CN117819692A - 一种油田注入水的碳酸盐结垢控制方法 - Google Patents

一种油田注入水的碳酸盐结垢控制方法 Download PDF

Info

Publication number
CN117819692A
CN117819692A CN202410076594.8A CN202410076594A CN117819692A CN 117819692 A CN117819692 A CN 117819692A CN 202410076594 A CN202410076594 A CN 202410076594A CN 117819692 A CN117819692 A CN 117819692A
Authority
CN
China
Prior art keywords
water
acid
control method
value
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410076594.8A
Other languages
English (en)
Inventor
丁伟杰
周鹤
黄连华
聂俊博
贾剑平
邓焱伟
马超
马小龙
何蕙利
谭超
杨天宇
韩东峻
肖莹
何菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karamay Sanda New Technology Co ltd
Original Assignee
Karamay Sanda New Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karamay Sanda New Technology Co ltd filed Critical Karamay Sanda New Technology Co ltd
Priority to CN202410076594.8A priority Critical patent/CN117819692A/zh
Publication of CN117819692A publication Critical patent/CN117819692A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F15/00Other methods of preventing corrosion or incrustation
    • C23F15/005Inhibiting incrustation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

本发明提供了一种油田注入水的碳酸盐结垢控制方法,涉及油田注入水处理技术领域。本发明利用软件计算精准加药量,通过在注入水中精准加入酸液来控制水中HCO3 结垢离子,后通过pH在线监测探头控制加药,从而实现精准控制pH值,同时又能产生CO2来降低水质pH,从而防止碳酸盐结垢。此外,本发明在加入酸液后端加入缓蚀剂防止管线腐蚀。

Description

一种油田注入水的碳酸盐结垢控制方法
技术领域
本发明涉及油田注入水处理技术领域,尤其涉及一种油田注入水的碳酸盐结垢控制方法。
背景技术
结垢问题在稀油油田普遍存在,在稀油油田油藏开采、污水回注过程中,回注水与地层水不配伍,破坏了原来地层水的化学平衡,结垢离子成垢析出。
不同区块、不同层位的油田污水水型不配伍,化学反应生成沉淀也会导致结垢,结垢现象可能出现在从地层到井筒到地面集输系统的任何地方、任何位置。
例如,某稀油油田处理站净化污水为MgCl2型,该区目前的5口水源井清水为NaHCO3和CaCl2型,清污混注注入水之间存在不配伍的问题,从而导致地面注水管网结垢现象频出。
由于目前稀油油田回注工艺的现状,如果不将净化水与清水混注,或不进行区块之间混注,注水过程中就会存在区块欠注或区块注水量外溢问题。
结垢会伤害储层渗透率、降低油井产出和注入能力、会造成设备的磨损、腐蚀,影响设备的寿命,严重影响油田的正常开采,给油田的开发造成极大的经济损失。
发明内容
本发明的目的在于提供一种油田注入水的碳酸盐结垢控制方法,能够有效防止注入水结垢。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种油田注入水的碳酸盐结垢控制方法,包括以下步骤:对油田注入水进行水质离子全分析;
根据分析结果,利用结垢预测与评估软件ScaleChem计算出调整水质pH值至5.5~6所需酸液加药量;
根据ScaleChem的计算结果在管线中加入酸液;
通过pH值在线监测探头实时监测加酸液后端注入水的pH值,通过自动化加药设备,将pH监测探头反馈的数据信号实时转化为加药泵调整加药流量的信号,实现自动化按需加药,保证加酸液后注入水的pH值维持在5.5~6;
在加酸液后端加入缓蚀剂。
优选的,所述水质离子全分析包括:检测注入水中K+、Na+、Ca2+、Mg2+、OH-、CO3 2-、HCO3 -、SO4 2-和Cl-的浓度以及注入水的pH值。
优选的,所述酸液的种类以满足投加酸液后注入水中不产生新的固体析出物为准。
优选的,所述缓释剂包括酸化缓释剂和/或注水缓释剂。
优选的,自酸液加入位置至工艺流程末端的所有管线采用绝对密闭集输环境。
优选的,所述酸液在注水泵前段加入或在带压管线加入。
本发明提供了一种油田注入水的碳酸盐结垢控制方法,包括以下步骤:对油田注入水进行水质离子全分析;根据分析结果,利用结垢预测与评估软件ScaleChem计算出调整水质pH值至5.5~6所需酸液加药量;根据ScaleChem的计算结果在管线中加入酸液;通过pH值在线监测探头实时监测加酸液后端注入水的pH值,通过自动化加药设备,将pH监测探头反馈的数据信号实时转化为加药泵调整加药流量的信号,实现自动化按需加药,保证加酸液后注入水的pH值维持在5.5~6;在加入酸液流程后端加入缓蚀剂。
本发明利用软件计算精准加药量,通过在注入水中精准加入酸液来控制水中HCO3 -结垢离子,后通过pH在线监测探头控制加药,从而实现精准控制pH值,同时又能产生CO2来降低水质pH,从而防止碳酸盐结垢。此外,本发明在加入酸液后端加入缓蚀剂防止管线腐蚀。
附图说明
图1为本发明油田注入水的碳酸盐结垢控制方法加药流程简图;其中:①-相变炉,②-三相分离器,③-污水沉降罐,④-注水泵,⑤-酸液储药罐,⑥-酸液加药泵,⑦-缓蚀剂加药罐,⑧-缓蚀剂加药泵,⑨-pH在线监测探头,⑩-PLC自动化控制柜,-计算机;
图2为实施例1原水水质结垢趋势图;
图3为实施例1水质调控后水质结垢趋势图;
图4为实施例2原水水质结垢趋势图;
图5为实施例2水质调控后水质结垢趋势图。
具体实施方式
本发明提供了一种油田注入水的碳酸盐结垢控制方法,包括以下步骤:对油田注入水进行水质离子全分析;
根据分析结果,利用结垢预测与评估软件ScaleChem计算出调整水质pH值至5.5~6所需酸液加药量;
根据ScaleChem的计算结果在管线中加入酸液;
通过pH值在线监测探头实时监测加酸液后端注入水的pH值,通过自动化加药设备,将pH监测探头反馈的数据信号实时转化为加药泵调整加药流量的信号,实现自动化按需加药,保证加酸液后注入水的pH值维持在5.5~6;
在加入酸液流程后端加入缓蚀剂。
本发明对油田注入水进行水质离子全分析。
在本发明中,所述水质离子全分析优选包括:检测注入水中K+、Na+、Ca2+、Mg2+、OH-、CO3 2-、HCO3 -、SO4 2-和Cl-的浓度以及注入水的pH值。本发明对所述水质离子全分析的过程没有特殊要求,采用本领域熟知的水质分析方法即可。
得到分析结果后,本发明根据分析结果,利用结垢预测与评估软件ScaleChem计算出调整水质pH值至5.5~6所需酸液加药量。
本发明对所述加药量的计算过程没有特殊要求,采用本领域熟知的计算过程即可。本发明利用软件进行计算,可以精准计算加药量,避免酸液加少无法达到预定的pH值,进而达不到防治碱性垢的作用;同时还能防止酸液加入过多腐蚀流体管道、设备。
计算出酸液加药量后,本发明根据ScaleChem的计算结果在管线中加入酸液。本发明优选在注水泵前段加入或在带压管线加入酸液。在本发明中,所述酸液的种类取决于水中离子种类和含量,要求投加酸液后注入水中不产生新的固体析出物为准。具体的,所述酸液可以从盐酸、醋酸、柠檬酸、磷酸中选择。本发明加入酸液后,注入水中的HCO3 -反应生成游离CO2,同时水中CO2降低注入水pH,进而起到预防HCO3 -结垢的目的。
在本发明中,自酸液加入位置至工艺流程末端的所有管线优选采用绝对密闭集输环境,以防止生成的CO2在流程内被释放。
加入酸液后,本发明通过pH值在线监测探头实时监测加酸液后端注入水的pH值,通过自动化加药设备,将pH监测探头反馈的数据信号实时转化为加药泵调整加药流量的信号,实现自动化按需加药,保证加酸液后注入水的pH值维持在5.5~6。本发明优选采用专业自动化设计人员编程使pH在线监测探头与加药泵自动联动后的实时均匀加药方式。
本发明在加酸液后端加入缓蚀剂。本发明通过加入缓蚀剂防止管线腐蚀。在本发明中,所述缓释剂优选包括注水缓释剂和/或酸化缓释剂。本发明对所述酸化缓释剂和注水缓释剂的具体种类没有特殊要求,采用本领域熟知的酸化缓释剂和注水缓释剂即可。具体的,所述酸化缓释剂可以为二乙基硫脲、NN-二邻甲苯基硫脲、吡啶及其衍生物、喹啉及其衍生物、咪唑啉及其衍生物、苯并三氮唑、甲基苯并三唑、丙炔醇及其衍生物;所述注水缓释剂可以为六偏磷酸钠、三聚磷酸钠、羟基亚乙基二磷酸、乙二胺四亚甲基磷酸、二乙基三胺五亚甲基磷酸或六亚甲基二胺四亚甲基磷酸。
在本发明中,所述酸化缓蚀剂可以减小加药设备腐蚀;所述注水缓蚀剂可以减小注水管网和井下设施材料的腐蚀。本发明对所述缓释剂的加入量不做特殊限定,所述缓蚀剂加入量与注水水源水质腐蚀速率相关。本发明优选根据腐蚀速率模拟结果/腐蚀速率测定结果确定缓释剂最佳加药量,具体如何根据腐蚀速率模拟结果/腐蚀速率测定结果确定缓释剂的加药量属于本领域的公知常识,这里不再赘述。
图1为本发明油田注入水的碳酸盐结垢控制方法加药流程简图;其中:①-相变炉,②-三相分离器,③-污水沉降罐,④-注水泵,⑤-酸液储药罐,⑥-酸液加药泵,⑦-缓蚀剂加药罐,⑧-缓蚀剂加药泵,⑨-pH在线监测探头,⑩-PLC自动化控制柜,-计算机。如图1所示,本发明对油田注入水进行水质离子全分析;根据分析结果,利用结垢预测与评估软件ScaleChem计算出调整水质pH值至5.5~6所需酸液加药量;根据ScaleChem的计算结果在现场适合的管线部位加入酸液;通过pH值在线监测探头实时监测加酸液后端注入水pH值,通过自动化加药设备,将pH监测探头反馈的数据信号实时转化为加药泵调整加药流量的信号,实现自动化按需加药,保证加酸液后注入水的pH值维持在5.5~6;在加入酸液流程后端加入缓蚀剂。
下面结合实施例对本发明提供的油田注入水的碳酸盐结垢控制方法进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
新疆油田某稀油联合处理站,主要处理冷采采出液,经过油水分离处理后的含油污水,采用“化学混凝+压力过滤”工艺处理后的净化水,通过高压注水泵注入地层。
经混凝、过滤处理后的净化水Ca2+含量3167.2mg/L、Mg2+含量102.5mg/L、Cl-含量15624.24mg/L、HCO3 -含量597.8mg/L,由于注入水为高钙、镁,高矿化度水质,注水管网结垢(碳酸盐)严重,对现场工艺造成了极大困扰。
针对以上处理现状,申请人提出了“精准加酸液调整水质pH”主要思路防垢,通过在注水泵前端精准加入盐酸,并在注水泵后端加入注水缓蚀剂(咪唑啉),控制污水对管网腐蚀速率,从而实现了该注水站水质防垢问题,对比原本采用的阻垢剂方法阻垢,对比结果如表1所示。
表1实施例1的原水数据
通过ScaleChem结垢预测与评估软件的计算,水质加盐酸量为487mg/L,温度:35℃;压力范围0.1~25MPa;不同条件下原水与调控pH后结垢量对比见图2~图3:注水缓释剂加药量为25mg/L;
调控后,压力0.5Mpa时,CaCO3结垢量仅4mg/L,压力上升至2.5Mpa,结垢量降低至0mg/L,同时通过动态腐蚀挂片测得,加入缓蚀剂控制水质调控后水质腐蚀速率达到了0.0284mm/年,完全满足现场生产要求。
实施例2
新疆油田某联合处理站原水钙离子含量3543mg/L、镁离子含量124.8mg/L,由于高钙高镁水质特点,原本采用脱钙除硬法阻垢,加入除硬剂反应沉淀水中钙镁离子,从而达到降低结垢量的目的,但除硬法防垢,除硬剂加药量高,达到了9152mg/L,用药量大加药困难,水中钙、镁离子含量仍然有30.36mg/L和22.96mg/L,且处理1m3水药剂成本为62.16元,但阻垢效果有限。原水数据见表2。
表2实施例2的原水数据
采用了水质调控法防垢后,水质失钙率降低,且能利用现场工艺条件进行阻垢大幅降低单方处理成本,通过ScaleChem结垢预测与评估软件的计算,加盐酸量为321mg/L、注水缓释剂(咪唑啉)25mg/L时原水与调控后水质结垢效果对比见图4~图5。
水样调质前原水CaCO3垢最大结垢量为120mg/L,水质加酸调整pH碳酸钙结垢消失。
水样调控pH后对管线腐蚀速率检测结果具体数据见下表3。
表3水样调控前后管线腐蚀速率与处理成本
调质剂编号 处理成本 腐蚀速率
原水 / 0.0403mm/年
调控后 4.34元/m3 0.0172mm/年
由表3可知,调控pH处理后水中Ca2+稳定,单方处理成本仅为4.34元,且腐蚀速率从原水0.0403mm/年降低至0.0172mm/年,现场设备、管线结垢情况得到有效控制的同时降低了水质腐蚀速率。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种油田注入水的碳酸盐结垢控制方法,其特征在于,包括以下步骤:对油田注入水进行水质离子全分析;
根据分析结果,利用结垢预测与评估软件ScaleChem计算出调整水质pH值至5.5~6所需酸液加药量;
根据ScaleChem的计算结果在管线中加入酸液;
通过pH值在线监测探头实时监测加酸液后端注入水的pH值,通过自动化加药设备,将pH监测探头反馈的数据信号实时转化为加药泵调整加药流量的信号,实现自动化按需加药,保证加酸液后注入水的pH值维持在5.5~6;
在加酸液后端加入缓蚀剂。
2.根据权利要求1所述的碳酸盐结垢控制方法,其特征在于,所述水质离子全分析包括:检测注入水中K+、Na+、Ca2+、Mg2+、OH-、CO3 2-、HCO3 -、SO4 2-和Cl-的浓度以及注入水的pH值。
3.根据权利要求1所述的碳酸盐结垢控制方法,其特征在于,所述酸液的种类以满足投加酸液后注入水中不产生新的固体析出物为准。
4.根据权利要求1所述的碳酸盐结垢控制方法,其特征在于,所述缓释剂包括酸化缓释剂和/或注水缓释剂。
5.根据权利要求1所述的碳酸盐结垢控制方法,其特征在于,自酸液加入位置至工艺流程末端的所有管线采用绝对密闭集输环境。
6.根据权利要求1所述的碳酸盐结垢控制方法,其特征在于,所述酸液在注水泵前段加入或在带压管线加入。
CN202410076594.8A 2024-01-19 2024-01-19 一种油田注入水的碳酸盐结垢控制方法 Pending CN117819692A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410076594.8A CN117819692A (zh) 2024-01-19 2024-01-19 一种油田注入水的碳酸盐结垢控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410076594.8A CN117819692A (zh) 2024-01-19 2024-01-19 一种油田注入水的碳酸盐结垢控制方法

Publications (1)

Publication Number Publication Date
CN117819692A true CN117819692A (zh) 2024-04-05

Family

ID=90504255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410076594.8A Pending CN117819692A (zh) 2024-01-19 2024-01-19 一种油田注入水的碳酸盐结垢控制方法

Country Status (1)

Country Link
CN (1) CN117819692A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118571350A (zh) * 2024-07-31 2024-08-30 西南石油大学 一种基于井筒多相流计算的气井井筒结垢量预测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118571350A (zh) * 2024-07-31 2024-08-30 西南石油大学 一种基于井筒多相流计算的气井井筒结垢量预测方法

Similar Documents

Publication Publication Date Title
CN105712504B (zh) 一种用于酸性高温气田水的缓蚀阻垢剂、制备方法及应用
CN108756817B (zh) 判断产水气井井筒结垢风险及确定防垢剂注入时机的方法
CN105016493B (zh) 一种阻垢缓蚀剂及其在盐碱地排盐暗管中的应用
CN109705831B (zh) 一种油田阻垢剂及其制备方法和使用方法
US4787455A (en) Method for scale and corrosion inhibition in a well penetrating a subterranean formation
CN106745847A (zh) 复合缓蚀阻垢剂及其制备方法
CN102259988A (zh) 用于油田回注水的多功能水处理剂
CN112323073B (zh) 一种发电厂热力设备防腐防垢一体化控制系统及控制方法
CN110564442B (zh) 一种蒸馏塔顶工艺防腐自动调控系统
WO2021216131A1 (en) Methods for online control of a chemical treatment solution using scale saturation indices
CN117819692A (zh) 一种油田注入水的碳酸盐结垢控制方法
Hatch et al. Threshold Treatment of Water Systems.
CN110700804B (zh) 一种降压增注药剂投加方法
CN108728072A (zh) 一种油田用聚合物溶液粘度保护剂及其应用
CN115612472A (zh) 深井缓蚀防垢剂及其制备方法
CN107244753A (zh) 热电厂一次热网专用特效环保型有机阻垢缓蚀剂
CN113880155B (zh) 一种低压锅炉炉水水质在线调节方法
CN207786336U (zh) 烟气喷淋水加碱调节装置
Boulahlib-Bendaoud et al. Effect of temperature on the efficiency of inorganic phosphate used as antiscaling inhibitors
JPH0632820B2 (ja) 水道水のランゲリア指数の改善方法および装置
CN102603034A (zh) 一种海水淡化产水的调质方法和装置
CN1063825C (zh) 油田注入水处理方法
Wang et al. Solubility and scale prevention of gypsum in transportation pipes of well brine with salinities up to 5 M at temperature range of 278–298 K
CN214116968U (zh) 一种岩溶地区隧道排水管道防垢及消垢系统
CN112331374B (zh) 一种核电厂辅助锅炉运行期间的化学控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination