CN117802152A - 一种增强毛白杨的木材抗压性能的方法 - Google Patents

一种增强毛白杨的木材抗压性能的方法 Download PDF

Info

Publication number
CN117802152A
CN117802152A CN202410019090.2A CN202410019090A CN117802152A CN 117802152 A CN117802152 A CN 117802152A CN 202410019090 A CN202410019090 A CN 202410019090A CN 117802152 A CN117802152 A CN 117802152A
Authority
CN
China
Prior art keywords
dof14
dof35
seq
cas9
crispr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410019090.2A
Other languages
English (en)
Inventor
付小康
刘诗雨
许长征
罗克明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Western Chongqing Science City Germplasm Creation Science Center
Original Assignee
Western Chongqing Science City Germplasm Creation Science Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Chongqing Science City Germplasm Creation Science Center filed Critical Western Chongqing Science City Germplasm Creation Science Center
Priority to CN202410019090.2A priority Critical patent/CN117802152A/zh
Publication of CN117802152A publication Critical patent/CN117802152A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8255Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving lignin biosynthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nutrition Science (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种增强毛白杨的木材抗压性能的方法,属于植物生物技术领域,本发明从毛白杨的Dof家族基因中筛选出与韧皮部发育相关的关键基因Dof14和Dof35,利用新兴的CRISPR‑Cas9技术构建获得木质素含量和茎干抗压能力显著提高的双元敲除株系,Dof14和Dof35的Cas9双元敲除株系的木质素含量和茎干抗压能力方面具有显著的优势,该发明对于优化木材材性,应用实际生产,适应市场需求有着重要意义。

Description

一种增强毛白杨的木材抗压性能的方法
技术领域
本发明涉及植物生物技术领域,具体涉及一种增强毛白杨的木材抗压性能的方法。
背景技术
毛白杨是杨柳科杨属的乔木,可高达30米,分布广泛,是中国特有的白杨派乡土树种。毛白杨具有树形挺拔美观、生长迅速、材质优良、适应性强等优点,不仅是农田林网和城乡绿化建设的主栽树种之一,具有较高的生态价值,而且还可作为速生用材林,具有可观的经济价值。毛白杨木材白色,纹理直,纤维含量高,易干燥,易加工,油漆及胶结性能好;可做建筑、家具、箱板及火柴杆、造纸等用材。随着经济社会的发展,人们的生活水平日益提高,对于木材的需求量也日益增大。日益增长的木材需求量与日益缩减的林地资源的矛盾要求我们精准改良木材材性,优化木材资源的利用效率。
木质素是由3种苯丙烷单元通过醚键和碳碳键相互连接形成的具有三维网状结构的生物高分子,含有丰富的芳环结构、脂肪族和芳香族羟基以及醌基等活性基团,是植物界中储量仅次于纤维素的第二大生物质资源。木质素是构成植物细胞壁的成分之一,它与纤维素、半纤维素一起,形成植物骨架的主要成分。同时植物的木质部含有大量木质素,使木质部维持极高的硬度以承拓整株植物的重量。木质素填充于纤维素构架中增强植物体的机械强度,利于输导组织的水分运输和抵抗不良外界环境的侵袭。因此,我们希望通过提高毛白杨中木质素的含量来增强茎干的抗压能力,从而增强木材的硬度和机械强度,以适应实际的生产需求。
通过定向编辑特定的基因从而改变生物性状,提升种质材料材性更加优良是当下的主流手段。Dof家族转录因子在植物的生长发育中发挥着重要的作用,现有的研究已表明Dof家族转录因子在调控维管发育方面具有显著的功能,是调控韧皮部发育的关键因子,能促进韧皮部的发育。常见的育种手段有以下三种,传统育种技术要经过若干代的自交杂交或回交才能得到优良株系,周期长,靶向差,而转基因育种技术存在潜在的安全问题,所以目前我们采用当前新兴的CRISPR-Cas9基因编辑育种技术进行种质创制,编辑效率高,操作简单,成本低,能缩短周期,靶向精准,我们希望通过该技术对特定的Dof基因进行相应的编辑,削弱甚至破坏韧皮部形成,以促进形成层向木质部方向分化,培育出具有发达木质部,高木质素含量,机械强度和抗压能力强的优良种质材料,目前关于该方向的研究与尝试未见报道。
发明内容
有鉴于此,本发明的目的在于提供一种增强毛白杨的木材抗压性能的方法。
为达到上述目的,本发明提供如下技术方案:
1、一种增强毛白杨的木材抗压性能的方法
通过在毛白杨中同时抑制Dof家族基因Dof14和Dof35的表达,从而提高木质素含量,增强木材的抗压性能。
本发明优选的,所述Dof14和Dof35的编码区序列如SEQ ID No.3~4所示。
本发明优选的,所述抑制Dof家族基因Dof14和Dof35的表达的方法为:采用CRISPR-Cas9基因编辑技术,以SEQ ID No.5和SEQ ID No.6所示位点为Dof14基因敲除靶点,以SEQ ID No.7和SEQ ID No.8所示位点为Dof35基因敲除靶点,构建四靶点的CRISPR-Cas9双基因敲除载体。
本发明优选的,使用pYLCRISPR/Cas9-DH为载体骨架构建四靶点的CRISPR-Cas9双基因敲除载体。
本发明优选的,具体步骤为:将所构建成功的CRISPR-Cas9双基因敲除载体利用农杆菌介导的侵染叶盘法转化野生型毛白杨中,经过诱导愈伤、生芽、生根之后,筛选出阳性株系,得到木质素含量提高、木材抗压性能增强的转基因株系。
本发明的有益效果在于:本发明从毛白杨的Dof家族基因中筛选出与韧皮部发育相关的关键基因Dof14和Dof35,利用新兴的CRISPR-Cas9技术构建获得木质素含量和茎干抗压能力显著提高的双元敲除株系,Dof14和Dof35的Cas9双元敲除株系的木质素含量在2月龄幼苗期时可达到471.744mg/g,茎干抗压能力最高可达74N,而野生型毛白杨中木质素平均含量大概为370.406mg/g,茎干抗压能力平均为53N,Dof14和Dof35的Cas9双元敲除株系在木质素含量和茎干抗压能力方面具有显著的优势。该发明对于优化木材材性,应用实际生产,适应市场需求有着重要意义。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1中A为毛白杨Dof家族基因进化树;B为毛白杨Dof家族形成层(Ca),韧皮部(Ph),木质部(Xy)表达量聚类热图;
图2为Dof35转录起始位置;
图3为Dof14和Dof35双基因敲除载体的示意图;
图4为Dof14和Dof35 CRISPR-Cas9双元突变株系的鉴定结果图(T1,T2为Dof14编码区的突变靶点,T3,T4为Dof35编码区的突变靶点,●表示该处无碱基。);
图5为Dof14和Dof35 CRISPR-Cas9双元突变株系与对照野生型毛白杨的宏观表型图;
图6为Dof14和Dof35 CRISPR-Cas9双元突变株系与对照野生型毛白杨木质部表型图(A:Dof14和Dof35 CRISPR-Cas9双元突变株系与对照野生型毛白杨第八节间切片甲苯胺蓝染色图,染色区域为木质部,Xy为木质部英文简写,Dof14和Dof35 CRISPR-Cas9双元突变株系的L3和L14分别用Cas9-Dof14&35-L3和Cas9-Dof14&35-L14表示。B:木质部宽度统计图;C:木质部细胞层数统计图。*代表显著性差异程度);
图7为Dof14和Dof35 CRISPR-Cas9双元突变株系与对照野生型毛白杨的木质素含量统计图(*代表显著性差异程度);
图8为Dof14和Dof35 CRISPR-Cas9双元突变株系与对照野生型毛白杨的茎干抗压能力统计图(*代表显著性差异程度)。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1、Dof基因筛选过程
通过构建进化树(图1,A)以及韧皮部,木质部表达量热图聚类分析(图1,B),筛选出毛白杨在韧皮部特异高表达的Dof基因,分别为Dof14和Dof35,二者为同源基因,该分析结果进一步地在表征Dof35转录起始位置的荧光报告株系的切片观察中得到了验证,具体操作为将SEQ ID NO.1所示的Dof35的启动子序列和SEQ ID NO.2所示的YFP-TMC序列顺序插入pCAMBIA1300骨架载体的多克隆位点上、下游位点,构建了proDOF35-YFP-TMC的荧光表达载体,利用农杆菌侵染杨树叶盘法构建转基因植株,该具体过程可见实施例3,对获取的转基因株系的第六至第九节间利用振荡切片机进行切片,切片厚度为90μm,制片后利用共聚焦显微镜进行观察,发现在韧皮部有明显的荧光信号,如附图2所示。
实施例2、Dof14和Dof35的CRISPR-Cas9双敲载体构建
构建Dof14和Dof35的CRISPR-Cas9双敲载体,Dof14和Dof35的编码序列如SEQ IDNO.3和SEQ ID NO.4所示,利用target design网站分别在Dof14和Dof35的编码区范围内确定两个合适的敲除靶点,再将T1-T4靶点按顺序依次连接在pYLCRISPR/Cas9-DH的Cas9载体骨架上,构建为四靶点的Cas9双敲载体,载体图谱如附图3所示,具体实验方法如下:
1.利用targetDesign网站选取合适的打靶位点;
Dof14-T1:TCAACCTCCTGCTGGAGCTGGGAA(SEQ ID NO.5);
Dof14-T2:TGGCTCAATCAGGCCTGGAT(SEQ ID NO.6);
Dof35-T3:AGCTTCTTCCACCTCCACCA(SEQ ID NO.7);
Dof35-T4:TAAGGAGTGTCCCTGTTGGA(SEQ ID NO.8);
2.靶点接头制备:
B1’:TTCAGAggtctcTctcgCACTGGAATCGGCAGCAAAGG(SEQ ID NO.9);
B2:AGCGTGggtctcGtcagGGTCCATCCACTCCAAGCTC(SEQ ID NO.10);
B2’:TTCAGAggtctcTctgaCACTGGAATCGGCAGCAAAGG(SEQ ID NO.11);
B3:AGCGTGggtctcGtcttGGTCCATCCACTCCAAGCTC(SEQ ID NO.12);
B3’:TTCAGAggtctcTaagaCACTGGAATCGGCAGCAAAGG(SEQ ID NO.13);
B4:AGCGTGggtctcGagtcGGTCCATCCACTCCAAGCTC(SEQ ID NO.14);
B4’:TTCAGAggtctcTgactCACTGGAATCGGCAGCAAAGG(SEQ ID NO.15);
BL:AGCGTGggtctcGaccgGGTCCATCCACTCCAAGCTC(SEQ ID NO.16);
U-F:CTCCGTTTTACCTGTGGAATCG(SEQ ID NO.17);
gRNA-R:CGGAGGAAAATTCCATCCAC(SEQ ID NO.18);
将接头引物退火完成双链结合,反应条件:95℃1min,94℃30s循环至4℃30s,每一循环降1℃。
3.利用边切边连的方法构建gRNA表达盒,边切边连反应体系和反应条件如下表1~2:
表1
表2
4.第一轮巢式PCR扩增,提高靶点接头效率,反应体系和反应条件如下表3~4:
表3
表4
5.第二轮巢式PCR扩增,为每个gRNA表达盒首尾加上酶切位点,反应体系和反应条件如下表5~6:
表5
表6
6.边切边连将每个gRNA表达盒与pYLCRISPR/Cas9-DH表达载体相连,反应体系和反应条件如下表7~8:
表8
边切边连后的连接产物即为四靶点的Cas9双敲载体(图3),棵用于转化大肠杆菌,提取大肠杆菌的质粒,然后转化农杆菌用于后续的遗传转化实验。
实施例3、利用农杆菌侵染杨树叶盘构建转基因株系
1)挑取农杆菌菌落接种在5mL YEP液体培养基,28℃,200rpm,培养至OD600=0.6-0.8,作为一活液。
2)将农杆菌一活液按照1:100的比例接种在50mL YEP液体培养基,28℃,200rpm,培养至OD600=0.4-0.6,作为二活液;
3)将农杆菌二活液转移至50mL离心管中,5000g离心10分钟,弃去上清;
4)加入40-50mL WPM重悬液重悬菌体,将菌液转移至广口瓶中,28℃,200rpm,培养1小时;
5)取毛白杨无菌叶片,切成4-6mm边长的叶盘;
6)将切好的叶盘加入到重悬菌液中,侵染10分钟,每隔3-5分钟轻微摇动;
7)取出侵染后的叶盘用无菌滤纸吸去多余菌液后接种至WPM共培养培养基(WPM粉2.0g/L+蔗糖30g/L+琼脂7.8g+100μmol AS+1.0mg/L NAA+2.0mg/L ZT);
8)暗培养2天后,将叶盘转移到WPM选择培养基(WPM粉2.0g/L+蔗糖30g/L+琼脂7.8g+Hyg 9mg/L+NAA 1.0mg/L+ZT 2.0mg/L+Cef 400mg/L),25℃暗培养,期间每7-10天更换一次培养基;
9)待外植体长出愈伤组织将其转移至WPM生芽培养基(WPM粉2.0g/L+蔗糖30g/L+琼脂7.8g+Hyg 9mg/L+NAA 0.1mg/L+ZT 2.0mg/L+Cef 400mg/L),25℃光照培养,期间每两周更换一次培养基;
10)生芽培养基中外植体长1-2cm的不定芽那样将其扦插至WPM生根培养基(WPM2.0g/L+蔗糖30g/L+琼脂7.8g+Hyg 9mg/L+NAA 0.1mg/L+Cef 400mg/L),25℃光照培养;
11)待生根的幼苗长至7-10cm时取出,洗净根部琼脂移栽至土壤中温室培养。
实验例4、阳性转基因植株的鉴定
利用CTAB法对30株转基因组培苗进行DNA的提取,具体步骤如下:
1)取10mL离心管一支,加入3mL CTAB溶液(100M pH 8.0Tris-HCl,20mM EDTA,1.4M氯化钠,2% PVP(聚乙烯吡咯烷酮),121℃高压灭菌20分钟后室温保存)和90μLβ-巯基乙醇(终浓度为3%),65℃预热;
2)取约2.6g杨树新鲜叶片于液氮中研磨成粉末,转移至步骤1)中CTAB提取液中,混匀;
3)65℃水浴45分钟,每隔15分钟剧烈振荡混匀一次;
4)室温静置5分钟后加入等体积的氯仿:异戊醇(24:1)溶液,剧烈颠倒混匀后平放乳化10分钟;
5)1000rpm,离心10分钟,吸取上清到新的离心管中,重复步骤4)一次;
6)1000rpm,离心10分钟,吸取上清到新的离心管中,加入等体积-20℃预冷的异丙醇,轻柔颠倒混匀后12000rpm,离心10分钟;
7)倒掉上清,并用500μL 75%乙醇溶液清洗沉淀两次;
8)尽量倒净上清,并在37℃恒温烘箱烘干沉淀至透明;
9)加入50μL含有RNA酶的无菌水溶解沉淀并消化RNA;
之后设计引物扩增包含Dof14和Dof35敲除靶点的DNA片段,利用胶回收试剂盒回收目标DNA,具体步骤如下:
1)将含有目的条带的琼脂糖凝胶切下,放入2mL离心管;
2)加入3倍凝胶体积的Extraction Buffer;
3)65℃水浴锅直至凝胶融化;
4)如果目的片段小于500bp可加入与凝胶等体积的异丙醇;
5)将混合溶液转移至Spin column内,6000g离心1分钟,弃去管内液体;
6)向Spin column中加入500μL Extraction Buffer,12000g离心1分钟,弃去管内液体;
7)向Spin column中加入500μL Wash Buffer,12000g离心1分钟,弃去管内液体;
8)重复步骤7)一次;
9)空柱12000g,离心1分钟;
10)将Spin column转移至新的1.5mL离心管,加入30μL Elution Buffer,室温静置2分钟,12000g,离心1分钟;
之后将回收的目的DNA片段与PMD19载体进行连接,反应体系如下表9所示:
表9
反应条件:16℃,8小时。
之后将所得载体进行大肠杆菌转化,具体步骤如下:
1)将制备好的大肠杆菌感受态细胞和待转质粒按照10:1的比例混合,冰上放置30分钟;
2)42℃热激90秒钟,立刻置于冰上,静置2分钟;
3)加入800μL无筛选压的LB液体培养基,37℃,200rpm,复苏1小时;
4)4000g离心5分钟;
5)弃上清,留约100μL培养基重悬菌体涂于对应抗性的LB培养基,37℃培养。
之后利用PMD19通用引物进行菌落PCR筛选阳性菌落,反应条件如下表10~11:
表10PCR反应体系
表11PCR反应条件
对所挑取的阳性克隆进行测序,通过利用DNAMAN进行序列比对,确定了L3和L14为阳性转基因株系,其突变位点如附图4所示。
进行组培苗无菌培养,练苗移栽,用于后续实验。通过测定Dof14和Dof35的Cas9双敲转基因株系与对照组野生型毛白杨的宏观表型指标,结果显示转基因株系相较野生型毛白杨,在株高,茎粗,节间数方面都呈现明显的优势,如附图5所示。
通过振荡切片机对转基因株系和对照组野生型毛白杨的第八节间进行切片观察,测定相应株系的木质部宽度和木质部细胞层数,来表征木质部的发育情况,结果表明,与野生型毛白杨相比,转基因株系的木质部细胞层数和木质部宽度都明显增多,如附图6所示。
实验例5、利用Boxbio试剂盒进行木质素含量的测定
具体步骤如下:
1.样品80℃烘干至恒重,粉碎后过30-50目筛,即为待测样本。
2.紫外分光光度计预热30min以上,调节波长至280nm,冰乙酸调零。
3.在带盖玻璃试管(不建议使用普通离心管)中依次加入下表12所列试剂:
表12
4.密封后充分混匀,80℃水浴40min,进行乙酰化,每隔10min缓慢混匀一次,反应结束后自然冷却至室温,之后再在每个反应管中加入500微升的试剂二,充分混匀,室温静止片刻后取上清。
5.吸取1mL反应液至1mL石英比色皿中,测定280nm处吸光值,记为A测定和A空白,反应液配比如下表13:
表13
6.计算木质素含量,公式为:
利用boxbio公司的木质素含量检测试剂盒,对转基因株系和对照组野生型毛白杨的木质素含量进行了测定,结果如附图7所示,转基因株系木质素含量在2月龄幼苗期时可达到471.744mg/g,相较野生型毛白杨中木质素平均含量370.406mg/g,转基因株系的木质素含量显著提高。
实验例6、茎干抗压能力检测
取阳性株系和对照组野生型毛白杨的第16节间完整茎段,将其放置在茎干强度测定仪的载物架上,将夹具对准茎段中心,拉动操作杆,利用夹具使茎段压断,读取操作仪上的峰值数据,即为茎干的抗压能力。
Dof14和Dof35 CRISPR-Cas9双元突变株系与对照野生型毛白杨的茎干抗压能力统计如图8所示,结果显示转基因株系茎干抗压能力最高可达74N,相较野生型毛白杨中茎干抗压能力平均值53N,转基因株系的抗压能力显著提高。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (5)

1.一种增强毛白杨的木材抗压性能的方法,其特征在于,通过在毛白杨中同时抑制Dof家族基因Dof14和Dof35的表达,从而提高木质素含量,增强木材的抗压性能。
2.根据权利要求2所述的方法,其特征在于,所述Dof14和Dof35的编码区序列如SEQ IDNo.3~4所示。
3.根据权利要求1所述的方法,其特征在于,所述抑制Dof家族基因Dof14和Dof35的表达的方法为:采用CRISPR-Cas9基因编辑技术,以SEQ ID No.5和SEQ ID No.6所示位点为Dof14基因敲除靶点,以SEQ ID No.7和SEQ ID No.8所示位点为Dof35基因敲除靶点,构建四靶点的CRISPR-Cas9双基因敲除载体。
4.根据权利要求3所述的方法,其特征在于,使用pYLCRISPR/Cas9-DH为载体骨架构建四靶点的CRISPR-Cas9双基因敲除载体。
5.根据权利要求1所述的方法,其特征在于,具体步骤为:将所构建成功的CRISPR-Cas9双基因敲除载体利用农杆菌介导的侵染叶盘法转入野生型毛白杨中,经过诱导愈伤、生芽、生根之后,筛选出阳性株系,得到木质素含量提高、木材抗压性能增强的转基因株系。
CN202410019090.2A 2024-01-05 2024-01-05 一种增强毛白杨的木材抗压性能的方法 Pending CN117802152A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410019090.2A CN117802152A (zh) 2024-01-05 2024-01-05 一种增强毛白杨的木材抗压性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410019090.2A CN117802152A (zh) 2024-01-05 2024-01-05 一种增强毛白杨的木材抗压性能的方法

Publications (1)

Publication Number Publication Date
CN117802152A true CN117802152A (zh) 2024-04-02

Family

ID=90423461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410019090.2A Pending CN117802152A (zh) 2024-01-05 2024-01-05 一种增强毛白杨的木材抗压性能的方法

Country Status (1)

Country Link
CN (1) CN117802152A (zh)

Similar Documents

Publication Publication Date Title
CN113528551B (zh) 一种天麻超氧化物歧化酶基因及其应用
LU503408B1 (en) Application of ibccd4 gene in regulating carotenoid content in root tubers of sweet potato
CN113564184A (zh) 一种天麻谷氨酰胺合成酶基因及其应用
CN116515838A (zh) 一种改善杨树性状的方法
CN106480163A (zh) 一种联合苹果愈伤组织细胞培养和遗传转化鉴定苹果抗病基因的方法
CN109609514B (zh) 梨转录因子PbrMYB169及其应用
CN117402908B (zh) Gl6.1基因在调控水稻粒型中的应用
CN112126652B (zh) 水稻OsAUX3基因在调控水稻种子粒长中的应用
CN111718887B (zh) 一种用于分离花生不同组织器官原生质体的方法及其应用
CN117802152A (zh) 一种增强毛白杨的木材抗压性能的方法
CN115747233A (zh) 一种调控草莓叶色的FaPDS基因及其应用
LU505178B1 (en) Ark1 gene of 84k populus l. and application thereof in hybrid populus l.
CN116640775B (zh) 能够增强MBW复合体调控花青苷合成能力的龙眼DlMYB15基因
CN113755520B (zh) 半矮化香蕉基因编辑载体及其构建方法和应用
CN114891802B (zh) OsDUF6基因及其编码蛋白在水稻耐盐性育种中的应用
CN114717210B (zh) 一种杨树香叶基香叶醇还原酶及其编码基因与应用
CN117384266A (zh) 毛白杨木纤维次生壁调控转录因子PtoKANT3a及其应用和方法
Ouma Improving bioenergy lignocellulosic feedstock through CRISPR-Cas9 technology in switchgrass (Panicum virgatum L.)
Álvarez et al. Cork oak trees (Quercus suber L.)
CN117512003A (zh) PtoESK1基因在提高毛白杨机械强度和木材产量中的应用
CN116640771A (zh) 一种靶向敲除CsWRKY41基因的sgRNA、CRISPR/Cas9载体及应用
CN118581135A (zh) 一种杨树cdpk6基因在林木育种中的应用
CN118086379A (zh) 一种基于基因编辑技术改良毛白杨生物性状的方法及应用
CN118755764A (zh) 紫花苜蓿MsCYP19-1B基因在调控植物开花和生物产量中的应用
CN118546999A (zh) 敲除毛白杨shou4基因在提高木材生物量中的应用及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination