由基和脂质过氧化损害。亲脂性自由基猝灭剂(如α-生育酚)和水溶性铁特异性螯合剂(如铁草胺)是合适的。
药物制剂中的递送媒介物的浓度可以有很大的变化,如从按重量计小于约0.05%(通常为或至少约2-5%)到多达10%至30%变化,并且将主要根据所选择的特定施用模式通过流体体积、粘度等进行选择。例如,可以增加浓度以降低与治疗相关的流体装载。可替代地,可以将由刺激性脂质组成的递送媒介物稀释到低浓度以减弱施用部位处的炎症。对于诊断,施用的递送媒介物的量将取决于所用的特定标签、所诊断的疾病状态和临床医生的判断。
优选地,本发明的药物组合物是静脉内施用的。递送媒介物制剂的剂量将取决于药物与脂质的比率以及主治医生基于患者的年龄、体重和状况的意见。
除了药物组合物之外,还可以制备用于兽医用途的合适制剂,其以适合于受试者的方式施用。优选的兽医学受试者包括哺乳动物物种,例如非人灵长类动物、狗、猫、牛、马、绵羊和家禽。受试者也可以包括实验室动物,例如特别是大鼠、兔、小鼠和豚鼠。
在包括含有多于一种活性剂的单一组合物的情况下,遵循上述程序本身。在以分开的递送媒介物组合物施用剂的情况下,应以维持所需比率的方式安排施用时间。通常,这可以通过以计算的比例同时施用组合物来实现。
药盒
可以将本发明组合物中的治疗剂分开配制在单独的组合物中,其中每种治疗剂与适当的递送媒介物稳定地缔合。可以将这些组合物分开施用给受试者,只要递送媒介物的药代动力学被协调成使得施用的治疗剂的比率维持在治疗目标即可。因此,有用的是构造这样的药盒,所述药盒在分开的容器中包括第一组合物,并且在第二容器中包括第二组合物,所述第一组合物包含与至少第一治疗剂稳定缔合的递送媒介物,所述第二组合物包含与至少一种第二治疗剂稳定缔合的递送媒介物。然后可以将该容器包装到药盒中。
药盒还将包括关于对受试者施用组合物的模式的说明书,其至少包括对要施用的每种组合物的量的比率的描述。可替代地或另外,药盒被构造成使得每个容器中的组合物的量是经预先测量的,使得一个容器的内容物与另一个容器的内容物的组合代表正确的比率。可替代地或另外,容器可标记有测量刻度,其允许根据可见的刻度分配适当的量。容器本身可用于施用;例如,药盒可在分开的注射器中含有适当量的每种组合物。包含预先配制的正确比率的治疗剂的制剂也可以以这种方式被包装成使得该制剂直接从药盒中预先包装的注射器施用。
实施例
以下实施例说明本发明的一些实施方案。提供下面的实施例和制备是为了使本领域技术人员能够更清楚地理解和实践本发明的这些及其它实施方案。它们不应被视为限制本发明的范围,而仅将其视为说明性和代表性的。
实施例1A.用于脂质体配制的一般程序A
通过将药物化合物远程装载到含有硫酸铵(AS)、蔗糖八硫酸铵(NH4SOS)、蔗糖八硫酸三乙铵(TEASOS)或蔗糖八硫酸三乙醇铵(TEA(OH)SOS)或柠檬酸铵作为装载助剂的DSPC/胆固醇/PEG-DSG脂质体中来产生含有药物化合物的脂质体。
A.装载助剂的制备
通过将固体硫酸铵溶解到去离子(DI)水中达到250mM的目标浓度来制备250mM硫酸铵装载助剂溶液。这样得到pH为5.2的溶液。将溶液通过0.2μm膜过滤。
通过将固体柠檬酸氢二铵溶解到DI水中以达到300mM的目标浓度来制备300mM柠檬酸铵装载助剂溶液。这样得到pH为4.9的溶液。将溶液通过0.2μm膜过滤。
由钾SOS制备0.5-1.0N的三乙胺-SOS装载助剂溶液。对于小批量,在65℃下将5g钾SOS溶解在12mL的DI水中,并用玻璃纤维膜过滤。然后将温热的溶液装载到含有用3M HCl预处理的-30mL填充的50W-X8珠粒的Dowex柱的顶部,并用DI水充分洗涤。耗尽后,装载DI水以洗脱SOS溶液。通过在柱的底部连接的流式电导率计,收集洗脱物溶液的电导率大于150mS/cm的级分。立即用三乙胺滴定所得H-SOS溶液,直至pH达到6.5±0.5。用0.2μm膜过滤三甲胺-SOS溶液。用ICP-OES(5800VDV,Agilent)通过硫元素分析测定SOS浓度。在4℃下储存经过滤的溶液。
以与上述相同的方式制备0.5-1.0N铵SOS装载助剂溶液,不同之处在于立即用浓氨滴定洗脱的H-SOS溶液以达到6.5±0.5的目标pH。
以与上述相同的方式制备0.5-1.0N三乙醇胺SOS装载助剂溶液,不同之处在于立即用三乙醇胺滴定洗脱的H-SOS溶液以达到6.5±0.5的目标pH。
所有SOS溶液的制备可以按比例放大25-100倍。
B.脂质泡沫制备和脂质体挤出
将DSPC、胆固醇和聚合物缀合的脂质称重,并溶解在密封玻璃小瓶或瓶子中的氯仿中。
在形成浓缩脂质的粘性氯仿溶液后,施加真空以在数秒内产生脂质泡沫。通过将脂质泡沫在加热下或在环境温度下过夜置于Buchi真空泵系统(V-512,Buchi)中来将氯仿彻底去除。如果不立即使用,则将干燥的泡沫在-20℃下储存。
通过添加在水浴中预热至65℃的装载助剂的水溶液将脂质泡沫水合。将加热的溶液添加到脂质泡沫中。通过涡旋20-30秒的循环、接着加热2-3分钟来产生多层囊泡(MLV)。
根据所使用的装载助剂,可以用250mM硫酸铵替代300mM柠檬酸铵,或0.5-1N三乙胺-SOS或0.5-1N铵-SOS或0.5-1N三乙醇胺-SOS。
使用维持在65℃的10mL带夹套的脂质体挤出机在20-100psi下将MLV通过200nm PCTE(聚碳酸酯径迹蚀刻)膜挤出一次。然后使用维持在65℃的10mL带夹套的脂质体挤出机在50-200psi下将所得MLV通过100nm PCTE膜挤出7次。如果脂质体制剂需要在低温下操作和储存,则可以用装载助剂和蔗糖作为冷冻保护剂来挤出脂质体。
对于小规模体积(即<20ml),通过如下方式将含有250mM硫酸铵或300mM柠檬酸铵的经挤出脂质体缓冲交换到9%w/v右旋糖中:以1mL/8.3mL床体积的比率在Sephadex G25柱(PD-10柱,Cytiva)中装载并收集电导率<50μS/cm的脂质体洗脱物级分,从而去除任何未经包封的装载助剂。
对于小规模体积,通过如下方式将含有0.5-1N三乙胺-SOS或0.5-1N铵-SOS或0.5-1N三乙醇胺-SOS的经挤出脂质体缓冲交换到9-18%w/v右旋糖(取决于用于平衡渗透压的装载助剂的当量浓度)中:以1mL/10mL床体积的比率在Sepharose CL4B柱中装载并收集电导率<20μS/cm的脂质体洗脱物级分,从而去除任何未经包封的装载助剂。
对于较大规模的体积,用100kDa MWCO Hydrosart PES膜采用切向流过滤(Sartorius Slice 200)将含有250mM硫酸铵或300mM柠檬酸铵或0.5-1N三乙胺-SOS或0.5-1N铵-SOS或0.5-1N三乙醇胺-SOS的经挤出脂质体与18个体积的9-18%w/v右旋糖交换物进行缓冲交换。
C将药物化合物包封到脂质体中
将药物化合物以20-100mg/mL的浓度溶解在DMSO中,并在搅拌下滴加到制备的脂质体中并加热到65℃,使得溶液中的最终药物浓度在0.2至6.0mg/mL的范围内,且最终D/L比率在0.1至0.8mol/mol范围内。最终有机溶剂浓度在2至30%之间。
将样品在65℃或室温不断搅拌下温育以促进将药物装载到脂质体中。装载后,将样品在冰浴上冷却。
D.装载了药物的脂质体的纯化
采用配有100-300k MWCO(Hydrosart,Sartorius)PES膜的切向流过滤(Slice200,Sartorius)进行制剂的纯化。首先将制剂浓缩到50mL,然后用12-24个体积的与装载程序期间的浓度类似的浓度的经酸化(0.01M HCl或MeSO3H)右旋糖交换物进行纯化,以便去除未经包封的药物。此后,再用12个体积的5%右旋糖交换物纯化制剂。可替代地,如果需要低温储存脂质体制剂,则可以使用蔗糖代替右旋糖。最后,将制剂浓缩到10-20mg/ml脂质,收集并通过0.22μm PES注射器过滤器进行过滤。
实施例1B.用于脂质体配制的一般程序B
通过将药物化合物远程装载到含有硫酸铵(AS)、蔗糖八硫酸铵(NH4SOS)、蔗糖八硫酸三乙铵(TEASOS)或蔗糖八硫酸三乙醇铵(TEA(OH)SOS)或柠檬酸铵作为装载助剂的DSPC/胆固醇/PEG-DSG脂质体中来产生含有药物化合物的脂质体。
A.装载助剂的制备
通过将固体硫酸铵溶解到去离子(DI)水中达到250mM的目标浓度来制备250mM硫酸铵装载助剂溶液。这样得到pH为5.2的溶液。将溶液通过0.2μm膜过滤。
通过将固体柠檬酸氢二铵溶解到DI水中以达到300mM的目标浓度来制备300mM柠檬酸铵装载助剂溶液。这样得到pH为4.9的溶液。将溶液通过0.2μm膜过滤。
由钾SOS制备0.5-1.0N的三乙胺-SOS装载助剂溶液。对于小批量,在65℃下将5g钾SOS溶解在12mL的DI水中,并用玻璃纤维膜过滤。然后将温热的溶液装载到含有用3M HCl预处理的约30mL填充的50W-X8珠粒的Dowex柱的顶部,并用DI水充分洗涤。耗尽后,装载DI水以洗脱SOS溶液。通过在柱的底部连接的流式电导率计,收集洗脱物溶液的电导率大于150mS/cm的级分。立即用三乙胺滴定所得H-SOS溶液,直至pH达到6.5±0.5。用0.2μm膜过滤三甲胺-SOS溶液。用ICP-OES(5800VDV,Agilent)通过硫元素分析测定SOS浓度。在4℃下储存经过滤的溶液。
以与上述相同的方式制备0.5-1.0N铵SOS装载助剂溶液,不同之处在于立即用浓氨滴定洗脱的H-SOS溶液以达到6.5±0.5的目标pH。
以与上述相同的方式制备0.5-1.0N三乙醇胺SOS装载助剂溶液,不同之处在于立即用三乙醇胺滴定洗脱的H-SOS溶液以达到6.5±0.5的目标pH。
所有SOS溶液的制备可以按比例放大25-100倍。
B.脂质泡沫制备和脂质体挤出
将DSPC、胆固醇和聚合物缀合的脂质称重,并溶解在密封玻璃小瓶或瓶子中的氯仿中。
在形成浓缩脂质的粘性氯仿溶液后,施加真空以在数秒内产生脂质泡沫。通过将脂质泡沫在加热下或在环境温度下过夜置于Buchi真空泵系统(V-512,Buchi)中来将氯仿彻底去除。如果不立即使用,则将干燥的泡沫在-20℃下储存。
通过添加在水浴中预热至65℃的装载助剂的水溶液将脂质泡沫水合。将加热的溶液添加到脂质泡沫中。通过涡旋20-30秒的循环、接着加热2-3分钟来产生多层囊泡(MLV)。
根据所使用的装载助剂,可以用250mM硫酸铵替代300mM柠檬酸铵,或0.5-1N三乙胺-SOS或0.5-1N铵-SOS或0.5-1N三乙醇胺-SOS。
使用维持在65℃的10mL带夹套的脂质体挤出机在20-100psi下将MLV通过200nm PCTE(聚碳酸酯径迹蚀刻)膜挤出一次。然后使用维持在65℃的10mL带夹套的脂质体挤出机在50-200psi下将所得MLV通过100nm PCTE膜挤出7次。如果脂质体制剂需要在低温下操作和储存,则可以用装载助剂和蔗糖作为冷冻保护剂来挤出脂质体。
对于小规模体积(即<20ml),通过如下方式将含有250mM硫酸铵或300mM柠檬酸铵的经挤出脂质体缓冲交换到9%w/v右旋糖中:以1mL/8.3mL床体积的比率在Sephadex G25柱(PD-10柱,Cytiva)中装载并收集电导率<50μS/cm的脂质体洗脱物级分,从而去除任何未经包封的装载助剂。
对于小规模体积,通过如下方式将含有0.5-1N三乙胺-SOS或0.5-1N铵-SOS或0.5-1N三乙醇胺-SOS的经挤出脂质体缓冲交换到9-18%w/v右旋糖(取决于用于平衡渗透压的装载助剂的当量浓度)中:以1mL/10mL床体积的比率在Sepharose CL4B柱中装载并收集电导率<20μS/cm的脂质体洗脱物级分,从而去除任何未经包封的装载助剂。
对于较大规模的体积,用100kDa MWCO Hydrosart PES膜采用切向流过滤(Sartorius Slice 200)将含有250mM硫酸铵或300mM柠檬酸铵或0.5-1N三乙胺-SOS或0.5-1N铵-SOS或0.5-1N三乙醇胺-SOS的经挤出脂质体与10-18个体积的9-18%w/v右旋糖交换物进行缓冲交换。根据此工艺制备的经纯化脂质体的最终电导率在约10与200μS/cm之间。理想地,最终电导率在约20与100μS/cm之间或约50与100μS/cm之间。
C.将药物化合物包封到脂质体中
将药物化合物以20-100mg/mL的浓度溶解在DMSO中,并在搅拌下滴加到制备的脂质体中并加热到65℃,使得溶液中的最终药物浓度在0.2至6.0mg/mL的范围内,且最终D/L比率在0.1至0.8mol/mol范围内。最终有机溶剂浓度在2至30%之间。
将样品在65℃或室温下在不断搅拌下温育以促进将药物装载到脂质体中。装载后,将样品在冰浴上冷却。
D.装载了药物的脂质体的纯化
采用配有100-300k MWCO(Hydrosart,Sartorius)PES膜的切向流过滤(Slice200,Sartorius)进行制剂的纯化。首先将制剂浓缩至5或10mL,然后用12个体积的酸化的糖溶液交换物进行纯化,以便去除未经包封的药物。酸化的糖溶液含有5重量%右旋糖、9重量%右旋糖或9重量%蔗糖。酸化的糖溶液中的酸是甲磺酸。酸化的糖溶液中甲磺酸的浓度为1mM、5mM或10mM。可替代地,酸化的糖溶液含有pH为约4.0的25mM乙酸钠。此后,再用12个体积的5%右旋糖或9%蔗糖交换物纯化制剂。最后,将制剂浓缩到10-20mg/ml脂质,收集并通过0.22μm PES注射器过滤器进行过滤。
根据此程序制备的脂质体可通过透射电子显微镜法(TEM),以及纳米颗粒和脂质体药物递送领域中的其它标准方法来表征。
实施例1C用于纯化脂质体制剂的一般程序
采用配有100-300k MWCO(Hydrosart,Sartorius)PES膜的切向流过滤(Slice200,Sartorius)进行制剂的纯化。首先将制剂浓缩,然后用12-24个体积的与装载程序期间类似浓度的酸化的水溶液交换物进行纯化,以便去除未经包封的药物。酸化的水溶液是右旋糖或蔗糖。酸化的水溶液中糖的浓度在约5重量%与20重量%之间。酸化的水溶液中的酸是盐酸或甲磺酸。酸化的水溶液中盐酸或甲磺酸的浓度在约1mM与100mM之间。酸化的水溶液可含有pH为约4.0的乙酸钠。酸化的水溶液中乙酸钠的浓度在约5mM与100mM之间。此后,再用8-24个体积的水溶液交换物纯化制剂。最后,将制剂浓缩到10-20mg/ml脂质,收集并通过0.22μm PES注射器过滤器进行过滤。
根据此程序制备的脂质体通过透射电子显微镜法(TEM),以及纳米颗粒和脂质体药物递送领域中的其它标准方法来表征。
实施例2.将化合物9配制到脂质体中
通过向含有硫酸铵(AS)、蔗糖八硫酸铵(NH4SOS)、蔗糖八硫酸三乙铵(TEASOS)、蔗糖八硫酸三乙醇铵(TEA(OH)SOS)或柠檬酸铵作为装载助剂的DSPC/胆固醇/PEG-DSG(3∶2∶0.3摩尔比率)脂质体中远程装载来产生含有化合物9的脂质体。
A.装载助剂的制备
如实施例1A中所述制备装载助剂溶液。
B.脂质泡沫制备和脂质体挤出
将DSPC/胆固醇/PEG-DSG(3∶2∶0.3摩尔比率)称重,并使用约60℃的热量在密封的玻璃小瓶或瓶子中以1g脂质/mL氯仿的浓度溶解在氯仿中。
在形成浓脂质的粘性氯仿溶液后,施加真空以在数秒内产生脂质泡沫。通过将脂质泡沫置于Buchi真空泵系统(V-512,Buchi)中加热下0.5小时或环境温度下过夜来将氯仿彻底去除。如果不立即使用,则将干燥的泡沫在-20℃下储存。
通过添加在水浴中预热至65℃的250mM硫酸铵的水溶液将脂质泡沫水合。将被加热的溶液以50mg脂质/mL的250mM硫酸铵溶液的浓度添加到脂质泡沫中。通过涡旋20-30秒的循环、接着加热2-3分钟来产生多层囊泡(MLV)。
根据所使用的装载助剂,可以用250mM硫酸铵替代300mM柠檬酸铵,或0.5-1N三乙胺-SOS或0.5-1N铵-SOS或0.5-1N三乙醇胺-SOS。
使用维持在65℃的10mL带夹套的脂质体挤出机在20-100psi下将MLV通过200nm PCTE(聚碳酸酯径迹蚀刻)膜挤出一次。然后使用维持在65℃的10mL带夹套的脂质体挤出机在50-200psi下将所得MLV通过100nm PCTE膜挤出7次。如果脂质体制剂需要在低温下操作和储存,则可以用装载助剂和蔗糖作为冷冻保护剂来挤出脂质体。
使用0.9%盐水作为稀释剂,通过动态光散射(Malvem Nano ZS)测定,经挤出的脂质体具有110nm+/-20nm的平均流体动力学直径。
对于小规模体积(即<20ml),通过如下方式将含有250mM硫酸铵或300mM柠檬酸铵的经挤出脂质体缓冲交换到9%w/v右旋糖中:以1mL/8.3mL床体积的比率在Sephadex G25柱(PD-10柱,Cytiva)中装载并收集电导率<50μS/cm的脂质体洗脱物级分,从而去除任何未经包封的装载助剂。
对于小规模体积,通过如下方式将含有0.5-1N三乙胺-SOS或0.5-1N铵-SOS或0.5-1N三乙醇胺-SOS的经挤出脂质体缓冲交换到9-18%w/v右旋糖(取决于用于平衡渗透压的装载助剂的当量浓度)中:以1mL/10mL床体积的比率在Sepharose CL4B柱中装载并收集电导率<20μS/cm的脂质体洗脱物级分,从而去除任何未经包封的装载助剂。
对于较大规模的体积,用100kDa MWCO Hydrosart PES膜采用切向流过滤(Sartorius Slice 200)将含有250mM硫酸铵或300mM柠檬酸铵或0.5-1N三乙胺-SOS或0.5-1N铵-SOS或0.5-1N三乙醇胺-SOS的经挤出脂质体与18个体积的9-18%w/v右旋糖交换物进行缓冲交换。
C将化合物9包封到脂质体中
对于250mM硫酸铵作为装载助剂,将化合物9以20-100mg/mL的浓度溶解在DMSO中,并在搅拌下滴加到制备的脂质体中并加热到65℃,使得溶液中的最终药物浓度在0.2至0.8mg/mL的范围内,且最终D/L比率在0.1至0.8mol/mol范围内。最终DMSO浓度在2至30%之间。
将样品在65℃不断搅拌下温育45分钟,以促进将药物装载到脂质体中。装载后,将样品在冰浴上冷却。
D.装载了化合物9的脂质体的纯化
采用配有100-300k MWCO(Hydrosart,Sartorius)PES膜的切向流过滤(Slice200,Sartorius)进行制剂的纯化。首先将制剂浓缩到50mL,然后用12-24个体积的与装载程序期间的浓度类似的浓度的经酸化(0.01M HCl或MeSO3H)右旋糖交换物进行纯化,以便去除未经包封的药物。此后,再用12个体积的5%右旋糖交换物纯化制剂。可替代地,如果需要低温储存脂质体制剂,则可以使用蔗糖代替右旋糖。最后,将制剂浓缩到10-20mg/ml脂质,收集并通过0.22μm PES注射器过滤器进行过滤。
实施例3.药物和脂质测定
如实施例1A中所述制备含有各种药物的脂质体的制剂。使用磷脂C和胆固醇测定试剂盒(Fujifilm)和UV光谱仪(Cytation 5,BioTek Instruments Inc.)分析脂质含量。
为了测定药物含量,首先将装载了药物的脂质体溶解在含有70%乙醇和100mMHCl的增溶混合物中。用化合物9粉末和相同的增溶混合物准备校准曲线。使用测量310nm处的吸光度的UV光谱仪(Cytation 5,BioTek Instruments Inc.)来检测药物。
药物产率是纯化制剂后的药物回收率(即不考虑脂质)。药物产率计算如下:
药物产率(%)=最终制剂的药物浓度/对照中的药物浓度*100
对照是相同但未纯化的制剂(即回收率为100%)。
包封效率(EE)计算如下:
EE(%)=最终制剂中的药物与脂质比率/对照中的药物与脂质比率*100
例如,如果药物与脂质比率为0.10(对照),且纯化后最终制剂呈现的药物与脂质比率为0.05,则EE将为50%(0.05/0.1*100)。
这些制剂的组成提供于表1中。这些脂质的表征(例如,包封效率、脂质体大小)在下表2中给出。
表1.脂质体的制剂。DSPC=二硬脂酰磷脂酰甘油。PCL=聚合物缀合的脂质。Chol=胆固醇。PEGylated=1,2-二硬脂酰基-外消旋-甘油-3-甲氧基聚(乙二醇-2000)(也称为DSG-PEG2000和PEG(2000)-二硬脂酰甘油)。AS=硫酸铵。KSOS=蔗糖八硫酸钾。MES=2-(N-吗啉代)乙磺酸。TEASOS=蔗糖八硫酸三乙铵。MeSO3H=甲磺酸。
表2.装载了药物的脂质体的表征。EE=包封效率。PDI=多分散指数。Z-ave=平均直径。N.D.=未测定。
实施例4.装载了药物的脂质体的制剂和药代动力学表征
实验设计
雌性B6D2F1/J小鼠购自Jackson实验室,并在研究开始之前适应7天。在实验过程期间,将小鼠以3只动物/笼的容量在经高压灭菌的Allentown通风笼中笼养。每两周更换一次笼子。为笼子提供的环境富集物(Environmental enrichment)是在Envigo 7097 1/4”玉米芯垫料上的来自Ancare的Nestlets、来自Bio-Serv的透明有色聚碳酸酯Mouse Igloos。在对笼子进行高压灭菌之前,将所有富集物添加到笼子中。给小鼠喂食Envigo TekladGlobal Rodent Diet 2018。将啮齿动物食物保存在金属丝盖子的料斗中,并每两周更换一次。通过Avidity Science自动浇水阀以25-50ml/min的流速供应反渗透水。通过WatchDog进行灯光的环境控制以及温度、湿度和空气流的监测。动物收纳室中的光照周期设定为12小时开启和12小时关闭。温度、湿度和空气流由BCCRC设施维持和控制。
测试/对照制品的储存
所有测试/对照制品(TA/CA)以准备好注射的形式提供,并在2-8℃下储存。
剂量施用
基于单个小鼠体重,使用28G针头给小鼠注射所需体积以对该动物施用处方剂量(10mg/kg)。注射体积为200μL/20g小鼠。在i.v.注射期间,小鼠被短暂(少于30秒)约束。通过将动物在加热灯下保持1-2分钟之间的一段时间来实现静脉的扩张(SOP-AF-018的当前修订)。
数据收集
药代动力学取样
对小鼠单独称重。给小鼠注射测试制品/对照制品,并根据研究分组表收集血液。为了收集血液,通过异氟烷、接着是CO2吸入将小鼠处死(SOP-AF-042)。通过心脏穿刺收集血液(SOP-AF-002的当前修订)。对于心脏穿刺,在最后一次呼吸后,将小鼠从吸入室中取出,并通过用25G针头进行心脏穿刺收集大约500μL血液,并放入适当的微量采血管(K2EDTA)中。通过将样品以1300g离心15分钟来分离血浆,然后吸出,并放入贴有标签的小瓶中。将血浆在-20℃下冷冻,并将剩余的给药物质储存在大约4℃下,直到样品运输。
药物血浆浓度的测定
将血浆样品在酸化的甲醇中稀释并剧烈涡旋。然后将血浆/甲醇样品在8℃下以10000ref离心10分钟。将上清液注射到Phenomenex Synergi Fusion-RP 2.5μm 50x3mm柱上,用10mM乙酸铵缓冲液和乙腈运行梯度。使用二极管阵列检测器在300nm的波长下检测药物。针对1-40μg/mL范围内的线性校准曲线计算血浆药物浓度。
脂质体制剂
本文所述的药代动力学研究中使用的所有脂质体包含DPSC/胆固醇/PEGylated(56/38/5.6摩尔%),并且根据实施例1A、1B和2制备。
表3.用于药代动力学(PK)研究的脂质体的制剂。PEGylated=PEG(2000)-二硬脂酰甘油。AS=硫酸铵。TEASOS=蔗糖八硫酸三乙铵。NH4SOS=蔗糖八硫酸铵。
表4.装载了药物的脂质体的表征。D/L比率=药物/磷脂比率。EE=包封效率。PDI=多分散指数。Z-ave=平均直径。N.D.=未测定。
实施例5.化合物2脂质体制剂的血浆稳定性的测定
通过测量在如实施例4中所述收集的血浆中的各种时间点的化合物2的浓度来确定血浆稳定性。如实施例1A、1B和2中所述,所有脂质体制剂均包含DSPC/胆固醇/PEGylated(56/38/5.6摩尔%)。使用250mM AS作为装载助剂制备制剂1-4。使用500mM AS作为装载助剂制备制剂5。使用2%DMSO将化合物2装载到制剂1、4和5的脂质体中。使用10%DMSO将化合物2装载到制剂2和3的脂质体中。
图1A示出与使用游离药物相比,使用各种脂质体制剂时化合物2的归一化血浆浓度随时间推移的演变。
图1B示出与采用根据先前公布的方法制备的脂质体制剂相比以及与使用游离药物相比,使用本公开的示例性脂质体制剂时化合物2的归一化血浆浓度随时间推移的演变。标记为“Merrimack”的制剂包含脂质体,所述脂质体包含根据WO 2017/123616中叙述的程序使用TEASOS(0.43N)作为装载助剂在没有DMSO的情况下装载的DSPC/胆固醇/PEGylated(56/38/5.6摩尔%)。与制剂1-4相反,“Merrimack”制剂没有用酸化的水溶液纯化。
实施例6.化合物9脂质体制剂的血浆稳定性的测定
通过测量在如实施例4中所述收集的血浆中的各种时间点的化合物9的浓度来确定血浆稳定性。所有脂质体制剂均包含如实施例1A、1B和2中所述的DSPC/胆固醇/PEGylated(56/38/5.6摩尔%)。制剂1使用250mM AS作为装载助剂。制剂2使用500mM AS作为装载助剂。制剂3使用0.5N TEASOS作为装载助剂。制剂4使用0.5N NH4SOS作为装载助剂。
图2A示出使用各种脂质体制剂时化合物9的归一化血浆浓度随时间推移的演变。
图2B示出与采用根据先前公布的方法制备的脂质体制剂相比以及与使用游离药物相比,使用本公开的示例性脂质体制剂时化合物9的归一化血浆浓度随时间推移的演变。标记为“Merrimack”的制剂包含脂质体,所述脂质体包含根据WO 2017/123616中叙述的程序使用TEASOS(0.43N)作为装载助剂在没有DMSO的情况下装载的DSPC/胆固醇/PEGylated(56/38/5.6摩尔%)。与制剂1-4相反,“Merrimack”制剂没有用酸化的水溶液纯化。
实施例7.在用酸化的糖溶液纯化期间去除游离药物
如实施例1A、1B和2中所述制备和纯化含有化合物9的脂质体的制剂。该脂质体制剂包含DSPC/胆固醇/PEGylated(58/40/2摩尔%),并使用250mM AS作为装载助剂。
在采用切向流过滤纯化制剂期间,测量渗透物中化合物9的浓度,如下表7中所示。图3描绘了渗透物中化合物9的浓度与洗涤体积的关系。
表7.渗透物中化合物9的浓度。洗涤体积以样品体积的倍数表示-例如,对于50mL的脂质体溶液,3x洗涤体积对应于150mL渗透物洗涤体积。N.D.=未检测到。
洗涤体积 化合物x的浓度(mg/mL)
0x N.D.
1x 0.0071
3x 0.0159
6x 0.0035
9x 0.0014
12x 0.0010
实施例8.酸洗纯化对化合物7脂质体制剂的血浆稳定性的影响
通过测量在如实施例4中所述收集的血浆中化合物7在各种时间点的浓度来确定血浆稳定性。这两种脂质体制剂均包含如实施例1A和1B中所述的DSPC/胆固醇/PEGylated(59/39/2摩尔%)。对于这两种脂质体制剂,装载助剂为500mM AS,且D/L比率为0.4。
根据实施例1A和1B中一般性地描述的程序以及本文中所述的具体参数来纯化酸洗制剂。采用配备有100-300k MWCO(Hydrosart,Sartorius)PES膜的切向流过滤(Slice200,Sartorius)进行制剂的纯化。首先将制剂浓缩到50mL,然后用12体积的10mM的在5重量%右旋糖水溶液中的甲磺酸交换物进行纯化。此后,再用12个体积的5%右旋糖交换物纯化制剂。最后,将制剂浓缩到10-20mg/ml脂质,收集并通过0.22μm PES注射器过滤器进行过滤。
采用配备有100-300k MWCO(Hydrosart,Sartorius)PES膜的切向流过滤(Slice200,Sartorius)纯化无酸洗制剂。首先将制剂浓缩到50mL,然后用12体积的5%右旋糖交换物纯化,浓缩到10-20mg/ml脂质,收集并通过0.22μm PES注射器过滤器过滤。
图4示出使用在有或没有酸洗步骤的情况下制备的本公开的示例性脂质体制剂时化合物7的归一化血浆浓度随时间推移的演变。图4显示存在酸洗纯化步骤的脂质体表现出比不存在酸洗纯化步骤的脂质体的药代动力学性质优越的药代动力学性质(例如,化合物7更慢的释放)。如图4中所示,不存在酸洗纯化步骤的脂质体导致药物的爆发释放,如通过在第一时间段药物损失超过50%所见。相比之下,已经用酸预洗的那些脂质体随着时间的推移表现出所需的延长药物释放。
实施例9.不同酸在脂质体制剂制备中的影响
如实施例1A、1B和2的步骤A-C中所述制备含有化合物9的脂质体的制剂。所有脂质体制剂均包含DSPC/胆固醇/PEGylated(58/40/2),并使用250mMAS作为装载助剂。在本实施例中,根据本文所述的参数进行装载了药物的脂质体的纯化。
采用配有100-300k MWCO(Hydrosart,Sartorius)PES膜的切向流过滤(Slice200,Sartorius)进行制剂的纯化。首先将制剂浓缩到5mL,然后用12个体积的酸化的糖(右旋糖或蔗糖)溶液交换物进行纯化。酸化的糖溶液中的酸是甲磺酸。酸化的糖溶液中甲磺酸的浓度为1 mM或5mM。酸化的糖溶液可替代地含有pH为约4.0的乙酸钠。酸化的糖溶液中乙酸钠的浓度为约25mM。此后,再用12个体积的9%右旋糖交换物纯化制剂。
下表5中给出了根据本实施例制备的脂质体样品的某些纯化参数(例如,酸化的糖溶液的组成)和表征。
表5.脂质体的纯化参数和表征。缓冲液=酸化的糖溶液的组成。pH=酸化的糖溶液的pH。EE=包封效率。D/L比率=药物/磷脂比率。Lyso-PC(%)=检测到的溶血磷脂(DSPC降解产物)的百分比。
实施例10.不同缓冲液在脂质体制剂制备中的影响
如实施例1A、1B和2的步骤A-C中所述制备含有化合物9的脂质体的制剂。所有脂质体制剂均包含DSPC/胆固醇/PEGylated(58/40/2),并使用250mMAS作为装载助剂。在本实施例中,根据本文所述的参数进行装载了药物的脂质体的纯化。
采用配有100-300k MWCO(Hydrosart,Sartorius)PES膜的切向流过滤(Slice200,Sartorius)进行制剂的纯化。首先将制剂浓缩到10mL,然后用12个体积的酸化的糖(右旋糖或蔗糖)溶液交换物进行纯化。酸化的糖溶液中的酸是10mM甲磺酸。此后,再用8个体积的5%右旋糖交换物纯化制剂。最后,将制剂浓缩到5mL,收集并通过0.22μm PES注射器过滤器进行过滤。
下表6中给出了根据本实施例制备的脂质体样品的某些纯化参数(例如,酸化的糖溶液的组成)和表征。
表6.脂质体的纯化参数和表征。缓冲液=酸化的糖溶液的组成。EE=包封效率。D/L比率=药物/磷脂比率。Lyso-PC(%)=检测到的溶血磷脂(DSPC降解产物)的百分比。
/>

Claims (37)

1.一种制备经纯化的脂质体组合物的方法,所述组合物包含:
脂质体,所述脂质体包含:
(a)脂质双层;
(b)内部介质;和
(c)包封在所述脂质体的所述内部介质中的治疗剂,
其中所述治疗剂具有低水溶性,并且可以被质子化为质子化形式;
所述方法包括:
(i)提供粗脂质体组合物;以及
(ii)用酸化的水溶液纯化所述粗脂质体组合物。
2.如权利要求1所述的方法,其中:
所述脂质双层包含第一脂质和第一固醇;
所述内部介质包含第一装载助剂。
3.如权利要求2所述的方法,其中所述第一脂质是聚合物缀合的脂质。
4.如权利要求2或3所述的方法,其中所述第一脂质选自由以下组成的组:1,2-二硬脂酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DSG-PEG2000)、1,2-二肉豆蔻酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DMG-PEG2000)、1,2-二棕榈酰基-外消旋-甘油-3-甲氧基聚(乙二醇)(如DPG-PEG2000)和1,2-二硬脂酰基-sn-甘油-3-磷酸乙醇胺-聚(乙二醇)(如DSPE-PEG2000)。
5.如权利要求4所述的方法,其中所述第一脂质是DSG-PEG2000。
6.如权利要求2至5中任一项所述的方法,其中所述脂质双层进一步包含第二脂质。
7.如权利要求6所述的方法,其中所述第二脂质是磷脂。
8.如权利要求6或7所述的方法,其中所述第二脂质是二硬脂酰磷酯酰胆碱(DSPC)。
9.如权利要求6或7所述的方法,其中所述第二脂质是氢化鞘磷脂。
10.如权利要求1至9中任一项所述的方法,其中所述内部介质是水性内部介质。
11.如权利要求10所述的方法,其中所述水性内部介质是酸性水性内部介质。
12.如权利要求1至11中任一项所述的方法,其中所述内部介质进一步包含另外的溶剂。
13.如权利要求12所述的方法,其中所述另外的溶剂是有机溶剂。
14.如权利要求12或13所述的方法,其中所述另外的溶剂是二甲亚砜(DMSO)。
15.如权利要求2至14中任一项所述的方法,其中所述第一装载助剂是离子装载助剂。
16.如权利要求2至15中任一项所述的方法,其中所述第一装载助剂选自由硫酸铵(AS)、蔗糖八硫酸铵(NH4SOS)、蔗糖八硫酸钾(KSOS)、蔗糖八硫酸三乙醇铵(TEA(OH)SOS)、蔗糖八硫酸三乙铵(TEASOS)和柠檬酸钠组成的组。
17.如权利要求2至16中任一项所述的方法,其中所述第一装载助剂是硫酸铵(AS)。
18.如权利要求2至16中任一项所述的方法,其中所述第一装载助剂是蔗糖八硫酸三乙铵(TEASOS)。
19.如权利要求2至18中任一项所述的方法,其中所述内部介质进一步包含第二装载助剂。
20.如权利要求19所述的方法,其中所述第二装载助剂是离子装载助剂。
21.如权利要求19或20所述的方法,其中所述第二装载助剂选自由硫酸铵(AS)、蔗糖八硫酸铵(NH4SOS)、蔗糖八硫酸钾(KSOS)、蔗糖八硫酸三乙铵(TEASOS)和柠檬酸钠组成的组。
22.如权利要求19至21中任一项所述的方法,其中所述第一装载助剂是蔗糖八硫酸钾(KSOS),且所述第二装载助剂是柠檬酸钠。
23.如权利要求2至22中任一项所述的方法,其中所述第一固醇是胆固醇或β-谷固醇。
24.如权利要求1至23中任一项所述的方法,其中所述治疗剂具有大于约2的cLogP。
25.如权利要求1至24中任一项所述的方法,其中所述质子化形式具有大于约2的pKa。
26.如权利要求24或25所述的方法,其中所述治疗剂是抗血管生成剂、抗代谢物、细胞凋亡诱导剂、细胞周期抑制剂、细胞周期控制抑制剂、检查点抑制剂、细胞周期蛋白依赖性激酶抑制剂、细胞毒性剂、DNA损伤剂、DNA修复抑制剂、线粒体毒物、端粒酶抑制剂、信号转导抑制剂、转录抑制剂、Bcl抑制剂、PARP抑制剂、PI3K抑制剂、HSP90抑制剂、JAK抑制剂、ATR抑制剂、HDAC抑制剂、酪氨酸激酶抑制剂、受体酪氨酸激酶抑制剂、BTK抑制剂、烷化剂、SMO抑制剂、抗微管蛋白剂、MEK抑制剂、拓扑异构酶抑制剂、RAF抑制剂、BRAF抑制剂或蛋白酶体抑制剂。
27.如权利要求26所述的方法,其中所述治疗剂是选自由Bcl-2抑制剂、Bcl-XL抑制剂和Bcl-2/Bcl-XL双重抑制剂组成的组的Bcl抑制剂。
28.如权利要求1至27中任一项所述的方法,其中所述脂质体进一步包含另外的治疗剂。
29.如权利要求28所述的方法,其中所述另外的治疗剂被包封在所述脂质体中。
30.如权利要求29所述的方法,其中所述另外的治疗剂是抗血管生成剂、抗代谢物、细胞凋亡诱导剂、细胞周期抑制剂、细胞周期控制抑制剂、检查点抑制剂、细胞周期蛋白依赖性激酶抑制剂、细胞毒性剂、DNA损伤剂、DNA修复抑制剂、线粒体毒物、端粒酶抑制剂、信号转导抑制剂、转录抑制剂、Bcl抑制剂、PARP抑制剂、PI3K抑制剂、HSP90抑制剂、JAK抑制剂、ATR抑制剂、HDAC抑制剂、酪氨酸激酶抑制剂、受体酪氨酸激酶抑制剂、BTK抑制剂、烷化剂、SMO抑制剂、抗微管蛋白剂、MEK抑制剂、拓扑异构酶抑制剂、RAF抑制剂、BRAF抑制剂或蛋白酶体抑制剂。
31.如权利要求1至30中任一项所述的方法,其中所述脂质体具有约50nm与约250nm之间的平均直径。
32.如权利要求1至31中任一项所述的方法,其中所述酸化的水溶液包含糖。
33.如权利要求1至32中任一项所述的方法,其中所述酸化的水溶液包含右旋糖。
34.如权利要求1至32中任一项所述的方法,其中所述酸化的水溶液包含蔗糖。
35.如权利要求1至32中任一项所述的方法,其中所述酸化的水溶液中糖的浓度在约5重量%与20重量%之间。
36.如权利要求1至35中任一项所述的方法,其中所述酸化的水溶液中酸的浓度在约1mM与100mM之间。
37.如权利要求1至36中任一项所述的方法,其中所述酸化的水溶液包含甲磺酸。
CN202280059250.5A 2021-07-16 2022-07-15 用于制备脂质体制剂的方法 Pending CN117897140A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202163222887P 2021-07-16 2021-07-16
US63/222,887 2021-07-16
PCT/US2022/037374 WO2023288103A1 (en) 2021-07-16 2022-07-15 Methods for preparing liposomal formulations

Publications (1)

Publication Number Publication Date
CN117897140A true CN117897140A (zh) 2024-04-16

Family

ID=84919677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280059250.5A Pending CN117897140A (zh) 2021-07-16 2022-07-15 用于制备脂质体制剂的方法

Country Status (8)

Country Link
US (1) US20230059528A1 (zh)
EP (1) EP4370099A1 (zh)
KR (1) KR20240037280A (zh)
CN (1) CN117897140A (zh)
AU (1) AU2022310496A1 (zh)
CA (1) CA3182955A1 (zh)
TW (2) TW202320802A (zh)
WO (2) WO2023288103A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0472639A4 (en) * 1989-05-15 1992-07-01 The Liposome Company, Inc. Accumulation of drugs into liposomes by a proton gradient
KR101376895B1 (ko) * 2004-05-03 2014-03-25 헤르메스 바이오사이언스, 인코포레이티드 약물 전달에 유용한 리포좀
CA2581133A1 (en) * 2004-09-20 2006-03-30 British Columbia Cancer Agency Free or liposomal gemcitabine alone or in combination with free or liposomal idarubicin
JP2015536952A (ja) * 2012-11-05 2015-12-24 プロナイ セラピューティクス インコーポレイテッド オリゴヌクレオチド癌療法の投薬および実施
CA2890219A1 (en) * 2012-11-30 2014-06-05 Insmed Incorporated Prostacylin compositions and methods for using the same
US11331328B2 (en) * 2014-05-05 2022-05-17 Bioventures, Llc Compositions and methods for inhibiting antiapoptotic Bcl-2 proteins as anti-aging agents
AU2017206731A1 (en) * 2016-01-11 2018-08-02 Merrimack Pharmaceuticals, Inc. Inhibiting B-cell lymphoma 2 (Bcl-2) and related proteins
CA3029851A1 (en) * 2016-07-29 2018-02-01 Oncternal Therapeutics, Inc. Uses of indoline compounds such as tk216 for the treatment of cancer

Also Published As

Publication number Publication date
EP4370099A1 (en) 2024-05-22
US20230059528A1 (en) 2023-02-23
WO2023288100A1 (en) 2023-01-19
CA3182955A1 (en) 2023-01-16
TW202320802A (zh) 2023-06-01
WO2023288103A1 (en) 2023-01-19
TW202320803A (zh) 2023-06-01
KR20240037280A (ko) 2024-03-21
AU2022310496A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
AU2008323514B2 (en) Novel thermosensitive liposomes containing therapeutic agents
KR100889139B1 (ko) 이리노테칸 제제
US10722466B2 (en) Liposomal formulation for use in the treatment of cancer
ES2964413T3 (es) Composición liposómica inhalable de liberación sostenida para el uso en el tratamiento de enfermedades pulmonares
WO2011066684A1 (zh) 伊立替康或盐酸伊立替康脂质体及其制备方法
JP2011502134A5 (zh)
BR122021024957B1 (pt) Processos de produção de uma composição de irinotecano lipossômico estabilizado em armazenamento
US20240041769A1 (en) Compositions and methods for delivery of anticancer agents with improved therapeutic index
US20230172856A1 (en) Liposome formulations for treatment of cancers and drug resistance of cancers
AU2015206628A1 (en) Liposome compositions encapsulating modified cyclodextrin complexes and uses thereof
CN117897140A (zh) 用于制备脂质体制剂的方法
CN117897139A (zh) Bcl抑制剂的脂质体制剂
EA041894B1 (ru) Липосомальная фармацевтическая композиция для применения для лечения злокачественного новообразования

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication