CN117894942A - 一种聚苯胺外壳包裹三氧化钼电极材料的制备方法及其在水系锌离子电池中的应用 - Google Patents

一种聚苯胺外壳包裹三氧化钼电极材料的制备方法及其在水系锌离子电池中的应用 Download PDF

Info

Publication number
CN117894942A
CN117894942A CN202410035680.4A CN202410035680A CN117894942A CN 117894942 A CN117894942 A CN 117894942A CN 202410035680 A CN202410035680 A CN 202410035680A CN 117894942 A CN117894942 A CN 117894942A
Authority
CN
China
Prior art keywords
molybdenum trioxide
electrode material
solution
polyaniline
polyaniline shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410035680.4A
Other languages
English (en)
Inventor
黄子航
马天翼
李慧
郑晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN202410035680.4A priority Critical patent/CN117894942A/zh
Publication of CN117894942A publication Critical patent/CN117894942A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于清洁能源技术领域,具体涉及一种聚苯胺外壳包裹三氧化钼电极材料的制备方法及其在水系锌离子电池中的应用。本发明采用了原位聚合法在三氧化钼外侧包覆聚苯胺外壳,聚苯胺外壳具有疏水性,能够最大程度上保护三氧化钼的结构稳定性;与此同时,在构筑聚苯胺外壳过程中,三氧化钼内部也引入了一定量氧缺陷,氧缺陷能够在增强导电性的同时加速锌离子在其内部的扩散速率。得益于以上的协同作用,聚苯胺外壳包裹三氧化钼正极电极的循环寿命得到了极大的提升。

Description

一种聚苯胺外壳包裹三氧化钼电极材料的制备方法及其在水 系锌离子电池中的应用
技术领域
本发明属于清洁能源技术领域,具体涉及一种聚苯胺外壳包裹三氧化钼电极材料的制备方法及其在水系锌离子电池中的应用。
背景技术
水系储能设备因其具有高安全性、便携性和低构造成本而备受全球能源行业的关注。锌离子电池兼备较低的工作电压(-0.76V vs.氢标准电极),较高的理论容量(820mA hg-1)和成熟的制造工艺的优势继而成为了水系储能设备的研究热点。三氧化钼作为无毒的过渡金属材料,拥有Mo6+/Mo4+混合价态和稳定的热力学层状结构,因此有潜力作为高能正极在水系锌离子电池领域得以广泛应用。然而在长期的充放电过程中,三氧化钼主体材料会不可避免地溶解在电解质溶液中,致使充放电过程无法持续进行。除此之外,三氧化钼的导电性和锌离子在其晶格内部的扩散动力学也同样需要得到提升。聚苯胺作为一种高分子材料,具有良好的导电性和疏水性,因此将聚苯胺外壳包裹在三氧化钼的外侧能够极大地提升循环寿命。与此同时,苯胺在三氧化钼外表面聚合的过程中,会向三氧化钼中引入了一定量的氧缺陷,使得正极材料的导电性和锌离子在其晶格间的迁移速率同时得到极大的提升。
发明内容
本发明的目的是在三氧化钼外侧构筑一层疏水保护层,使其能够在延长循环寿命的同时增大其导电性,为此,本发明提供一种聚苯胺外壳包裹三氧化钼电极材料的制备方法及其在水系锌离子电池中的应用。
为实现上述目的,本发明采用的技术方案是:
一种聚苯胺外壳包裹三氧化钼电极材料的制备方法,包括如下步骤:
1)将钼酸铵溶于去离子水中并向混合溶液中加入硝酸溶液,持续搅拌直至溶液透明,然后将混合溶液置于具有聚四氟乙烯内衬的反应釜内进行水热反应,将得到的产品进行真空抽滤后,洗涤干燥,即可得到的白色三氧化钼粉末;
2)将三氧化钼粉末与去离子水混合后得到溶液A;
3)将苯胺滴加至浓盐酸中得到溶液B;
4)将过硫酸铵置入盐酸溶液中得到溶液C;
5)将溶液A、溶液B、溶液C混合搅拌,然后将得到的混合溶液进行真空抽滤后,洗涤干燥,即可得到的墨绿色的聚苯胺外壳包裹三氧化钼电极材料。
进一步的,上述的制备方法,步骤1)中,按重量比,钼酸铵:去离子水:硝酸=1:25:1.89。
进一步的,上述的制备方法,步骤1)中,所述水热反应的条件为:水热温度为180℃,反应时间为12h。
进一步的,上述的制备方法,步骤2)中,按重量比,三氧化钼:去离子水=1:40。
进一步的,上述的制备方法,步骤3)中,按体积比,苯胺:浓盐酸=3:1000。
进一步的,上述的制备方法,步骤4)中,按重量比,过硫酸铵:盐酸=1:2。
进一步的,上述的制备方法,步骤5)中,所述搅拌的时间为4h。
上述任意一项所述的制备方法制备的聚苯胺外壳包裹三氧化钼电极材料作为正极材料在水系锌离子电池中的应用。
进一步的,上述的应用,以聚苯胺外壳包裹三氧化钼电极材料与乙炔黑、聚偏氟乙烯混合均匀混合后,向其中滴加N-甲基吡咯烷酮,将得到的浆料涂抹在光滑的钛片上,真空干燥后所得的电极片为正极,锌片为负极,以3M Zn(CF3SO3)2溶液作为电解液,将以上材料组装至纽扣电池中。
更进一步的,上述的应用,按质量比,聚苯胺外壳包裹三氧化钼电极材料:乙炔黑:聚偏氟乙烯=7:2:1。
本发明的有益效果是:本发明得到了一种应用于水系锌离子电池的聚苯胺外壳包裹三氧化钼(PANI@MoO3-x)正极材料。该种正极材料具有稳定的疏水外壳保护了三氧化钼内核在水系电解质中得以稳定的存在。此外,在构筑聚苯胺外壳过程中,三氧化钼内核中也引入了一定量的氧缺陷,氧缺陷的存在能够实现锌离子扩散速率和导电性的同步提升。基于以上的协同作用,以聚苯胺包裹三氧化钼作为正极的锌离子电池循环寿命得到了极大的提升。
附图说明
图1是实施例1制备的MoO3电极材料的扫描电镜图。
图2是实施例2制备的PANI@MoO3-x电极材料的扫描电镜图。
图3是实施例2制备的PANI@MoO3-x电极材料的透射电镜图。
图4是实施例2制备的PANI@MoO3-x电极材料的高分辨率透射电镜图。
图5是实施例1制备的MoO3和实施例2制备的PANI@MoO3-x电极材料的X射线衍射图。
图6是实施例1制备的MoO3和实施例2制备的PANI@MoO3-x电极材料作为正极材料的锌离子电池在电流密度0.5Ag-1循环100次的充放电曲线图。
图7是实施例1制备的MoO3和实施例2制备的PANI@MoO3-x电极材料作为正极材料的锌离子电池在电流密度5A g-1循环1000次的充放电曲线图。
具体实施方式
实施例1三氧化钼电极材料(MoO3)的制备
(一)制备方法如下:
将1.0g钼酸铵置于25mL去离子水中,向其中滴加10mL浓度为3M的硝酸溶液,在室温环境中磁力搅拌20min,得到透明无色溶液;将混合溶液置于50mL具有聚四氟乙烯内衬的反应釜内,将其密封后,在180℃的条件下加热12h;反应结束后,冷却至室温,将得到的混合溶液进行真空抽滤处理后利用去离子水和乙醇清洗后得到白色粉末,将白色粉末置于烘箱中在80℃条件下烘干12h即得到MoO3
(二)实验结果
图1为实施例1制备的MoO3电极材料的扫描电镜图片,图1中的MoO3形貌为具有光滑外表面的纳米棒。
实施例2聚苯胺外壳包裹三氧化钼电极材料(PANI@MoO3-x)的制备
(一)制备方法如下:
1)将1.0g钼酸铵置于25mL去离子水中,向其中滴加10mL浓度为3M的硝酸溶液,在室温环境中磁力搅拌20min,得到透明无色溶液;将混合溶液置于50mL具有聚四氟乙烯内衬的反应釜内,将其密封后,在180℃的条件下加热12h;反应结束后,冷却至室温,将得到的混合溶液进行真空抽滤处理后利用去离子水和乙醇清洗后得到白色粉末,将白色粉末置于烘箱中在80℃条件下烘干12h即得到MoO3
2)将0.25g MoO3置于10mL去离子水中超声震荡至均一溶液,得到溶液A;将30μL苯胺滴加至10mL浓盐酸中,得到溶液B;将0.18g过硫酸铵置于10mL浓度为1M盐酸溶液中;将溶液A、溶液B、溶液C完全混合后,于常温环境下搅拌4h,将得到的混合溶液进行真空抽滤处理后利用去离子水和乙醇清洗后得到墨绿色粉末,将墨绿色粉末置于烘箱中在60℃条件下烘干12h后即得到PANI@MoO3-x
(二)实验结果
图2为实施例2制备的PANI@MoO3-x电极材料的扫描电镜图片,图2中的PANI@MoO3-x形貌为具有凹凸不平外表面的纳米棒。图3为实施例2制备的PANI@MoO3-x电极材料的透射电镜图片,PANI外壳均匀地包裹在MoO3纳米棒的外侧,证实了PANI外壳的存在。图4为实施例2制备的PANI@MoO3-x电极材料的高倍率透射电镜图片,其中晶格条纹不规则区域即为氧缺陷。图5为实施例1制备的MoO3和实施例2制备的PANI@MoO3-x电极材料的X射线衍射图,如图所示,MoO3和PANI@MoO3-x电极材料的衍射峰与标准卡片(PDF No.05-0508)的特征峰位置基本对应,证实了MoO3和PANI@MoO3-x电极材料的成功合成,且PANI外壳并未对内部的MoO3-x的纳米棒结构造成破坏。
实施例3聚苯胺外壳包裹三氧化钼(PANI@MoO3-x)电极材料在水系锌离子电池中的应用
分别将PANI@MoO3-x、MoO3材料与乙炔黑、聚偏氟乙烯以质量比7:2:1均匀研磨,将其溶解在N-甲基吡咯烷酮溶液中,制备好的浆料均匀涂抹在光滑的钛片上,真空干燥后所得的电极片即为正极材料,锌片为负极,电解液为3M Zn(CF3SO3)2溶液,将以上材料组装至纽扣电池中进行测试。
图6是以实施例1制备的MoO3、实施2制备的PANI@MoO3-x作为正极材料的锌离子电池在0.2V~1.5V的电位窗口范围内,电流密度为0.5A g-1的条件下的充放电曲线图。MoO3在初始循环过程中,容量可高达211.54mAh g-1;当MoO3正极材料连续经历100次充放电循环后,其容量仅为35.98mAh g-1;而PANI@MoO3-x正极材料在连续充放电循环100次后其容量可达112.63mAh g-1。图7是以实施例1制备的MoO3、实施2制备的PANI@MoO3-x作为正极材料的锌离子电池在电流密度为5A g-1的条件下的充放电曲线图。PANI@MoO3-x正极材料在连续充放电循环1000次后其容量保存率可高达75.49%,其库伦效率也维持在99%左右;而MoO3的容量保存率仅为9.98%。由此可见,在三氧化钼外侧包裹聚苯胺保护层能够有效地阻止三氧化钼在充放电过程中发生的溶解现象,继而最大程度地提升其循环寿命。

Claims (10)

1.一种聚苯胺外壳包裹三氧化钼电极材料的制备方法,其特征在于,包括如下步骤:
1)将钼酸铵溶于去离子水中并向混合溶液中加入硝酸溶液,持续搅拌直至溶液透明,然后将混合溶液置于具有聚四氟乙烯内衬的反应釜内进行水热反应,将得到的产品进行真空抽滤后,洗涤干燥,即可得到的白色三氧化钼粉末;
2)将三氧化钼粉末与去离子水混合后得到溶液A;
3)将苯胺滴加至浓盐酸中得到溶液B;
4)将过硫酸铵置入盐酸溶液中得到溶液C;
5)将溶液A、溶液B、溶液C混合搅拌,然后将得到的混合溶液进行真空抽滤后,洗涤干燥,即可得到的墨绿色的聚苯胺外壳包裹三氧化钼电极材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤1)中,按重量比,钼酸铵:去离子水:硝酸=1:25:1.89。
3.根据权利要求1所述的制备方法,其特征在于,步骤1)中,所述水热反应的条件为:水热温度为180℃,反应时间为12h。
4.根据权利要求1所述的制备方法,其特征在于,步骤2)中,按重量比,三氧化钼:去离子水=1:40。
5.根据权利要求1所述的制备方法,其特征在于,步骤3)中,按体积比,苯胺:浓盐酸=3:1000。
6.根据权利要求1所述的制备方法,其特征在于,步骤4)中,按重量比,过硫酸铵:盐酸=1:2。
7.根据权利要求1所述的制备方法,其特征在于,步骤5)中,所述搅拌的时间为4h。
8.权利要求1-7任意一项所述的制备方法制备的聚苯胺外壳包裹三氧化钼电极材料作为正极材料在水系锌离子电池中的应用。
9.根据权利要求8所述的应用,其特征在于,以聚苯胺外壳包裹三氧化钼电极材料与乙炔黑、聚偏氟乙烯混合均匀混合后,向其中滴加N-甲基吡咯烷酮,将得到的浆料涂抹在光滑的钛片上,真空干燥后所得的电极片为正极,锌片为负极,以3M Zn(CF3SO3)2溶液作为电解液,将以上材料组装至纽扣电池中。
10.根据权利要求9所述的应用,其特征在于,按质量比,聚苯胺外壳包裹三氧化钼电极材料:乙炔黑:聚偏氟乙烯=7:2:1。
CN202410035680.4A 2024-01-10 2024-01-10 一种聚苯胺外壳包裹三氧化钼电极材料的制备方法及其在水系锌离子电池中的应用 Pending CN117894942A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410035680.4A CN117894942A (zh) 2024-01-10 2024-01-10 一种聚苯胺外壳包裹三氧化钼电极材料的制备方法及其在水系锌离子电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410035680.4A CN117894942A (zh) 2024-01-10 2024-01-10 一种聚苯胺外壳包裹三氧化钼电极材料的制备方法及其在水系锌离子电池中的应用

Publications (1)

Publication Number Publication Date
CN117894942A true CN117894942A (zh) 2024-04-16

Family

ID=90640498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410035680.4A Pending CN117894942A (zh) 2024-01-10 2024-01-10 一种聚苯胺外壳包裹三氧化钼电极材料的制备方法及其在水系锌离子电池中的应用

Country Status (1)

Country Link
CN (1) CN117894942A (zh)

Similar Documents

Publication Publication Date Title
CN107666015B (zh) 一种水相电解质体系锌碘二次电池及其制备方法
CN111430687B (zh) 碳包覆磷酸铁锂复合材料及其制备方法,锂离子电池
CN108598561A (zh) 一种准固态锂离子导电电解质及其制备方法和应用
CN112133897B (zh) 一种湿法包覆降低正极材料表面碱量并提高电化学性能的方法
CN111769272A (zh) 一种Bi@C空心纳米球复合材料及其制备方法与应用
CN111384366B (zh) 一种α-MnO2/碳复合电极材料及其制备方法和应用
CN104466102A (zh) 一种锂二次电池正极材料多孔v2o5/c复合微球及其制备方法
CN110563052B (zh) 一种碳和氧化镧共包覆改性镍锰酸锂正极材料的制备方法
CN105845929B (zh) 一种氧化铅‑炭复合材料的制备方法
CN110061196B (zh) 一种表面掺杂改性钴酸锂正极材料的方法
CN115911325A (zh) 一种表层稳定的钠离子电池正极材料制备方法
CN110176587A (zh) 一种钒离子表面掺杂镍钴铝三元正极材料、制备方法及其应用
CN117894942A (zh) 一种聚苯胺外壳包裹三氧化钼电极材料的制备方法及其在水系锌离子电池中的应用
CN113241432B (zh) 一种ZnO/Bi2O3复合材料的制备方法及应用于镍锌电池
CN107681146A (zh) 一种复合镍锰酸锂正极材料的表面改性方法
CN110299524B (zh) 一种制备锂离子电池负极材料MnO2/Ag的方法
CN114229807A (zh) 一种Si@SiOx-TiN/C复合负极材料、制备方法及锂离子电池
CN114180537A (zh) 一种氮掺杂碳包覆的锂离子电池用负极材料的制备方法
CN110021744B (zh) 一种纳米二氧化铌/碳锂离子电池负极材料的制备方法
CN109037607B (zh) 一种包覆锰酸锂复合材料的制备方法
CN113903915A (zh) 一种石墨烯包覆多孔氧化铅-硫化铅复合材料的制备方法
CN105932238A (zh) 一种球形稀土金属氧化物包覆的锂离子电池负极材料钛酸锂的制备方法
CN111816873A (zh) 一种碳包覆磷酸钛锰锂复合材料及其制备方法和在锂离子电池中的应用
CN111342027A (zh) 一种羟基修饰无定形SiOx壳层包覆纳米硅负极材料、制备方法及负极片的制备方法
Ding et al. High-performance spherical LiVPO 4 F/C cathode enabled by facile spray pyrolysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination