CN117878178A - 晶硅异质结太阳电池结构及其制备方法 - Google Patents

晶硅异质结太阳电池结构及其制备方法 Download PDF

Info

Publication number
CN117878178A
CN117878178A CN202410035575.0A CN202410035575A CN117878178A CN 117878178 A CN117878178 A CN 117878178A CN 202410035575 A CN202410035575 A CN 202410035575A CN 117878178 A CN117878178 A CN 117878178A
Authority
CN
China
Prior art keywords
silicon
layer
quantum dot
thickness
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410035575.0A
Other languages
English (en)
Inventor
沈文忠
丁东
李正平
杜大学
贺礼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202410035575.0A priority Critical patent/CN117878178A/zh
Publication of CN117878178A publication Critical patent/CN117878178A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种晶硅异质结太阳电池结构及其制备方法,包括:n型晶硅衬底、依次设置于其一侧的第一超薄氧化硅层、第一非晶碳化硅层、第一硅量子点层、第二非晶碳化层、由非晶硅在高温退火条件下形成的第二硅量子点层、由非晶硅在高温退火条件下形成的第一磷掺杂纳米硅层和第一透明导电层以及设置于其另一侧的第二超薄氧化硅层、第二硼掺杂纳米硅层和第二透明导电层。本发明利用不同厚度的非晶硅膜/碳化硅多层膜,通过高温热退火技术,以便获得尺寸渐变的硅量子点结构。硅量子点结构存在量子限制效应,不同尺寸的硅量子点具有不同的带隙,形成界面钝化好,并兼容高温工艺的低成本异质结太阳电池,而提高电池的开路电压。

Description

晶硅异质结太阳电池结构及其制备方法
技术领域
本发明涉及的是一种太阳能电池领域的技术,具体是一种晶硅异质结太阳电池结构及其制备方法。
背景技术
单结晶硅太阳电池的效率极限一般在29%左右,转换效率难以进一步提高,解决方案之一是采用叠层太阳电池,使不同波长光谱被不同带隙材料吸收,可以最大限度地将光能变成电能。但现有基于宽带隙窗口层的背结硅异质结太阳电池的窗口层材料带隙的可调控幅度较小,碳化硅材料具有较固定的带隙,掺杂浓度的优化对带隙宽带的影响有限,难以实现全光谱太阳光的充分利用。现有基于异质结结构的硅量子点太阳能电池则仅考虑通过量子点结构改善电池光学吸收,没有涉及钝化接触结构在界面钝化上的优势和兼容高温工艺的特点。
发明内容
本发明针对现有技术存在的上述不足,提出一种晶硅异质结太阳电池结构及其制备方法,利用不同厚度的非晶硅膜/碳化硅多层膜,通过高温热退火技术,以便获得尺寸渐变的硅量子点结构。硅量子点结构存在量子限制效应,不同尺寸的硅量子点具有不同的带隙,这种结构的设计拓宽了光谱响应,从而提高电池的短路电流密度;结合目前成熟的钝化接触技术,采用超薄氧化层替代本征非晶硅,掺杂纳米硅替代掺杂非晶硅,形成界面钝化好,并兼容高温工艺的低成本异质结太阳电池,而提高电池的开路电压。
本发明是通过以下技术方案实现的:
本发明涉及一种晶硅异质结太阳电池结构,包括:n型晶硅衬底、依次设置于其一侧的第一超薄氧化硅层、第一非晶碳化硅层、第一硅量子点层、第二非晶碳化层、由非晶硅在高温退火条件下形成的第二硅量子点层、由非晶硅在高温退火条件下形成的第一磷掺杂纳米硅层和第一透明导电层以及设置于其另一侧的第二超薄氧化硅层、第二硼掺杂纳米硅层和第二透明导电层。
所述的第一和第二透明导电层表面设有金属电极。
所述的第一和第二超薄氧化硅层的厚度分别为0.5-2nm。
所述的第一和第二非晶碳化硅的厚度分别为5-10nm,从而降低非晶碳化硅的工艺难度,提高膜层稳定性,并有利于硅量子点结构的形成,提高光子吸收率。
所述的第一硅量子点层的厚度为10-15nm,第二硅量子点层的厚度为3-10nm,并在这两种尺寸硅量子点薄膜的基础上增加不同尺寸的硅量子点,形成多层硅量子点/碳化硅薄膜,硅量子点尺寸从晶硅衬底向外依次减小。
所述的多层硅量子点/碳化硅薄膜的层数为2-5层,有利于全光谱太阳光子的吸收和利用。
所述的第一磷掺杂纳米硅层的厚度为5-20nm,掺杂浓度1E20-1E21 cm-3;第二硼掺杂纳米硅层的厚度为10-50nm,掺杂浓度为5E19-5E20 cm-3;该结构在提升电池界面钝化能力的同时,能够降低纳米硅层的光子寄生吸收损失。
技术效果
本发明将异质结太阳电池的本征非晶硅被替换为超薄氧化硅,掺杂非晶硅被替换为掺杂纳米硅,这种结构具有良好的钝化接触性能;硅量子点的制备是对所沉积的非晶硅层进行高温退火处理,非晶硅薄膜在高温条件下逐渐成核并结晶,但是晶硅衬底表面常规的本征非晶硅结构在高温退火条件下容易被破坏,失去了异质结钝化特性,而超薄氧化硅结构能够在高温条件下保持稳定。不同尺寸的硅量子点/碳化硅叠层和钝化接触结构的结合,能够实现电池光学性能和电学性能的最大化收益。本发明的晶硅异质结太阳电池具有较好的界面钝化和入射光子吸收效果,具有较高的开路电压和短路电流密度。
附图说明
图1为本发明晶硅异质结太阳电池结构剖面图;
图中:n型晶硅衬底1、前表面隧穿氧化层2、第一非晶碳化硅层3、第一硅量子点4、第二非晶碳化硅层5、第二硅量子点层6、磷掺杂纳米硅层7、背表面隧穿氧化层8、硼掺杂纳米硅层9、第一透明导电层10、第一金属电极层11、第二透明导电层12、第二金属电极层13。
具体实施方式
本实施例涉及一种制备如图1所示晶硅异质结太阳电池结构的方法,包括:
S1、n型单晶硅片制绒处理:采用晶向为(100)、电阻率为0.8Ω.cm的n型单晶硅片作为衬底1,采用KOH溶液对衬底1进行制绒,然后进行标准RCA清洗,在衬底1的前表面和背表面得到金字塔绒面结构,起到陷光作用;
S2、热氧化处理制备隧穿氧化硅层:将制绒处理后的衬底1置于管式炉中,通入N2和O2(氮气流量4500sccm、氧气流量400sccm),在635℃下进行热氧化处理40min后,在衬底1的前表面和背表面分别形成1.5nm厚的前表面隧穿氧化层2和背表面隧穿氧化层8;
S3、前表面第一硅量子点/碳化硅叠层薄膜的制备:将上述电池结构放入等离子体增强化学气相沉积系统中进行非晶硅和碳化硅沉积,控制衬底温度为250℃,射频功率为40W;先采用硅烷和甲烷的混合气体作为反应气源,硅烷气体流量设定为3500sccm,甲烷和硅烷的气体流量比设定为10:1,在隧穿氧化层上沉积得到厚度为10nm的a-SiC:H薄膜;然后关闭甲烷气体,硅烷气体流量保持不变,沉积得到厚度为12nm的a-Si:H薄膜,两层膜总厚度为22nm。
S4、前表面第二硅量子点/碳化硅叠层薄膜的制备:采用与S3步骤相同的方法,在上述a-Si:H薄膜表面淀积得到厚度为10nm的a-SiC:H薄膜,然后关闭甲烷气体,沉积得到厚度为6nm的a-Si:H薄膜,两层膜总厚度为16nm。
S5、前表面硅量子点/碳化硅叠层薄膜的形成:对上述非晶硅薄膜样品在900℃条件下进行恒温热退火处理,使非晶硅薄膜逐渐成核并结晶,热退火时间为1h,获得不同尺寸硅量子点结构。
S6、前后表面掺杂纳米硅的制备:将上述结构硅片放入PECVD的真空腔室,加热使衬底1温度达到400℃,腔室压强控制在200Pa,通入1500sccm的硅烷和足量的氢气,沉积得到前表面厚度为15nm和背表面厚度为30nm的纳米非晶硅薄膜,并在前后表明分别通入磷和硼掺杂元素;然后在750℃条件下高温退火处理40min,使纳米非晶硅转化成掺杂的纳米晶硅层。
S7、透明导电层制备:在上述结构的两个表面以磁控溅射法,选用IWO靶材制备透明导电层10和12。
S8、金属电极制备:在上述结构的两个表面采用丝网印刷制作栅线状金属Ag电极11和13,最后制得晶硅异质结太阳电池。
与现有技术相比,本发明异质结太阳电池一方面采用超薄氧化硅替代不耐高温的本征非晶硅、前表面磷掺杂纳米硅替代磷掺杂非晶硅,另一方面在超薄氧化硅和磷掺杂纳米硅之间插入不同尺寸的硅量子点/碳化硅叠层薄膜,形成渐变带隙的半导体硅量子点结构,从而拓宽光谱相应范围。本发明所设计的晶硅异质结太阳电池在开路电压维持较高水平的基础上,短路电流密度得到了一定程度的改善。与常规本征非晶硅/掺杂非晶硅异质结太阳电池相比,短路电流密度能够得到0.05-0.2mA/cm2的提高,更重要的是该异质结太阳电池可以兼容更高温度的工艺条件。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (8)

1.一种晶硅异质结太阳电池结构,其特征在于,包括:n型晶硅衬底、依次设置于其一侧的第一超薄氧化硅层、第一非晶碳化硅层、第一硅量子点层、第二非晶碳化层、由非晶硅在高温退火条件下形成的第二硅量子点层、由非晶硅在高温退火条件下形成的第一磷掺杂和硼掺杂纳米硅层和第一透明导电层以及设置于其另一侧的第二超薄氧化硅层、第二磷掺杂和硼掺杂纳米硅层和第二透明导电层。
2.根据权利要求1所述的晶硅异质结太阳电池结构,其特征是,所述的第一和第二透明导电层表面设有金属电极;
所述的第一和第二超薄氧化硅层的厚度分别为0.5-2nm;
所述的第一和第二非晶碳化硅的厚度分别为5-10nm;
所述的第一硅量子点层的厚度为10-15nm,第二硅量子点层的厚度为3-10nm,并在这两种尺寸硅量子点薄膜的基础上增加不同尺寸的硅量子点,形成多层硅量子点/碳化硅薄膜,硅量子点尺寸从晶硅衬底向外依次减小;
所述的第一磷掺杂纳米硅层的厚度为5-20nm,掺杂浓度1E20-1E21 cm-3;第二硼掺杂纳米硅层的厚度为10-50nm,掺杂浓度为5E19-5E20 cm-3
3.根据权利要求2所述的晶硅异质结太阳电池结构,其特征是,所述的多层硅量子点/碳化硅薄膜的层数为2-5层,有利于全光谱太阳光子的吸收和利用。
4.一种制备权利要求1-3中任一所述晶硅异质结太阳电池结构的方法,其特征在于,包括:
S1、n型单晶硅片制绒处理:采用晶向为(100)、电阻率为0.8Ω.cm的n型单晶硅片作为衬底,采用KOH溶液对衬底进行制绒,然后进行标准RCA清洗,在衬底的前表面和背表面得到金字塔绒面结构,起到陷光作用;
S2、热氧化处理制备隧穿氧化硅层:将制绒处理后的衬底置于管式炉中,通入N2和O2,在635℃下进行热氧化处理40min后,在衬底1的前表面和背表面分别形成1.5nm厚的前表面隧穿氧化层和背表面隧穿氧化层;
S3、前表面第一硅量子点/碳化硅叠层薄膜的制备:将上述电池结构放入等离子体增强化学气相沉积系统中进行非晶硅和碳化硅沉积;先采用硅烷和甲烷的混合气体作为反应气源,在隧穿氧化层上沉积得到厚度为10nm的a-SiC:H薄膜;然后关闭甲烷气体,硅烷气体流量保持不变,沉积得到厚度为12nm的a-Si:H薄膜,两层膜总厚度为22nm;
S4、前表面第二硅量子点/碳化硅叠层薄膜的制备:采用与S3步骤相同的方法,在上述a-Si:H薄膜表面淀积得到厚度为10nm的a-SiC:H薄膜,然后关闭甲烷气体,沉积得到厚度为6nm的a-Si:H薄膜,两层膜总厚度为16nm;
S5、前表面硅量子点/碳化硅叠层薄膜的形成:对上述非晶硅薄膜样品进行恒温热退火处理,使非晶硅薄膜逐渐成核并结晶,获得不同尺寸硅量子点结构;
S6、前后表面掺杂纳米硅的制备:将上述结构硅片放入PECVD的真空腔室,沉积得到前表面厚度为15nm和背表面厚度为30nm的纳米非晶硅薄膜,并在前后表明分别通入磷和硼掺杂元素;然后在750℃条件下高温退火处理40min,使纳米非晶硅转化成掺杂的纳米晶硅层;
S7、透明导电层制备:在上述结构的两个表面以磁控溅射法,选用IWO靶材制备透明导电层;
S8、金属电极制备:在上述结构的两个表面采用丝网印刷制作栅线状金属Ag电极,最后制得晶硅异质结太阳电池。
5.根据权利要求4所述的方法,其特征是,所述的非晶硅和碳化硅沉积,控制衬底温度为250℃,射频功率为40W。
6.根据权利要求4所述的方法,其特征是,所述的硅烷和甲烷的混合气体中,硅烷气体流量设定为3500sccm,甲烷和硅烷的气体流量比为10:1。
7.根据权利要求4所述的方法,其特征是,所述的退火是指:在900℃条件下进行恒温热退火处理1h。
8.根据权利要求4所述的方法,其特征是,步骤S6中的沉积是指:加热使衬底温度达到400℃,腔室压强控制在200Pa,通入1500sccm的硅烷和足量的氢气。
CN202410035575.0A 2024-01-10 2024-01-10 晶硅异质结太阳电池结构及其制备方法 Pending CN117878178A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410035575.0A CN117878178A (zh) 2024-01-10 2024-01-10 晶硅异质结太阳电池结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410035575.0A CN117878178A (zh) 2024-01-10 2024-01-10 晶硅异质结太阳电池结构及其制备方法

Publications (1)

Publication Number Publication Date
CN117878178A true CN117878178A (zh) 2024-04-12

Family

ID=90578779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410035575.0A Pending CN117878178A (zh) 2024-01-10 2024-01-10 晶硅异质结太阳电池结构及其制备方法

Country Status (1)

Country Link
CN (1) CN117878178A (zh)

Similar Documents

Publication Publication Date Title
US20240194812A1 (en) High-efficiency silicon heterojunction solar cell and manufacturing method thereof
JP4560245B2 (ja) 光起電力素子
US5603778A (en) Method of forming transparent conductive layer, photoelectric conversion device using the transparent conductive layer, and manufacturing method for the photoelectric conversion device
JP2951146B2 (ja) 光起電力デバイス
Schropp et al. Amorphous silicon, microcrystalline silicon, and thin-film polycrystalline silicon solar cells
JPS60154521A (ja) 炭化珪素被膜作製方法
EP2330632A1 (en) Thin-film photoelectric converter and fabrication method therefor
Rohatgi et al. High-efficiency solar cells on edge-defined film-fed grown (18.2%) and string ribbon (17.8%) silicon by rapid thermal processing
JP2918345B2 (ja) 光起電力素子
JPH11251612A (ja) 光起電力素子の製造方法
JP2000138384A (ja) 非晶質半導体素子及びその製造方法
JP2001028453A (ja) 光起電力素子及びその製造方法、建築材料並びに発電装置
CN106887483A (zh) 硅基异质接面太阳能电池及其制备方法
JPH05299677A (ja) 太陽電池およびその製造方法
JP2002009312A (ja) 非単結晶薄膜太陽電池の製造方法
CN115132855B (zh) 纳米全钝化接触晶硅异质结双面太阳能电池及其制造方法
WO2023103477A1 (zh) 异质结太阳电池、其制备方法及发电装置
CN114725239B (zh) 一种异质结电池的制备方法
CN116314439A (zh) 太阳电池中的NiOx空穴传输层及其制备方法、应用
CN109037392A (zh) 一种石墨烯/硅结构太阳能电池的生产工艺
JP2001250968A (ja) 結晶シリコン薄膜半導体装置、結晶シリコン薄膜光起電力素子、および結晶シリコン薄膜半導体装置の製造方法
CN117878178A (zh) 晶硅异质结太阳电池结构及其制备方法
JP2845383B2 (ja) 光起電力素子
CN113437183A (zh) 一种pecvd沉积非晶硅薄膜的方法
CN221239628U (zh) 一种高性能hbc太阳能电池结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination