CN117887066A - 一种两亲性嵌段聚多肽及其制备方法和应用 - Google Patents

一种两亲性嵌段聚多肽及其制备方法和应用 Download PDF

Info

Publication number
CN117887066A
CN117887066A CN202311871036.2A CN202311871036A CN117887066A CN 117887066 A CN117887066 A CN 117887066A CN 202311871036 A CN202311871036 A CN 202311871036A CN 117887066 A CN117887066 A CN 117887066A
Authority
CN
China
Prior art keywords
polypeptide
formula
amphiphilic block
nanoparticles
tumor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311871036.2A
Other languages
English (en)
Inventor
刘世勇
潘文浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202311871036.2A priority Critical patent/CN117887066A/zh
Publication of CN117887066A publication Critical patent/CN117887066A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Immunology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了一种两亲性嵌段聚多肽,具有式Ⅰ所示结构。本发明提供的两亲性嵌段聚多肽可高效动态可逆共价结合含醛/酮衍生物,且在酸性条件下释放含醛/酮衍生物。亲水链端含有功能基团R1,自组装成纳米粒子并经静脉注射后,纳米粒子表面的功能基团R1原位捕获功能性蛋白,主动调节纳米粒子上的蛋白质冠,结合两性离子抵御蛋白的物理吸附功能协同作用进一步增强蛋白质冠的可控性,极大的增加了血液循环时间,促进了肿瘤的积累,同时减少了肝脏和脾脏的隔离,并提高了肿瘤细胞的选择性摄取。与GGT特异性识别触发阳离子化功能相结合,进一步增强纳米药物的转胞吞作用并实现肿瘤区域的深层渗透的应用。

Description

一种两亲性嵌段聚多肽及其制备方法和应用
技术领域
本发明涉及材料技术领域,尤其涉及一种两亲性嵌段聚多肽及其制备方法和应用。
背景技术
近年来纳米医学在改善癌症治疗方面展现出独特的优势,受到科研人员的广泛关注。迄今为止,一些纳米药物正在进行临床实验或已实现临床转化,例如采用脂质体物理包覆的伊立替康,结合白蛋白的紫杉醇,可以用药过程中有效降低药物的不良反应并提高抗肿瘤的疗效。然而,目前纳米药物抗肿瘤的治疗方面仍存在问题,许多药物在动物模型中是疗效很好,但在临床试验中治疗却疗效甚微。围绕目前的困境,如何对纳米药物进行优化设计以提高其临床疗效是该领域亟待解决的关键性科学问题。众所周知,药物由静脉注射后必须经历血液循环,肿瘤富集,无血管肿瘤组织深层渗透,细胞内化和胞内药物释放一系列复杂的生物屏障。纳米药物表面原位结合内源性白蛋白,提高蛋白质冠中白蛋白的含量,进而延长血液循环时间,增强肿瘤富集,提高肿瘤细胞摄取并在胞内微环境控释药物。但唯独在纳米药物从血管渗入肿瘤组织并输运至远端肿瘤仍未能有效解决。这归因于肿瘤间质液压过高,肿瘤细胞排布紧密,细胞外基质致密并且血管分布较低导致分子由血管周围区域渗透到远端肿瘤细胞形成了阻碍,尤其是对纳米药物在内的大分子药物影响更为严重。研究表明,大多数纳米药物只能穿透肿瘤组织几微米深度,主要分布在肿瘤周围的血管区域,如已成功用于临床的盐酸多柔比星脂质体(Doxil)尽管具有优于阿霉素(DOX)循环时间和肿瘤积蓄,但由于有限的肿瘤渗透深度导致实际治疗效果不佳。为此设计将必要的功能集成到单个系统中具有突破复杂的生物屏障的纳米载体是具有重大意义的,但也存在着较大挑战,因为在不同传递过程中所需的功能可能是相反的。
为了实现纳米药物在肿瘤组织的深层渗透主要通过两种思路,(1)从材料设计角度,优化纳米药物结构以增强扩散能力;(2)从肿瘤组织角度,调节肿瘤细胞外基质(ECM)以减少纳米药物渗透过程的阻碍。目前基于纳米药物主要通过设计纳米药物尺寸可变,纳米药物结合穿透肽以及纳米药物电荷反转等方法,可以在一定程度上提高纳米药物的肿瘤渗透效果。但由于以上方法仍为被动扩散的转运模式,会受到肿瘤间质液压、肿瘤ECM等条件的影响而导致渗透效率较低。
在生物体内,纳米药物可由血管上皮细胞和内皮细胞转胞吞作用实现由毛细血管内壁主动运输至肿瘤组织。这种ATP依赖性转胞吞过程还可以绕过上述被动扩散屏障并使纳米药物在整个肿瘤中主动渗透到达远端肿瘤细胞。纳米药物阳离子化可以有效诱导转胞吞过程产生,并促进纳米药物在肿瘤区域深层渗透,但纳米药物阳离子化通常诱导调理作用并从血液循环中快速清除。为了成功实现体内纳米药物肿瘤深层渗透策略,则可采用电荷反转策略,在血液循环中以电中性或弱负电性纳米药物,在血管内皮细胞表面或在进入肿瘤血管外周后触发纳米药物表面阳离子化。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种两亲性嵌段聚多肽及其制备方法和应用,制备的两亲性嵌段聚多肽具有肿瘤深层渗透功能。
为实现上述目的,本发明提供了一种两亲性嵌段聚多肽,具有式Ⅰ所示结构:
其中,R1选自以下任一结构:
R2为H、卤素或C1~C5的烷基;优选为H、Br、I、甲基、乙基、正丙基、异丙基、正丁基、异丁基或叔丁基。
m为10-80的任意整数,优选为30。
n为15-80的任意整数,优选为15。
p为1-3的任意整数,优选为3。
q为1-3的任意整数,优选为3。
0<x≤1,优选为0.98。
可选的,所述两亲性嵌段聚多肽的数均分子量为1000-1000000。
上述聚合物接枝DOX的效率较高,最高可达90%。可以在酸性条件下缓慢释放DOX。随着DOX释放,纳米粒子逐渐解组装最后形成亲水单链形式的嵌段聚合物。基于这一设计策略,实现了聚多肽侧链高效动态可逆的接枝含醛/酮衍生物,同时其纳米粒子中键合功能性小分子可控释放。
上述两亲性嵌段聚多肽结构中含有γ-谷氨酰胺键连接的两性离子嵌段,可在体内进一步延长血液循环时间,抵御蛋白的物理吸附,功能基团R1协同选择性促进功能性蛋白结合,进一步增强蛋白质冠的可控性,同时γ-谷氨酰胺键可与血管内皮细胞和肿瘤细胞膜表面谷氨酰转移酶(GGT)特异性识别触发,实现纳米粒子表面电荷由电中性向正电性转变,进而促进纳米药物的转胞吞作用并实现肿瘤区域的深层渗透。
本发明提供了上述两亲性嵌段聚多肽的制备方法,包括以下步骤:
S1)将式a所示单体和式b所示单体与式c所示链引发剂在溶剂中混合反应,得到式d所示两亲性聚多肽;
S2)将式d所示两亲性聚多肽和式e所示化合物进行反应,得到式f所示化合物;
S3)脱除式f所示化合物的保护基叔丁氧羰基和R,得到式g所示的两亲性嵌段聚多肽;
S4)将DOX和式g所示的两亲性嵌段聚多肽混合反应,得到式A所示的两亲性嵌段聚多肽;
其中,R为叔丁氧羰基或苄氧羰基;m为10-80的任意整数;n为15-80的任意整数;p为1-3的任意整数;q为1-3的任意整数;0<x≤1;
R1选自以下任一结构:
R2为H、卤素或C1~C5的烷基。
可选的,所述步骤S1)中的溶剂选自N,N-二甲基乙酰胺或二甲基亚砜。所述反应的温度优选为60-70℃,反应的时间优选为12h~2天。
可选的,所述步骤S2)中反应的溶剂为二甲基亚砜。所述反应的温度为60-100℃,优选为85℃,反应的时间为3-12h,优选为8h。
可选的,所述步骤S3)中,R为叔丁氧羰基(Boc)时,脱除保护基的溶剂为三氟乙酸;当R为苄氧羰基(Cbz)时,脱除保护基的溶剂为甲醇。所述脱除保护基的反应温度为10-40℃,优选为25℃,反应时间为6-24h,优选12h。
可选的,所述步骤S4)中,反应的溶剂为二甲基亚砜,反应的温度为25-40℃,优选40℃,反应的时间为5-24h,优选为5h。
本发明提供了一种由上述两亲性嵌段聚多肽制备的聚多肽功能性纳米粒子。
本发明对上述纳米粒子的制备方法并无特殊限定,可以为本领域技术人员熟知的药物纳米粒子的制备方法,优选的,所述聚多肽功能性纳米粒子的制备方法,包括以下步骤:
将上述两亲性聚多肽溶解在有机溶剂中,采用共溶剂-加水法或闪沉法组装制备得到聚多肽功能性纳米粒子。
上述共溶剂-加水法优选具体为:
将两亲性聚多肽溶解于有机溶剂中,搅拌过程中缓慢加入纯水,然后采用透析或减压蒸馏的方式除去有机溶剂,得到纳米粒子。
可选的,所述有机溶剂选自二甲基亚砜或四氢呋喃或其以任意比例的混合物。优选为二甲基亚砜。
可选的,在所述有机溶剂中,所述两亲性聚多肽的浓度为0.1-100mg/mL。
可选的,所述水的体积为所述有机溶剂的体积的0.1~100倍。
可选的,所述组装的温度为25-30℃。
可选的,所述组装的时间为0.5-8h。
采用上述共溶剂-加水法制备的纳米粒子的尺寸为几十到几百纳米,优选为50~200nm。
上述闪沉法优选具体为:
将两亲性聚多肽溶解于有机溶剂中,在快速搅拌的条件下快速加入纯水,然后采用透析或减压蒸馏的方式除去有机溶剂,得到纳米粒子。
可选的,所述有机溶剂选自二甲基亚砜或四氢呋喃或其以任意比例的混合物。优选为二甲基亚砜。
可选的,在所述有机溶剂中,所述两亲性聚多肽的浓度为0.1-100mg/mL。
可选的,所述水的体积为所述有机溶剂的体积的0.1~100倍。
采用上述闪沉法制备的纳米粒子的尺寸为几十到几百纳米,优选为70~150nm。
本发明提供了上述聚多肽功能性纳米粒子或上述制备方法制备的聚多肽功能性纳米粒子在制备抗肿瘤药物中的应用。
采用本发明提供的上述聚多肽功能性纳米粒子制备的抗肿瘤药物具有可控释放功能。
本发明制备的上述聚多肽功能性纳米粒子表面呈电中性,可在血液循环中实现长效循环,通过GGT特异性识别触发,实现纳米粒子表面电荷由电中性向正电性转变,进而促进纳米药物的转胞吞作用,同时功能基团R1可原位捕获功能性蛋白,主动调节纳米粒子上的蛋白质冠。
基于此,上述聚多肽功能性纳米粒子可用于调控纳米粒子蛋白质冠、血液中长循环及肿瘤深层渗透诊断等方面。
与现有技术相比,本发明提供了一种两亲性嵌段聚多肽,具有式Ⅰ所示结构。本发明提供的两亲性嵌段聚多肽可高效动态可逆共价结合含醛/酮衍生物,且在酸性条件下释放含醛/酮衍生物。亲水链端含有功能基团R1,自组装成纳米粒子并经静脉注射后,纳米粒子表面的功能基团R1原位捕获功能性蛋白,主动调节纳米粒子上的蛋白质冠,结合两性离子抵御蛋白的物理吸附功能协同作用进一步增强蛋白质冠的可控性,极大的增加了血液循环时间,促进了肿瘤的积累,同时减少了肝脏和脾脏的隔离,并提高了肿瘤细胞的选择性摄取。与GGT特异性识别触发阳离子化功能相结合,进一步增强纳米药物的转胞吞作用并实现肿瘤区域的深层渗透的应用。
附图说明
图1为实施例1制备的KE-Boc NPCA单体的核磁氢谱(a),核磁碳谱(b),高分辨质谱(c);
图2为实施例1制备的化合物Fu-MI-P(KE-Boc)31-b-P(UHL-Boc)16的核磁氢谱(a),MI-PKE31-b-P(UHL-NH3 +)n的核磁氢谱(b);
图3为实施例2制备的SI-P(KE-Boc)31-b-P(UHL-Boc)16结构的核磁氢谱(a),SI-PKE31-b-P(UHL-NH3 +)16的核磁氢谱(b);
图4为实施例2制备的P(KE-Boc)31-b-P(UHL-Boc)n(n=6,10,16)的凝胶渗透色谱(GPC)表征图;
图5为实施例3制备的纳米粒子的透射电镜图及动态光散射图;
图6为应用例1中纳米粒子在不同pH下随着透析时间推移药物DOX的释放过程跟踪实验表征;
图7为应用例2中纳米粒子结合白蛋白验证实验表征;
图8为应用例3中GGT触发聚多肽-DOX缀合物纳米粒子电荷反转实验表征;
图9为应用例4中聚多肽-DOX缀合物纳米粒子肿瘤深层渗透实验表征;
图10为应用例5中聚多肽-DOX缀合物纳米粒子转胞吞实验表征;
图11为应用例6中聚多肽-DOX缀合物纳米粒子实现体内长循环实验表征;
图12为应用例7中具有GGT和酸性双响应纳米粒子的体内抗肿瘤作用实验表征。
具体实施方式
为了进一步说明本发明,下面结合实施例对本发明提供的两亲性嵌段聚多肽及其制备方法和应用进行详细描述。
以下实施例中所采用的原料均为按照现有技术制备得到或市售得到。
以下实施例中,PKE表示γ-谷氨酰胺键连接的两性离子,可在体内进一步延长血液循环时间,抵御蛋白的物理吸附;UHL表示脲酰肼基团,其与DOX酮基高效偶联反应实现药物的动态共价缀合。功能基团R1为共价连接至两性离子嵌段端基,PKE与R1功能协同选择性促进功能性蛋白结合,进一步增强蛋白质冠的可控性,同时γ-谷氨酰胺键可与血管内皮细胞和肿瘤细胞膜表面GGT特异性识别触发,实现纳米粒子表面电荷由电中性向正电性转变,进而促进纳米药物的转胞吞作用,同时功能基团R1与功能性蛋白结合,进一步增强纳米药物的转胞吞作用并实现肿瘤区域的深层渗透。
实施例1
以R为叔丁氧羰基(Boc),m为31,n为15,p为3,q为3为例,合成总路线如下:
(1)化合物1的合成:将Boc-L-Glu-OtBu(2.00g,6.59mmol)溶解于25mL DMF中,加入五氟苯酚(1.33g,7.25mmol)。将体系预先冷却至0℃,向其中加入EDCI(1.39g,7.25mmol)缓慢恢复至室温,在室温下搅拌反应12小时;停止反应,将EA加入至反应体系中稀释,分别用去离子水重复洗涤4次,1M HCl洗涤1次,去离子水洗涤1次、10% NaHCO3水溶液洗涤1次、饱和NaCl洗涤;将无水Na2SO4加入有机相干燥,采用旋转蒸发仪减压蒸馏除去有机溶剂,得到白色固体,并直接用于下一步反应(2.79g,产率:90.1%)。1H NMR(400MHz,DMSO-d6,δ,ppm,TMS):7.28(s,1H),3.88(s,1H),2.90(s,2H),2.04(s,1H),1.88(s,1H),1.40(d,J=3.6Hz,18H).
(2)化合物2的合成:将化合物1(6.14g,13.08mmol)溶解于50mL DMF中,依次加入Cbz-L-Lys-OH(3.06g,10.90mmol)和DIPEA(3.10g,23.98mmol),室温搅拌反应5小时;停止反应,减压蒸馏除去大部分DMF,向体系中加入去离子水,用1M KHSO4水溶液调节体系pH至2-3,加入EA萃取,去除水相保留有机相,向其中加入无水Na2SO4干燥,采用旋转蒸发仪减压蒸馏除去体系有机溶剂。以PE/EA(2/1~4/1,v/v)为洗脱液,硅胶柱层析进一步纯化,采用旋转蒸发仪减压除去有机溶剂,得到无色油状液体(5.39g,产率:87.3%)。
(3)化合物3的合成:将化合物2(5.00g,8.85mmol)溶解于100mL CH3OH中,并向体系中加入0.5g 10% Pd/C。将体系采用氮气置换3次,氢气置换3次。保持在氢气氛围下,室温下搅拌6小时;采用硅藻土助滤剂过滤去除Pd/C,减压蒸馏去除溶剂,得到白色固体(3.77g,产率:98.9%)。
(4)KE-Boc NPCA的合成:将化合物3(2.70g,6.26mmol)溶解于28mL去离子水中,向体系中加入663.8mg Na2CO3,搅拌状态下加热至45℃预热;将(S)-1,3-苯并噻唑-2-基-O-苯基硫代碳酸酯(1.98g,6.89mmol)溶解于100mL THF中,缓慢滴加至体系。45℃下搅拌反应1.5小时,停止反应,恢复至室温,向体系中加入30mL 20% NaHCO3水溶液,体系过滤后滤液用EA洗涤,0℃下用1M KHSO4水溶液调节体系pH至2-3,加入EA萃取,去除水相保留有机相,向其中加入无水Na2SO4干燥,采用旋转蒸发仪减压蒸馏除去有机溶剂。以DCM/MeOH(20/1,v/v)为洗脱液,硅胶柱层析进一步纯化,旋转蒸发除去溶剂,得到白色固体(2.49g,产率:72.1%)。对其结构进行检测,核磁氢谱、核磁碳谱、高分辨质谱如图1所示。
(5)合成以P(KE-Boc)31-b-P(UHL-Boc)16为例,在充满氮气的手套箱中,将UHL-BocNPCA(100.0mg,0.2357mmol,15eq.)加入到5mL圆底烧瓶中,之后加入1mL DMAc溶剂溶解。加入引发剂苄胺(1.68mg,0.01571mmol,1.0eq.)。将反应混合物在手套箱中加热至60℃搅拌反应。通过1H NMR监测UHL-Boc NPCA转化率,待转化率>99%时,将KE-Boc NPCA(260.05mg,0.4714mmol,30eq.)溶于1.5mL DMAc中加入聚合体系,在60℃下继续搅拌以继续进行聚合扩链。通过1H NMR监测UHL-Boc NPCA转化率,待转化率>99%时,将聚合体系沉降至过量的冷乙醚中,过滤得到固体在真空干燥箱中干燥12小时后,得到P(KE-Boc)m-b-P(UHL-Boc)n嵌段聚多肽。通过GPC分析显示Mn为7.1kDa,Mw/Mn为1.12。通过1H NMR波谱测定,P(KE-Boc)m-b-P(UHL-Boc)n嵌段聚多肽中P(UHL-Boc)嵌段的聚合度(DP)为16,P(KE-Boc)嵌段的聚合度(DP)为31,因此该二嵌段聚多肽被表示为P(KE-Boc)31-b-P(UHL-Boc)16(图2-4)。
(6)Fu-MI-P(KE-Boc)31-b-P(UHL-Boc)n的合成:作为一个典型的例子,将化合物4(2.8mg,0.0085mmol)溶于无水甲苯中共沸抽干,重复3次,加入无水甲苯,氮气氛围下,加热至85℃搅拌反应3小时,恢复至室温。P(KE-Boc)31-b-P(UHL-Boc)16(120mg,0.07127mmol)加入2mL无水甲苯共沸抽干,重复3次。向其中加入2mL NMP,采用双针头将其转移至化合物4体系中,氮气氛围下室温搅拌反应12小时。停止反应,将反应体系沉降于乙醚中,离心,得到白色固体(产率:90.1%)。对其结构进行表征,核磁氢谱如图2中a)图所示。
(7)MI-PKE31-b-P(UHL-NH3 +)n的合成:作为一个典型的例子,Fu-MI-P(KE-Boc)31-b-P(UHL-Boc)16(115.0mg,0.0067mol)分散于甲苯(10mL)中,在110℃N2气氛下搅拌。旋转蒸发除去所有溶剂后,将残留物溶解在TFA(10mL)中,将反应混合物在室温下搅拌7小时,将溶液混合物沉降到过量的冷乙醚中,在真空烘箱中干燥,得到目标物MI-PKE31-b-P(UHL-NH3 +)n(产率:78.8%)。对其结构进行表征,核磁氢谱如图2中b)图所示。
(8)化合物(A)(即以R1为MI为例,MI-PKE31-b-P[(UHL-DOX)x-(UHL-NH3 +)1-x]n)的合成:作为一个典型的例子,以MI-PKE31-b-P(UHL-NH3 +)16(20.2mg,0.001806mmol)和DOX(18.9mg,0.03254mmol)溶解于H2O(5mL)中,加入苯胺水溶液(46μL,0.12mmol/L)。将反应混合物在40℃搅拌4小时。将溶液混合物在去离子水(100mL)中透析12小时(MWCO~1kDa)。大约每2小时更换一次去离子水。通过冻干后,得到目标化合物(A)。根据紫外光谱计算HBCP-6中DOX负载含量x为0.908。
实施例2
化合物(B)(即SI-PKE31-b-P[(UHL-DOX)x-(UHL-NH3 +)1-x]n)的合成和表征采用类似的方法,结构表征如图3所示。
反应路线如下:
图4为制备的两亲性聚合物P(KE-Boc)31-b-P(UHL-Boc)n的凝胶渗透色谱表征图。由图4可以看出聚合物以单峰分布,成功制备相应分子量聚合物。
实施例3
两亲性聚合物式(A)或(B)溶解在有机溶剂中,采用共溶剂-加水法、闪沉法制备,得到纳米粒子。反应过程中,有机溶剂选自二甲基亚砜;在所述有机溶液中,所述两亲性聚合物的浓度为0.1mg/mL;所述水的体积为所述有机溶剂的体积的10倍。组装的温度为25℃;组装的时间为8h。
图5为制备的纳米粒子的透射电镜图。其中,a)为两亲性聚合物式(A)制备的纳米粒子的透射电镜图,b)为两亲性聚合物式(A)制备的纳米粒子的动态光散射粒径分布图,c)为两亲性聚合物式(B)制备的纳米粒子的透射电镜图,d)为两亲性聚合物式(B)制备的纳米粒子的动态光散射(DLS)粒径分布图。组装体通过透射电镜观察,分别从聚合物式(A)或(B)中获得了均匀的球形纳米粒子。DLS结果显示,组装后的纳米粒子具有30-32nm的强度平均流体力学半径<Rh>。
应用例1酸触发聚多肽-DOX缀合物纳米粒子可控释放
共价键合DOX的纳米粒子(后称纳米粒子),在37℃用20mM不同pH(4.8、6.0、6.5、7.4)的PB缓冲液透析纳米粒子,并用稳态荧光光谱测试荧光强度定量得出随着透析时间推移药物DOX释放曲线。结果表明:共价结合在纳米粒子中的疏水药物随着透析时间延长逐渐释放(图6)。化合物(A)(即以R1为马来酰亚胺为例)制备的纳米粒子(以下简称(A)纳米粒子)。由图6可以看出,酸性微环境下的DOX的释放是由脲酰腙键断裂引起的,由于侧链形成亲水的脲酰肼基团,使得在药物释放的过程中聚多肽发生疏水性向亲水性转变,最终导致纳米粒子的解离(图6中a图)。为了进一步验证这一结论,利用TEM、DLS和Nanosight检测方法监测了不同pH值环境下(A)纳米粒子的酸响应降解过程中(生理条件pH为7.4;早期内涵体pH为6.5和6.0;和晚期内涵体pH为4.8)纳米粒子形貌,散射光强及纳米粒子浓度的变化(图6中b-e图)。(A)纳米粒子药物释放动力学图如图6中b图所示,该纳米粒子在酸性和生理条件下表现出良好的选择性水解。pH为5.0条件下(A)纳米粒子在培养160h后,DOX的累积释放量约为91%;而纳米粒子的散射光强度在最初100h内急剧下降,然后在160h后进一步下降至~23%(图6中c图);同时,颗粒浓度从~2.13×109个颗粒/mL下降到~7.0×107个颗粒/mL(图6中d图)。从TEM结果中可以直观地看到,纳米粒子的尺寸逐渐减小,最后几乎完全消失(图6中e图)。重要的是,在相对温和的酸性条件下(早期内涵体pH为6.0和6.5),DOX的释放仍然有效,药物释放率分别为~82%和~66%(图6中b图)。在生理条件下(pH值为7.4),药物释放可以忽略不计。这说明(A)纳米粒子的水解动力学高度依赖于pH值。以上实验结果证明了酸性pH介导纳米粒子解离的观点。图6中,a)图为在酸性pH下,(A)或(B)纳米粒子的pH调节释放DOX示意图。b)图为在37℃,不同pH值(5.0、6.0、6.5和7.4)孵育的(A)纳米粒子的药物释放曲线。(c,d)图为37℃下在不同pH值(5.0,6.0,6.5和7.4)孵育时(A)纳米粒子水分散体(0.5g/L)的归一化散射光强度(c)和纳米颗粒浓度的变化(d)。e)图为(A)纳米粒子在pH 5.0(20mM磷酸盐缓冲液)孵育0、20、60和120h时的典型TEM图像和强度平均流体动力学分布。
应用例2巯基-马来酰亚胺点击化学反应增强纳米粒子结合白蛋白
化合物(A)(即以R1为马来酰亚胺为例)制备的纳米粒子(以下简称(A)纳米粒子)表面含有丰富的马来酰亚胺基团,在静脉注射后可以进一步与含硫醇的血清蛋白(如白蛋白)反应,如图7中a)所示,但化合物(B)制备的纳米粒子(以下简称(B)纳米粒子)表面含有丰富的无反应性的琥珀酰亚胺基团却无法实现。为了验证这一假设,以牛血清白蛋白(BSA)为模型蛋白,研究了(A)和(B)纳米粒子与BSA的反应活性。将(A)和(B)两种纳米粒子分别与过量的BSA在磷酸盐缓冲液(pH 7.4)中共培养后,MALDI-TOF MS显示,(A)/BSA加合物的m/z值从天然BSA的~66254增加到~85153(图7中b图),增加的m/z值(18899)与(A)嵌段共聚物的分子量(~1.9kDa)非常吻合。相比之下,在与BSA孵育后,表面含有SI末端的(B)纳米粒子的m/z值没有观察到明显增加。此外,如果BSA的Cys34残基采用5,5'-二硫双(2-硝基苯甲酸)(DTNB)预处理,形成巯基封闭的BSA(BSA-SB),则(A)和BSA-SB共孵育时,m/z值未观察到增加(图7中b图)。这些结果表明,(A)纳米粒子上的马来酰亚胺基团和BSA上的巯基对于二者选择性地结合均是至关重要的。图7中,a)图为通过巯基马来酰亚胺点击反应对(A)纳米粒子蛋白质冠的主动调节的示意图。b)图为在PB缓冲液(10mM,pH 7.4)中,BSA(7mg/mL,nMI:nSH=1:3)存在下,BSA、BSA+(A)、BSA+(B)、巯基阻断的BSA(BSA-sb)和BSA-sb+(A)的MALDI-TOF MS谱。(A)和(B)纳米粒子(0.2mg/mL)与BSA共孵育后,c)图为散射强度,d)图为水动力学半径,e)图为zeta电位,f)图为纳米颗粒浓度的变化。
应用例3GGT触发聚多肽-DOX缀合物纳米粒子电荷反转
由于GGT触发的谷氨酰胺键水解产生氨基,同时模拟体内形成蛋白冠后再与GGT酶作用过程,因此对(A)和(B)纳米粒子结合BSA后分别进行zeta电位测量,以监测水解的程度和速率。在10U/mLGGT存在的情况下,(A)纳米粒子的zeta电位在10小时后变为正,同时与(B)纳米粒子电位增长趋势相近(图8中c图),与它们的小分子模型水解结果一致(图8中a,b图)。测试结果中(A)纳米粒子起始电位低于(B)纳米粒子,主要由于(A)纳米粒子可化学键合白蛋白,白蛋白呈负电,则(A)纳米粒子结合白蛋白更多则电位即比(B)纳米粒子略低。这表明上述聚多肽-DOX偶联物(A)和(B)纳米粒子表现出GGT触发的电荷逆转特性。
图8中,a)图为Cbz-KE在GGT溶液(1U/mL)中37℃(25μM,1mL,pH7.40)孵育24h后的结构变化。b)图为GGT溶液(1U/mL)37℃(pH=7.40,1mL)孵育12h后,Cbz-KE的HPLC跟踪。c)图为在37℃,在含有10,0.5或0.05U/mL GGT的HEPES(pH 7.4,2mg/mL)中,(A)和(B)纳米粒子的zeta电位与孵育时间的曲线。d)图为(A)纳米粒子在GGT下响应断裂键。
应用例4聚多肽-DOX缀合物纳米粒子肿瘤深层渗透
为了验证在两性离子GGT触发电荷反转实现肿瘤深层渗透基础上,纳米粒子原位捕获白蛋白并提高蛋白质冠中白蛋白含量的功能,对肿瘤渗透性的影响,进一步采用了多肿瘤细胞球体(MTS),一种模拟HepG2肿瘤组织的体外三维(3D)模型,来评估(A)和(B)纳米粒子的渗透性(图9)。将(A)和(B)纳米粒子分别与HepG2 MTS孵育4小时,并使用具有40μm Z轴间隔的CLSM Z轴堆叠模式进行可视化分析。由实验结果得出孵育4小时后(A)纳米粒子深入肿瘤细胞球体并分布在整个球体中。相反,(B)纳米粒子主要分布在肿瘤细胞球体的外围,而不是球体的中心。由此得出纳米粒子表面马来酰亚胺基团可实现原位结合内源性白蛋白,提高蛋白质冠中白蛋白的含量,使得纳米粒子的肿瘤渗透性进一步增强,这与GGT触发(A)纳米粒子的阳离子化后经阳离子电荷介导的增强肿瘤渗透性相协同,共同促进纳米粒子在肿瘤区域的深层渗透(图9)。
应用例5聚多肽-DOX缀合物纳米粒子转胞吞作用
使用共孵育方法进一步研究了纳米粒子从一个细胞到另一个细胞的转胞吞作用,实验方案如图10中a)图所示,其中用(A)或(B)纳米粒子预处理的细胞(i)与新加入的细胞(ii)在新鲜培养基中共培养,得到的细胞(ii)再与新加入的细胞(iii)在新鲜培养基中共培养,分别观察刚制得的(ii)和(iii)激光共聚焦显微镜(CLSM)信号,(A)和(B)纳米粒子的信号在(ii)和(iii)细胞均能检测得到(图10中b图)。这表明(i)细胞内化的纳米粒子被胞吐至新培养基中随后被(ii)细胞内化,接着(ii)细胞内化的纳米粒子被胞吐至培养基中接着被(iii)细胞内化。表明(A)和(B)纳米粒子均具有转胞吞能力。在实验结果中可知(A)纳米粒子的信号在(ii)和(iii)细胞均高于对应组(B)纳米粒子的信号(图10中b图)。同时采用ICP-MS测定刚制得的(ii)和(iii)细胞内Gd3+含量,对转胞吞过程进行量化分析(图10中c图)。(A)纳米粒子由细胞(i)转胞吞至细胞(ii)转化率为74%,由细胞(ii)转胞吞至细胞(iii)转化率为68%,经两次转胞吞步骤后总转化率为50%;(B)纳米粒子由细胞(i)转胞吞至细胞(ii)转化率为57%,由细胞(ii)转胞吞至细胞(iii)转化率为41%,各步转胞吞效率均低于(A)纳米粒子。上述试验结果表明,纳米粒子表面的马来酰亚胺基团可实现原位结合内源性白蛋白,提高蛋白质冠中白蛋白的含量,可在阳离子电荷介导的转胞吞作用基础上进一步提高纳米粒子的转胞吞效率。图10中,a)图为测试纳米粒子转胞吞能力示意图,b)图为通过CLSM观察转胞吞能力,c)图为通过ICP-MS对纳米粒子中Gd+进行定量进而对纳米粒子的转胞吞能力进行量化。
应用例6聚多肽-DOX缀合物纳米粒子实现体内长循环
所有ICR雌性小鼠、BLAB/c雌性小鼠和BLAB/c裸雌性小鼠购自安徽医科大学实验动物中心,所有动物实验均按照安徽省实验动物管理和使用委员会(中国科学技术大学)批准的方案进行。所有动物均保持标准饮食和自由饮水,温度为22±2℃,相对湿度为50-60%,光照/黑暗周期为12小时。
首先在BxPC-3荷瘤小鼠体内尾静脉分别注射DOX、(A)纳米粒子、(B)纳米粒子。将小鼠BXPC-3-luc肿瘤细胞(每只小鼠5×106个)接种到BALB/c裸鼠(6-8周)的右腿腹部。8天后,当肿瘤达到80mm3时,选择具有相似生物发光强度的裸鼠并随机分为三组(n=5),分别于0天、3天、6天静脉注射相同剂量的(A)和(B)纳米粒子(DOX 10mg/kg),并以尾静脉注射100μL PBS组作为对照组。治疗期间用游标卡尺测量并计算肿瘤体积,以最大直径(长度)和最大横径(宽度)计算肿瘤体积,V=宽度×宽度×长度/2。在整个实验过程中记录小鼠的体重。21天后,处死小鼠,收集肿瘤组织,称重。
药代动力学结果如图11所示,其中,a)图为静脉注射10mg/kg DOX当量剂量后,在BALB/c小鼠体内DOX、(A)和(B)纳米粒子的体内血液药代动力学曲线;b)图为HPLC测定的DOX的校准曲线;c)图为采用Kinetica3.0计算AUC和t1/2β值。数据以平均值±标准差表示(n=5)。图11的结果表明,(A)纳米粒子的消除半衰期(t1/2β)(14.63h)显著高于(B)纳米粒子(10.44h)(图11中a,c图)。因此,纳米粒子结构中的马来酰亚胺基团的表面功能化可实现原位结合内源性白蛋白,提高蛋白质冠中白蛋白的含量,不仅可以促进细胞摄取和转胞吞,同时还可以在两性离子基团具有长效循环功能的基础上进一步延长血液循环时间。
应用例7具有GGT和酸性双响应纳米粒子的体内抗肿瘤作用研究
在患有BxPC-3-luc人源胰腺癌的小鼠中进一步评估(A)和(B)纳米粒子的体内抗肿瘤活性。使用生物发光成像监测肿瘤的生长情况。接种10天后,肿瘤形成(~100mm3),采用(A)、(B)纳米粒子和PBS在开始治疗的第0、3、6天各尾静脉注射一次,共3次(图12中a图)。每5天通过生物发光成像定量监测肿瘤体积(图12中e图),每2天测量肿瘤大小(图12中f图)。对于PBS治疗的小鼠,在整个治疗过程中观察到肿瘤持续生长。(A)和(B)纳米粒子均能抑制肿瘤生长(图12中b,e,f图)。值得注意的是,(B)纳米粒子治疗的肿瘤在停止用药期间复发并生长,而(A)纳米粒子治疗的肿瘤没有复发,肿瘤逐渐缩小(图12中b,e,f图)。(A)纳米粒子在抑制肿瘤生长方面表现出比(B)纳米粒子更好的性能。最终治疗后25天测量肿瘤重量,(A)纳米粒子对肿瘤的抑制率为89%,明显高于(B)纳米粒子的65%(图12中c,d图)。此外,接受(A)纳米粒子治疗的小鼠的体重变化远小于(B)纳米粒子,表明(A)纳米粒子具有更好的生物相容性和抗肿瘤活性(图12中g图)。
图12中,a)图为肿瘤接种和治疗方案的实验时间表。将荧光素酶基因修饰的BxPC-3癌细胞(5×106个/只)接种于BALB/c裸鼠右小腿腹部(6~8周)。接种后第10天,选取生物发光强度相近的裸鼠,随机分为3组(n=5),分别于第0、3、6天静脉注射相同DOX剂量的(A)或(B)纳米粒子10mg/kg。b)图为活体麻醉小鼠BxPC-3肿瘤的活体生物发光图像。e)图为生物发光强度的变化,f)图为切除的肿瘤大小,g)图为体重,c)图为解剖肿瘤的照片,d)图为(A)和(B)纳米粒子治疗后20天的肿瘤重量。数据以平均值±标准差表示(n=5)。n.s,不显著,*P<0.05,**P<0.01,***P<0.001.
综上所述,(A)纳米粒子表现出比(B)纳米粒子更好的抗肿瘤活性,这可能得益于利用(A)纳米粒子表面原位结合内源性白蛋白,提高蛋白质冠中白蛋白的含量,延长了血液循环并选择性内化到肿瘤细胞,同时在GGT触发电荷反转经阳离子电荷介导的深层渗透的基础上相互协同进一步增强了肿瘤深层渗透。
以上实施例表明本发明制备的两亲性嵌段聚多肽具有长循环深层渗透、同时有效抵御纳米粒子表面蛋白吸附、可选择性原位结合蛋白且病理微环境响应以释放药物的功能。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

1.一种两亲性嵌段聚多肽,其特征在于,具有式Ⅰ所示结构:
其中,R1选自以下任一结构:
R2为H、卤素或C1~C5的烷基;
m为10-80的任意整数;
n为15-80的任意整数;
p为1-3的任意整数;
q为1-3的任意整数;
0<x≤1。
2.根据权利要求1所述的两亲性嵌段聚多肽,其特征在于,所述两亲性嵌段聚多肽的数均分子量为1000-1000000。
3.一种两亲性嵌段聚多肽的制备方法,包括以下步骤:
S1)将式a所示单体和式b所示单体与式c所示链引发剂在溶剂中混合反应,得到式d所示两亲性聚多肽;
S2)将式d所示两亲性聚多肽和式e所示化合物进行反应,得到式f所示化合物;
S3)脱除式f所示化合物的保护基叔丁氧羰基和R,得到式g所示的两亲性嵌段聚多肽;
S4)将DOX和式g所示的两亲性嵌段聚多肽混合反应,得到式A所示的两亲性嵌段聚多肽;
其中,R为叔丁氧羰基或苄氧羰基;m为10-80的任意整数;n为15-80的任意整数;p为1-3的任意整数;q为1-3的任意整数;0<x≤1;
R1选自以下任一结构:
R2为H、卤素或C1~C5的烷基。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤S1)中的溶剂选自N,N-二甲基乙酰胺或二甲基亚砜;所述反应的温度为60-70℃,所述反应的时间为12h~2天。
5.根据权利要求3所述的制备方法,其特征在于,所述步骤S2)中反应的溶剂为二甲基亚砜;所述反应的温度为60-100℃,反应的时间为3-12h。
6.根据权利要求3所述的制备方法,其特征在于,所述步骤S3)中,R为叔丁氧羰基时,脱除保护基的溶剂为三氟乙酸;当R为苄氧羰基时,脱除保护基的溶剂为甲醇;所述脱除保护基的反应温度为10-40℃,反应时间为6-24h。
7.根据权利要求3所述的制备方法,其特征在于,所述步骤S4)中,反应的溶剂为二甲基亚砜,反应的温度为25-40℃,反应的时间为5-24h。
8.一种由权利要求1或2所述的两亲性嵌段聚多肽制备的聚多肽功能性纳米粒子。
9.权利要求8所述的聚多肽功能性纳米粒子的制备方法,包括以下步骤:
将权利要求1或2所述的两亲性聚多肽溶解在有机溶剂中,采用共溶剂-加水法或闪沉法组装制备得到聚多肽功能性纳米粒子。
10.权利要求8所述的聚多肽功能性纳米粒子或权利要求9所述的制备方法制备的聚多肽功能性纳米粒子在制备抗肿瘤药物中的应用。
CN202311871036.2A 2023-12-29 2023-12-29 一种两亲性嵌段聚多肽及其制备方法和应用 Pending CN117887066A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311871036.2A CN117887066A (zh) 2023-12-29 2023-12-29 一种两亲性嵌段聚多肽及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311871036.2A CN117887066A (zh) 2023-12-29 2023-12-29 一种两亲性嵌段聚多肽及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN117887066A true CN117887066A (zh) 2024-04-16

Family

ID=90648178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311871036.2A Pending CN117887066A (zh) 2023-12-29 2023-12-29 一种两亲性嵌段聚多肽及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN117887066A (zh)

Similar Documents

Publication Publication Date Title
EP2052011B1 (en) Targeted polylysine dendrimer therapeutic agent
Wang et al. Zwitterionic Janus Dendrimer with distinct functional disparity for enhanced protein delivery
John et al. pH/redox dual stimuli-responsive sheddable nanodaisies for efficient intracellular tumour-triggered drug delivery
US9415114B2 (en) Conformations of divergent peptides with mineral binding affinity
Zhou et al. Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery
Johnson et al. Glutathione and endosomal pH-responsive hybrid vesicles fabricated by zwitterionic polymer block poly (L-aspartic acid) as a smart anticancer delivery platform
CN113599504B (zh) 一种无载体蛋白质胞内递送前药及其制备方法与应用
Brunato et al. PEG-polyaminoacid based micelles for controlled release of doxorubicin: Rational design, safety and efficacy study
CN110652594A (zh) 一种调控阿尔茨海默症微环境的多靶点治疗胶束及其制备方法
CN115151278A (zh) 用于核酸疗法的靶向肿瘤的多肽纳米颗粒递送系统
CN115844822B (zh) 一种口服载药胶束组合物及其制备方法
CN117887066A (zh) 一种两亲性嵌段聚多肽及其制备方法和应用
CN102652836A (zh) 靶向释药的抗癌蛋白质或多肽聚合物前药及其制备方法
CN110642968B (zh) 双酶响应性哑铃形超两亲分子及其制备方法和用途
WO2018025699A1 (ja) アクティブターゲティング型高分子誘導体、その高分子誘導体を含む組成物、及びそれらの用途
WO2018100560A1 (en) Coordination compounds and formulations, preparation methods and use thereof as antiphlogistic agents
CN105085633B (zh) 具有缓激肽受体结合活性的多肽及其用途
CN104174024B (zh) 一种肉豆蔻酸介导的脑靶向聚合物胶束递药系统及其制备方法和应用
AU2004241830A1 (en) Antitumor agent and process for producing the same
CN114790224B (zh) 一种微环境响应型树状多肽及其蛋白药物纳米载体与应用
US20230248847A1 (en) Multifunctional nanoparticles for theragnosis
CN112451681B (zh) 酸敏感型聚合物-药物偶联物及其制备和应用
CN112979881B (zh) 促抗癌药摄入的大分子、组合物及其制备抗癌药物的用途
CN112402382B (zh) 双配体靶向协同调控肾素血管紧张素系统的共组装纳米药物的制备方法与用途
CN109476841B (zh) 新型高分子衍生物和使用其的新型高分子衍生物成像探针

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination