CN117878717B - Femtosecond laser direct writing waveguide coupled monolithic integrated light emitting chip - Google Patents
Femtosecond laser direct writing waveguide coupled monolithic integrated light emitting chip Download PDFInfo
- Publication number
- CN117878717B CN117878717B CN202410275170.4A CN202410275170A CN117878717B CN 117878717 B CN117878717 B CN 117878717B CN 202410275170 A CN202410275170 A CN 202410275170A CN 117878717 B CN117878717 B CN 117878717B
- Authority
- CN
- China
- Prior art keywords
- array
- optical waveguide
- quantum dot
- modulator
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 94
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 65
- 239000002096 quantum dot Substances 0.000 claims abstract description 55
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 36
- 239000010703 silicon Substances 0.000 claims abstract description 36
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 33
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 30
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 238000003491 array Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 5
- VJJVVKGSBWRFNP-UHFFFAOYSA-N [O].[Si](=O)=O Chemical compound [O].[Si](=O)=O VJJVVKGSBWRFNP-UHFFFAOYSA-N 0.000 claims 2
- 230000010354 integration Effects 0.000 abstract description 17
- 238000005516 engineering process Methods 0.000 description 12
- 230000008878 coupling Effects 0.000 description 8
- 238000010168 coupling process Methods 0.000 description 8
- 238000005859 coupling reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000005693 optoelectronics Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical group [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
- H01S5/0262—Photo-diodes, e.g. transceiver devices, bidirectional devices
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/12007—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
- G02B6/12009—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
- H01S5/0268—Integrated waveguide grating router, e.g. emission of a multi-wavelength laser array is combined by a "dragon router"
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12121—Laser
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及光器件集成技术领域,尤其涉及一种飞秒激光直写波导耦合的单片集成光发射芯片。The invention relates to the technical field of optical device integration, and in particular to a femtosecond laser direct writing waveguide coupled monolithic integrated light emitting chip.
背景技术Background technique
随着互联网流量数据的爆发,面向5G应用、互联网、物联网、人工智能等高速信息流发展需求,传统电互连集成架构在速率、功耗、集成度等方面技术应用瓶颈,借助光子器件的低功耗、高速、高集成度优势,可以突破电学摩尔定律限制,因此光电集成技术的发展成为了极具前景的解决方案。With the explosion of Internet traffic data, facing the development needs of high-speed information flow such as 5G applications, Internet, Internet of Things, artificial intelligence, etc., the traditional electrical interconnection integrated architecture has encountered technical application bottlenecks in terms of speed, power consumption, and integration. With the advantages of low power consumption, high speed, and high integration of photonic devices, it is possible to break through the limitations of Moore's Law in electricity. Therefore, the development of optoelectronic integration technology has become a very promising solution.
在互补金属氧化物半导体兼容(CMOS)的工艺平台上,硅光子器件具备高集成度优势,可以和电学器件实现单片互连集成,故而成为近年来前沿热门技术。但由于硅材料属于间接带隙半导体,无法形成高效光源,因此需要将基于III-V族等材料的高功率激光器通过异质异构形式在硅光子平台上进行外延生长整合,实现光源和硅光器件的单片集成,量子点激光器是潜在的解决方案。然而,现有技术中,外延生长的量子点激光器光信号输出和调制器光信号输入存在两个匹配难点,第一点是二者的模斑尺寸匹配,难以实现低损耗耦合;第二点是二者在SOI共衬底上的空间对准,由于激光器的异质集成难以和硅平台调制器采用同一道工序,因此其有源区输出光信号难以和调制器光波导层实现精准预对接。On the complementary metal oxide semiconductor compatible (CMOS) process platform, silicon photonic devices have the advantage of high integration and can be integrated with electrical devices in a monolithic interconnection, so they have become a popular cutting-edge technology in recent years. However, since silicon materials are indirect bandgap semiconductors and cannot form efficient light sources, it is necessary to integrate high-power lasers based on III-V materials and other materials through epitaxial growth on the silicon photonic platform in a heterogeneous form to achieve monolithic integration of light sources and silicon photonic devices. Quantum dot lasers are a potential solution. However, in the prior art, there are two matching difficulties between the optical signal output of the epitaxially grown quantum dot laser and the optical signal input of the modulator. The first point is that the mode spot size of the two is matched, making it difficult to achieve low-loss coupling; the second point is the spatial alignment of the two on the SOI common substrate. Since the heterogeneous integration of the laser is difficult to use the same process as the silicon platform modulator, it is difficult to achieve precise pre-docking of the optical signal output of the active region with the modulator optical waveguide layer.
因此,如何解决量子点激光器与调制器之间的模斑尺寸匹配与空间对准的问题,更好实现硅光子器件与电子器件的单片集成是一项极富挑战的任务。Therefore, how to solve the problem of mode spot size matching and spatial alignment between quantum dot lasers and modulators to better realize the monolithic integration of silicon photonic devices and electronic devices is an extremely challenging task.
发明内容Summary of the invention
鉴于上述问题,本发明提供了一种飞秒激光直写波导耦合的单片集成光发射芯片,以解决量子点激光器与调制器之间的模斑尺寸匹配与空间对准的问题。In view of the above problems, the present invention provides a femtosecond laser direct writing waveguide coupled monolithic integrated light emitting chip to solve the problem of mode spot size matching and spatial alignment between quantum dot laser and modulator.
本发明提供了一种飞秒激光直写波导耦合的单片集成光发射芯片,包括:硅衬底;二氧化硅埋氧层,设于所述硅衬底上;二氧化硅包埋层,设于所述二氧化硅埋氧层上;硅波导层,设于所述二氧化硅埋氧层上,位于所述二氧化硅包埋层内部;所述二氧化硅包埋层包括第一区域、第二区域和第三区域,所述第一区域包括量子点激光器阵列,第二区域包括调制器阵列,第三区域包括光波导阵列,所述量子点激光器阵列、所述调制器阵列与所述光波导阵列呈同一方向排布,所述量子点激光器阵列的输出端面的高度与所述调制器阵列的输入端面的高度不同,每组所述量子点激光器阵列与所述调制器阵列通过所述光波导阵列对应连接。The invention provides a femtosecond laser direct writing waveguide coupled monolithic integrated light emitting chip, comprising: a silicon substrate; a silicon dioxide buried oxide layer, arranged on the silicon substrate; a silicon dioxide buried oxide layer, arranged on the silicon dioxide buried oxide layer; a silicon waveguide layer, arranged on the silicon dioxide buried oxide layer and located inside the silicon dioxide buried oxide layer; the silicon dioxide buried oxide layer comprises a first region, a second region and a third region, the first region comprises a quantum dot laser array, the second region comprises a modulator array, the third region comprises an optical waveguide array, the quantum dot laser array, the modulator array and the optical waveguide array are arranged in the same direction, the height of the output end face of the quantum dot laser array is different from the height of the input end face of the modulator array, and each group of the quantum dot laser array and the modulator array are correspondingly connected through the optical waveguide array.
可选地,所述光波导阵列与所述量子点激光器连接的一端端面尺寸与所述量子点激光器的输出端面的模斑尺寸匹配,所述光波导阵列与所述调制器连接的一端端面尺寸与所述调制器的输入端面的模斑尺寸匹配。Optionally, the end face size of one end of the optical waveguide array connected to the quantum dot laser matches the mode spot size of the output end face of the quantum dot laser, and the end face size of one end of the optical waveguide array connected to the modulator matches the mode spot size of the input end face of the modulator.
可选地,所述光波导阵列为飞秒激光直写技术形成的器件。Optionally, the optical waveguide array is a device formed by femtosecond laser direct writing technology.
可选地,所述光波导阵列中每个光波导为曲线形波导。Optionally, each optical waveguide in the optical waveguide array is a curved waveguide.
可选地,所述调制器阵列为马赫-曾德尔调制器或微环型调制器。Optionally, the modulator array is a Mach-Zehnder modulator or a micro-ring modulator.
可选地,所述量子点激光器阵列为在所述硅衬底或所述硅波导层上外延生长III-V族材料形成的器件。Optionally, the quantum dot laser array is a device formed by epitaxially growing III-V group materials on the silicon substrate or the silicon waveguide layer.
可选地,所述硅衬底与所述量子点激光器阵列之间预生长有GaAs外延层。Optionally, a GaAs epitaxial layer is pre-grown between the silicon substrate and the quantum dot laser array.
可选地,所述光波导阵列的折射率大于所述二氧化硅包埋层的折射率。Optionally, the refractive index of the optical waveguide array is greater than the refractive index of the silica embedding layer.
可选地,所述光波导阵列中每个光波导端面模斑尺寸为2~10μm。Optionally, the mode spot size of each optical waveguide end face in the optical waveguide array is 2-10 μm.
可选地,所述光波导阵列中每个所述光波导长度为0.1~10mm。Optionally, the length of each optical waveguide in the optical waveguide array is 0.1-10 mm.
在本发明实施例采用的上述至少一个技术方案能够达到以下有益效果:At least one of the above technical solutions adopted in the embodiments of the present invention can achieve the following beneficial effects:
1、本发明基于CMOS兼容的SOI平台工艺,实现了光源和调制器的单片异质异构集成,进一步推广到光电融合工艺平台,可以真正实现包含光源的单片全光电器件融合集成,在实现高集成度的同时具备商业化应用基础和前景;1. The present invention is based on a CMOS-compatible SOI platform process, which realizes the monolithic heterogeneous integration of light sources and modulators. Further extension to the optoelectronic fusion process platform can truly realize the fusion integration of monolithic all-optoelectronic devices including light sources, achieving high integration while having a commercial application foundation and prospects;
2、本发明通过飞秒激光直写技术生成的光波导能够实现激光器与调制器的片上耦合,光波导的路径和尺寸能够根据激光器与调制器的端面模斑尺寸进行匹配,进而实现激光器与调制器之间的高精度对准与低损耗耦合;2. The optical waveguide generated by the femtosecond laser direct writing technology of the present invention can realize on-chip coupling between the laser and the modulator. The path and size of the optical waveguide can be matched according to the end face mode spot size of the laser and the modulator, thereby realizing high-precision alignment and low-loss coupling between the laser and the modulator;
3、本发明利用飞秒激光直写技术生成的光波导,能够避免基于光子引线技术(PWB)生成的光波导存在的疲劳与性能劣化的问题,可靠性高。3. The optical waveguide generated by the present invention using femtosecond laser direct writing technology can avoid the problems of fatigue and performance degradation existing in the optical waveguide generated based on photonic wire (PWB) technology, and has high reliability.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更完整地理解本发明及其优势,现在将参考结合附图的以下描述,其中:For a more complete understanding of the present invention and its advantages, reference will now be made to the following description taken in conjunction with the accompanying drawings, in which:
图1示意性示出了本发明实施例提供的一种飞秒激光直写波导耦合的激光器和马赫-曾德尔调制器单片8通道阵列集成立体结构示意图;FIG1 schematically shows a schematic diagram of a three-dimensional structure of a femtosecond laser direct writing waveguide coupled laser and a Mach-Zehnder modulator monolithic 8-channel array integrated according to an embodiment of the present invention;
图2示意性示出了本发明实施例提供的飞秒激光直写波导耦合的激光器和马赫-曾德尔调制器单通道截面示意图;FIG2 schematically shows a cross-sectional view of a single channel of a femtosecond laser direct writing waveguide coupled laser and a Mach-Zehnder modulator provided by an embodiment of the present invention;
图3示意性示出了本发明实施例提供的一种光波导的端面模斑变换方式的示意图;FIG3 schematically shows a schematic diagram of a mode spot transformation method of an end face of an optical waveguide provided by an embodiment of the present invention;
图4示意性示出了本发明实施例提供的一种飞秒激光直写波导耦合的激光器和微环型调制器单片4通道阵列集成立体结构示意图。FIG4 schematically shows a schematic diagram of a three-dimensional structure of a femtosecond laser direct writing waveguide coupled laser and a micro-ring modulator monolithic 4-channel array integrated according to an embodiment of the present invention.
附图标记:1-硅衬底;2-二氧化硅包埋层;21-第一区域;22-第二区域;23-第三区域;3-量子点激光器阵列;4-调制器阵列;41-微环型调制器阵列;5-光波导阵列;51-第一段光波导;52-第二段光波导;53-第三段光波导。Figure numerals: 1-silicon substrate; 2-silicon dioxide embedding layer; 21-first region; 22-second region; 23-third region; 3-quantum dot laser array; 4-modulator array; 41-micro-ring modulator array; 5-optical waveguide array; 51-first section of optical waveguide; 52-second section of optical waveguide; 53-third section of optical waveguide.
具体实施方式Detailed ways
以下,将参照附图来描述本发明的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本发明实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。Below, embodiments of the present invention will be described with reference to the accompanying drawings. However, it should be understood that these descriptions are exemplary only and are not intended to limit the scope of the present invention. In the following detailed description, for ease of explanation, many specific details are set forth to provide a comprehensive understanding of embodiments of the present invention. However, it is apparent that one or more embodiments may also be implemented without these specific details. In addition, in the following description, descriptions of known structures and technologies are omitted to avoid unnecessary confusion of concepts of the present invention.
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本发明。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。The terms used herein are only for describing specific embodiments and are not intended to limit the present invention. The terms "comprise", "include", etc. used herein indicate the existence of the features, steps, operations and/or components, but do not exclude the existence or addition of one or more other features, steps, operations or components.
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。All terms (including technical and scientific terms) used herein have the meanings commonly understood by those skilled in the art unless otherwise defined. It should be noted that the terms used herein should be interpreted as having a meaning consistent with the context of this specification and should not be interpreted in an idealized or overly rigid manner.
图1示意性示出了本发明实施例提供的一种飞秒激光直写波导耦合的激光器和马赫-曾德尔调制器单片8通道阵列集成立体结构示意图。FIG1 schematically shows a schematic diagram of a three-dimensional structure of a femtosecond laser direct writing waveguide coupled laser and a Mach-Zehnder modulator monolithic 8-channel array integrated according to an embodiment of the present invention.
如图1所示,本发明提供了一种飞秒激光直写波导耦合的单片集成光发射芯片,包括:硅衬底1;二氧化硅埋氧层,设于硅衬底1上;二氧化硅包埋层2,设于二氧化硅埋氧层上;硅波导层,设于二氧化硅埋氧层上,位于二氧化硅包埋层2内部;二氧化硅包埋层2包括第一区域21、第二区域22和第三区域23,第一区域21包括量子点激光器阵列3,第二区域22包括调制器阵列4,第三区域23包括光波导阵列5,量子点激光器阵列3、调制器阵列4与光波导阵列5呈同一方向排布,量子点激光器阵列3的输出端面的高度与调制器阵列4的输入端面的高度不同,每组量子点激光器阵列3与调制器阵列4通过光波导阵列5对应连接。As shown in FIG1 , the present invention provides a femtosecond laser direct writing waveguide coupled monolithic integrated light emitting chip, comprising: a silicon substrate 1; a silicon dioxide buried oxide layer, arranged on the silicon substrate 1; a silicon dioxide buried layer 2, arranged on the silicon dioxide buried oxide layer; a silicon waveguide layer, arranged on the silicon dioxide buried oxide layer, and located inside the silicon dioxide buried layer 2; the silicon dioxide buried layer 2 comprises a first region 21, a second region 22 and a third region 23, the first region 21 comprises a quantum dot laser array 3, the second region 22 comprises a modulator array 4, the third region 23 comprises an optical waveguide array 5, the quantum dot laser array 3, the modulator array 4 and the optical waveguide array 5 are arranged in the same direction, the height of the output end face of the quantum dot laser array 3 is different from the height of the input end face of the modulator array 4, and each group of quantum dot laser arrays 3 and modulator arrays 4 are correspondingly connected through the optical waveguide array 5.
在一种示意性的实施例中,硅衬底1为SOI晶圆衬底,硅衬底1厚度为700μm,直径为100mm。In an illustrative embodiment, the silicon substrate 1 is a SOI wafer substrate, and the silicon substrate 1 has a thickness of 700 μm and a diameter of 100 mm.
在一种示意性的实施例中,硅衬底1为方形衬底,厚度为700μm,边长为100mm。In an illustrative embodiment, the silicon substrate 1 is a square substrate with a thickness of 700 μm and a side length of 100 mm.
本发明对硅衬底1的具体尺寸并不作具体的限定,根据实际需要可以设定其他尺寸。The present invention does not impose any specific limitation on the specific size of the silicon substrate 1 , and other sizes may be set according to actual needs.
在一种示意性的实施例中,二氧化硅包埋层2通过化学气相沉积方法沉积在硅衬底1及光电子器件上。In an illustrative embodiment, the silicon dioxide buried layer 2 is deposited on the silicon substrate 1 and the optoelectronic device by chemical vapor deposition.
在一种示意性的实施例中,二氧化硅包埋层2为晶圆层,厚度为5μm,直径为100mm。In an illustrative embodiment, the silicon dioxide embedded layer 2 is a wafer layer with a thickness of 5 μm and a diameter of 100 mm.
在一种示意性的实施例中,二氧化硅包埋层2为方形,厚度为5μm,边长为100mm。In an illustrative embodiment, the silicon dioxide embedding layer 2 is square, 5 μm thick and 100 mm long.
本发明对二氧化硅包埋层2的具体尺寸并不作具体的限定,根据实际需要可以设定其他尺寸。The present invention does not impose any specific limitation on the specific size of the silicon dioxide embedding layer 2, and other sizes may be set according to actual needs.
图2示意性示出了本发明实施例提供的飞秒激光直写波导耦合的激光器和马赫-曾德尔调制器单通道截面示意图。FIG2 schematically shows a cross-sectional view of a single channel of a femtosecond laser direct writing waveguide coupled laser and a Mach-Zehnder modulator provided by an embodiment of the present invention.
在一种示意性的实施例中,如图1和图2所示,量子点激光器阵列3、马赫-曾德尔调制器阵列与光波导阵列5位于二氧化硅包埋层2的内部,设于硅衬底1上;量子点激光器阵列3与马赫-曾德尔调制器阵列的阵列通道数相同,量子点激光器阵列3中的每个量子点激光器分别与马赫-曾德尔调制器阵列中的每个马赫-曾德尔调制器一一对应连接,一个量子点激光器与对应的一个马赫-曾德尔调制器为一组,光波导阵列5中的每个光波导将每组量子点激光器与马赫-曾德尔调制器对应连接。其中,每个光波导与量子点激光器相连的一端与量子点激光器的端面齐平,每个光波导与马赫-曾德尔调制器相连的一端与马赫-曾德尔调制器的端面齐平,解决了量子点激光器与马赫-曾德尔调制器的空间对准问题,实现光传输耦合。In an illustrative embodiment, as shown in FIG. 1 and FIG. 2 , the quantum dot laser array 3, the Mach-Zehnder modulator array and the optical waveguide array 5 are located inside the silicon dioxide embedding layer 2 and are disposed on the silicon substrate 1; the quantum dot laser array 3 and the Mach-Zehnder modulator array have the same number of array channels, each quantum dot laser in the quantum dot laser array 3 is connected one-to-one with each Mach-Zehnder modulator in the Mach-Zehnder modulator array, one quantum dot laser and one corresponding Mach-Zehnder modulator form a group, and each optical waveguide in the optical waveguide array 5 connects each group of quantum dot lasers with the Mach-Zehnder modulator. Among them, one end of each optical waveguide connected to the quantum dot laser is flush with the end face of the quantum dot laser, and one end of each optical waveguide connected to the Mach-Zehnder modulator is flush with the end face of the Mach-Zehnder modulator, which solves the spatial alignment problem between the quantum dot laser and the Mach-Zehnder modulator and realizes optical transmission coupling.
在一种示意性的实施例中,量子点激光器阵列3与调制器阵列4的阵列通道数为8或4。In an illustrative embodiment, the number of array channels of the quantum dot laser array 3 and the modulator array 4 is 8 or 4.
本发明对量子点激光器阵列3与调制器阵列4的阵列通道数不作具体的限制。The present invention does not impose any specific limitation on the number of array channels of the quantum dot laser array 3 and the modulator array 4 .
在一种示意性的实施例中,调制器阵列4为马赫-曾德尔型电光调制器阵列,包括通过SOI硅波导掺杂实现的基于等离子体色散效应的硅调制器,或通过异质集成在硅基材料体系中的基于电光效应实现的铌酸锂调制器、钛酸钡调制器或锆钛酸铅调制器。本发明对调制器的材料体系不作具体的限制。In an illustrative embodiment, the modulator array 4 is a Mach-Zehnder type electro-optic modulator array, including a silicon modulator based on plasma dispersion effect realized by SOI silicon waveguide doping, or a lithium niobate modulator, a barium titanate modulator or a lead zirconate titanate modulator based on electro-optic effect realized by heterogeneous integration in a silicon-based material system. The present invention does not impose specific restrictions on the material system of the modulator.
图3示意性示出了本发明实施例提供的一种光波导的端面模斑变换方式的示意图。FIG. 3 schematically shows a schematic diagram of a mode spot transformation method of an end face of an optical waveguide provided by an embodiment of the present invention.
作为一种可选的实施例,光波导阵列5与量子点激光器阵列3连接的一端端面尺寸与量子点激光器阵列3的输出端面的模斑尺寸匹配,光波导阵列5与调制器阵列4连接的一端端面尺寸与调制器阵列4的输入端面的模斑尺寸匹配。As an optional embodiment, the end face size of one end of the optical waveguide array 5 connected to the quantum dot laser array 3 matches the mode spot size of the output end face of the quantum dot laser array 3, and the end face size of one end of the optical waveguide array 5 connected to the modulator array 4 matches the mode spot size of the input end face of the modulator array 4.
在一种示意性的实施例中,如图3所示,光波导包括第一段光波导51、第二段光波导52与第三段光波导53,第一段光波导51与量子点激光器阵列3连接,为倒锥形结构,第一段光波导51与量子点激光器阵列3连接的一端端面尺寸与量子点激光器阵列3端面尺寸相同,第一段光波导51未与量子点激光器阵列3连接的一端的端面尺寸小于第一段光波导51与量子点激光器阵列3连接的一端端面尺寸。第二段光波导52与调制器阵列4连接,为倒锥形结构,第二段光波导52与调制器阵列4连接的一端端面模斑尺寸与调制器阵列4端面模斑尺寸相同,第二段光波导52未与调制器阵列4连接的一端的端面模斑尺寸小于第二段光波导52与调制器阵列4连接的一端端面模斑尺寸。第一段光波导51与第二段光波导52通过第三段光波导53连接,第三段光波导53实现模斑渐变,保证量子点激光器阵列3与调制器阵列4的光耦合。In an illustrative embodiment, as shown in FIG3 , the optical waveguide includes a first section of optical waveguide 51, a second section of optical waveguide 52 and a third section of optical waveguide 53. The first section of optical waveguide 51 is connected to the quantum dot laser array 3 and is an inverted cone structure. The end face size of the first section of optical waveguide 51 connected to the quantum dot laser array 3 is the same as the end face size of the quantum dot laser array 3. The end face size of the first section of optical waveguide 51 not connected to the quantum dot laser array 3 is smaller than the end face size of the first section of optical waveguide 51 connected to the quantum dot laser array 3. The second section of optical waveguide 52 is connected to the modulator array 4 and is an inverted cone structure. The end face mode spot size of the second section of optical waveguide 52 connected to the modulator array 4 is the same as the end face mode spot size of the modulator array 4. The end face mode spot size of the second section of optical waveguide 52 not connected to the modulator array 4 is smaller than the end face mode spot size of the second section of optical waveguide 52 connected to the modulator array 4. The first section of optical waveguide 51 is connected to the second section of optical waveguide 52 via the third section of optical waveguide 53 , and the third section of optical waveguide 53 realizes the gradual change of mode spot, thereby ensuring the optical coupling between the quantum dot laser array 3 and the modulator array 4 .
作为一种可选的实施例,光波导阵列5为飞秒激光直写技术形成的器件。As an optional embodiment, the optical waveguide array 5 is a device formed by femtosecond laser direct writing technology.
飞秒激光直写技术能够通过在二氧化硅包埋层2的硬质玻璃材料中自定义生成光波导。Femtosecond laser direct writing technology can customize the generation of optical waveguides in hard glass materials through the silicon dioxide embedding layer 2.
上述“自定义”是指,由于量子点激光器阵列3与调制器阵列4尺寸的差别,二者难以在同一水平面上实现空间对准,存在高度落差,因此可以根据量子点激光器阵列3与调制器阵列4的端面高度及端面尺寸控制飞秒激光能量与对准位点,生成光波导路径以实现有效的光传输耦合。The above-mentioned “customization” means that due to the difference in size between the quantum dot laser array 3 and the modulator array 4, it is difficult to achieve spatial alignment between the two on the same horizontal plane, and there is a height difference. Therefore, the femtosecond laser energy and alignment position can be controlled according to the end face height and end face size of the quantum dot laser array 3 and the modulator array 4 to generate an optical waveguide path to achieve effective optical transmission coupling.
作为一种可选的实施例,光波导阵列5的折射率大于二氧化硅包埋层2的折射率。As an optional embodiment, the refractive index of the optical waveguide array 5 is greater than the refractive index of the silicon dioxide embedding layer 2 .
在一种示意性的实施例中,通过高能脉冲飞秒激光对二氧化硅包埋层2内部进行超精细聚焦加工,产生局部高温和高压,形成冲击波和材料致密化,形成高于二氧化硅折射率的加工路径,从而形成可束缚光信号模场的3D光波导阵列5,光波导阵列5的端面与激光器阵列3、调制器阵列4的端面分别对准齐平。光波导阵列5的尺寸和端面模斑尺寸根据飞秒激光加工工艺能力可调。In an illustrative embodiment, a high-energy pulsed femtosecond laser is used to perform ultra-fine focusing processing on the inside of the silicon dioxide embedding layer 2, generating local high temperature and high pressure, forming shock waves and material densification, and forming a processing path with a refractive index higher than that of silicon dioxide, thereby forming a 3D optical waveguide array 5 that can bind the optical signal mode field, and the end face of the optical waveguide array 5 is aligned and flush with the end faces of the laser array 3 and the modulator array 4. The size of the optical waveguide array 5 and the end face mode spot size are adjustable according to the femtosecond laser processing technology capability.
作为一种可选的实施例,光波导阵列5中每个光波导为曲线形波导,以实现光信号在光波导中的模斑渐变,进而实现低损耗光耦合。As an optional embodiment, each optical waveguide in the optical waveguide array 5 is a curved waveguide to achieve a gradual change in the mode spot of the optical signal in the optical waveguide, thereby achieving low-loss optical coupling.
作为一种可选的实施例,光波导阵列5中每个光波导端面模斑尺寸为2~10μm。As an optional embodiment, the mode spot size of each optical waveguide end face in the optical waveguide array 5 is 2-10 μm.
作为一种可选的实施例,光波导阵列5中每个光波导的长度为0.1~10mm。As an optional embodiment, the length of each optical waveguide in the optical waveguide array 5 is 0.1-10 mm.
图4示意性示出了本发明实施例提供的一种飞秒激光直写波导耦合的量子点激光器阵列3和微环型调制器阵列41单片4通道阵列集成立体结构示意图。FIG4 schematically shows a schematic diagram of a three-dimensional structure of a femtosecond laser direct writing waveguide coupled quantum dot laser array 3 and a micro-ring modulator array 41 provided in an embodiment of the present invention as a monolithic 4-channel array integration.
作为一种可选的实施例,如图3和图4所示,调制器阵列4为马赫-曾德尔型或微环型调制器。As an optional embodiment, as shown in FIG. 3 and FIG. 4 , the modulator array 4 is a Mach-Zehnder type or a micro-ring type modulator.
作为一种可选的实施例,量子点激光器阵列3为在硅衬底1或硅波导层上外延生长III-V族材料形成的器件。As an optional embodiment, the quantum dot laser array 3 is a device formed by epitaxially growing III-V group materials on the silicon substrate 1 or the silicon waveguide layer.
作为一种示意性的实施例,在硅衬底1或硅波导层上外延生长III-V族的材料为InAs/GaAs或InAs/InP。As an illustrative embodiment, the III-V material epitaxially grown on the silicon substrate 1 or the silicon waveguide layer is InAs/GaAs or InAs/InP.
作为一种可选的实施例,硅衬底1与量子点激光器阵列3之间预生长有GaAs外延层。As an optional embodiment, a GaAs epitaxial layer is pre-grown between the silicon substrate 1 and the quantum dot laser array 3 .
在一种示意性的实施例中,GaAs外延层的厚度为100nm。In an exemplary embodiment, the thickness of the GaAs epitaxial layer is 100 nm.
在一种示意性的实施例中,光波导阵列5的阵列通道数为4或8。本发明对光波导阵列5的阵列数不作具体的限制。In an illustrative embodiment, the number of array channels of the optical waveguide array 5 is 4 or 8. The present invention does not impose any specific limitation on the number of array channels of the optical waveguide array 5 .
综上所述,本发明能够实现CMOS兼容工艺平台上量子点激光器和调制器异质异构集成,利用飞秒直写光波导技术实现片上低损耗光信号传输耦合,将该技术扩展至单片融合光电工艺平台,可以进一步实现包含光源的单片光电融合集成,具备实际的商业化应用前景。In summary, the present invention can realize heterogeneous integration of quantum dot lasers and modulators on a CMOS-compatible process platform, use femtosecond direct writing optical waveguide technology to achieve on-chip low-loss optical signal transmission coupling, and extend this technology to a monolithic fusion optoelectronic process platform, which can further realize monolithic optoelectronic fusion integration including light sources, and has practical commercial application prospects.
本领域技术人员可以理解,本发明的各个实施例中记载的特征可以进行多种组合或/或结合,即使这样的组合或结合没有明确记载于本发明中。特别地,在不脱离本发明精神和教导的情况下,本发明的各个实施例中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本发明的范围。It will be appreciated by those skilled in the art that the features described in the various embodiments of the present invention may be combined and/or combined in various ways, even if such combinations and/or combinations are not explicitly described in the present invention. In particular, without departing from the spirit and teachings of the present invention, the features described in the various embodiments of the present invention may be combined and/or combined in various ways. All of these combinations and/or combinations fall within the scope of the present invention.
尽管已经参照本发明的特定示例性实施例示出并描述了本发明,但是本领域技术人员应该理解,在不背离本发明的精神和范围的情况下,可以对本发明进行形式和细节上的多种改变。因此,本发明的范围不应该限于上述实施例。Although the present invention has been shown and described with reference to specific exemplary embodiments of the present invention, it will be appreciated by those skilled in the art that various changes in form and detail may be made to the present invention without departing from the spirit and scope of the present invention. Therefore, the scope of the present invention should not be limited to the above-described embodiments.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410275170.4A CN117878717B (en) | 2024-03-12 | 2024-03-12 | Femtosecond laser direct writing waveguide coupled monolithic integrated light emitting chip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410275170.4A CN117878717B (en) | 2024-03-12 | 2024-03-12 | Femtosecond laser direct writing waveguide coupled monolithic integrated light emitting chip |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117878717A CN117878717A (en) | 2024-04-12 |
CN117878717B true CN117878717B (en) | 2024-05-14 |
Family
ID=90579520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410275170.4A Active CN117878717B (en) | 2024-03-12 | 2024-03-12 | Femtosecond laser direct writing waveguide coupled monolithic integrated light emitting chip |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117878717B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104797963A (en) * | 2012-12-20 | 2015-07-22 | 英特尔公司 | Optical photonic circuit coupling |
CN104813204A (en) * | 2013-11-13 | 2015-07-29 | 华为技术有限公司 | Waveguide structures, waveguide coupling structures, and manufacturing methods |
CN106887790A (en) * | 2017-04-13 | 2017-06-23 | 中国科学院半导体研究所 | Multi-wavelength silicon substrate hybrid integrated slot laser arrays and preparation method thereof |
CN106921112A (en) * | 2017-04-13 | 2017-07-04 | 中国科学院半导体研究所 | Multi-wavelength silicon substrate hybrid integrated slot laser integrated optical sources and preparation method thereof |
CN112290385A (en) * | 2020-10-30 | 2021-01-29 | 中国科学院半导体研究所 | Multi-wavelength silicon-based III-V group hybrid integrated laser array unit and manufacturing method thereof |
CN113534341A (en) * | 2020-04-21 | 2021-10-22 | 河南仕佳光子科技股份有限公司 | Tunable waveguide grating filter based on femtosecond laser direct writing and manufacturing method thereof |
CN113703244A (en) * | 2021-08-19 | 2021-11-26 | 扬州大学 | Large-scale integrated electro-optic micro-ring optical phased array |
CN115542458A (en) * | 2022-11-30 | 2022-12-30 | 中国电子科技集团公司信息科学研究院 | Heterogeneous integrated photoelectric micro-system and manufacturing method thereof |
CN115980926A (en) * | 2022-12-30 | 2023-04-18 | 华中科技大学 | A Hybrid Integrated Multimode Waveguide Coupler |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8110823B2 (en) * | 2006-01-20 | 2012-02-07 | The Regents Of The University Of California | III-V photonic integration on silicon |
US8285149B2 (en) * | 2006-10-02 | 2012-10-09 | Futurewei Technologies, Inc. | Method and system for integrated DWDM transmitters |
US9529154B2 (en) * | 2014-03-21 | 2016-12-27 | Imec Vzw | Method for optical coupling between a photonic integrated circuit and an external optical element |
US9917418B2 (en) * | 2016-01-06 | 2018-03-13 | Northwestern University | Monolithical widely tunable quantum cascade laser devices |
-
2024
- 2024-03-12 CN CN202410275170.4A patent/CN117878717B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104797963A (en) * | 2012-12-20 | 2015-07-22 | 英特尔公司 | Optical photonic circuit coupling |
CN104813204A (en) * | 2013-11-13 | 2015-07-29 | 华为技术有限公司 | Waveguide structures, waveguide coupling structures, and manufacturing methods |
CN106887790A (en) * | 2017-04-13 | 2017-06-23 | 中国科学院半导体研究所 | Multi-wavelength silicon substrate hybrid integrated slot laser arrays and preparation method thereof |
CN106921112A (en) * | 2017-04-13 | 2017-07-04 | 中国科学院半导体研究所 | Multi-wavelength silicon substrate hybrid integrated slot laser integrated optical sources and preparation method thereof |
CN113534341A (en) * | 2020-04-21 | 2021-10-22 | 河南仕佳光子科技股份有限公司 | Tunable waveguide grating filter based on femtosecond laser direct writing and manufacturing method thereof |
CN112290385A (en) * | 2020-10-30 | 2021-01-29 | 中国科学院半导体研究所 | Multi-wavelength silicon-based III-V group hybrid integrated laser array unit and manufacturing method thereof |
CN113703244A (en) * | 2021-08-19 | 2021-11-26 | 扬州大学 | Large-scale integrated electro-optic micro-ring optical phased array |
CN115542458A (en) * | 2022-11-30 | 2022-12-30 | 中国电子科技集团公司信息科学研究院 | Heterogeneous integrated photoelectric micro-system and manufacturing method thereof |
CN115980926A (en) * | 2022-12-30 | 2023-04-18 | 华中科技大学 | A Hybrid Integrated Multimode Waveguide Coupler |
Also Published As
Publication number | Publication date |
---|---|
CN117878717A (en) | 2024-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9829626B2 (en) | Hybrid-integrated multi-chip module | |
CN102317854B (en) | Monolithic optoelectronic twe-component structure | |
CN109143466B (en) | Hybrid integrated silicon optical chip, optical device and chip manufacturing method | |
CN109560462B (en) | Silicon-based hybrid integrated laser array and preparation method thereof | |
CN102487046A (en) | Silicon-based photoelectric heterogeneous integration method suitable for in-chip optical interconnection system | |
CN102684069B (en) | Hybrid silicone monomode laser based on evanescent field coupling and period microstructural frequency selecting | |
CN110289553A (en) | Multi-wavelength silicon-based III-V group hybrid integrated laser, its array unit and preparation method | |
CN111474745B (en) | An optoelectronic monolithic integrated system based on a multi-material system | |
CN106980160B (en) | On-chip light source structure based on hybrid integration and preparation method thereof | |
CN112666665A (en) | Laser and silicon optical waveguide coupling structure based on flip bonding | |
US10605988B2 (en) | Optical beam spot size converter | |
CN113848609A (en) | Photonic integrated coupling structure and photonic integrated device | |
CN111129941B (en) | A silicon-based integrated laser chip flip-chip coupling structure | |
CN112290385A (en) | Multi-wavelength silicon-based III-V group hybrid integrated laser array unit and manufacturing method thereof | |
CN117878717B (en) | Femtosecond laser direct writing waveguide coupled monolithic integrated light emitting chip | |
CN114660836A (en) | Electro-optical modulator and method of manufacturing the same | |
US11934007B2 (en) | Assembly of an active semiconductor component and of a silicon-based passive optical component | |
CN108594480A (en) | Few mould waveguide light emission structure based on nanometer bundle modulator | |
CN102684072A (en) | Hybrid integrated laser and preparation method thereof | |
CN111240054A (en) | PSM4/AOC light emission chip | |
CN117538982A (en) | A heterogeneous integrated optical chip | |
CN111624708B (en) | CMOS process compatible longitudinal optical coupling system and method thereof | |
CN117055152A (en) | Photoelectric fusion integrated chip based on silicon-silicon oxide-erbium-doped lithium niobate heterogeneous wafer and method | |
CN115440756A (en) | Optical transceiver and manufacturing method thereof | |
CN117872544B (en) | Silicon-lead zirconate titanate heterogeneous photoelectric fusion monolithic integrated system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |