CN117794855A - 碳石墨制品的生产方法 - Google Patents

碳石墨制品的生产方法 Download PDF

Info

Publication number
CN117794855A
CN117794855A CN202180101485.1A CN202180101485A CN117794855A CN 117794855 A CN117794855 A CN 117794855A CN 202180101485 A CN202180101485 A CN 202180101485A CN 117794855 A CN117794855 A CN 117794855A
Authority
CN
China
Prior art keywords
container
carbon
products
graphite
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202180101485.1A
Other languages
English (en)
Inventor
叶夫根尼·康斯坦丁诺维奇·列先科
奥列格·伊戈列维奇·费丁
德米特里·瓦列里耶维奇·马鲁什金
亚历山大·谢尔盖耶维奇·切尔卡索夫
列斯亚·格里戈里耶芙娜·丘马克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luqi Research And Production Association Development Research Institute Jsc
Science And Innovation Nuclear Industry Scientific Development Private Enterprise
Rosennego Aitom Jsc
Original Assignee
Luqi Research And Production Association Development Research Institute Jsc
Science And Innovation Nuclear Industry Scientific Development Private Enterprise
Rosennego Aitom Jsc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from RU2021130743A external-priority patent/RU2780454C1/ru
Application filed by Luqi Research And Production Association Development Research Institute Jsc, Science And Innovation Nuclear Industry Scientific Development Private Enterprise, Rosennego Aitom Jsc filed Critical Luqi Research And Production Association Development Research Institute Jsc
Publication of CN117794855A publication Critical patent/CN117794855A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及碳产品的生产,即碳产品在烧制过程中的加工技术,可用于制造电极、坩埚、加热器以及核工程材料(如铀‑石墨燃料元件)等各种技术领域。根据本发明,在生产碳石墨制品的过程中,包括将坯料放入装有填土的容器中,并在空气环境中进行焙烧,尿素被用作容器填土,其用量为坯料的5‑10重量百分比。容器被放置在一个密闭的容器中,空气进入受限,容器中填充碳填土,填土中也含有尿素,含量为填土的5‑10重量%。本发明的任务和使用本发明所取得的技术成果是简化焙烧工艺,提高碳石墨产品的质量,特别是小尺寸产品的质量,因为排除了它们的氧化和填土的凝结。

Description

碳石墨制品的生产方法
发明涉及的技术领域
本发明涉及碳产品的生产,即碳产品在烧制过程中的加工技术,可用于制造电极、坩埚、加热器以及核工程材料(如铀-石墨燃料元件)等各种技术领域。
有关现有技术的信息
碳石墨产品的生产过程由多项技术操作组成,其中焙烧在碳石墨产品生产中占有特殊地位。烧制环境毛坯时的主要过程是由粘合剂形成胶结焦炭晶格。在这种情况下,粘合剂会发生热破坏,形成半焦,然后转化为焦炭。烧制决定了碳石墨产品的质量和性能特性。碳石墨产品的质量在很大程度上取决于其在烧制过程中的氧化程度。
众所周知,在氧化介质中,碳石墨在相对较低的温度下(400°C 以下)是稳定的,但在高温下则相对容易发生反应。根据介质的不同,与石墨发生明显相互作用的温度也会有很大差异。例如,与空气中的氧气在 400°C 开始反应,与二氧化碳在 500°C 开始反应(列娃绍娃·安·伊、克拉夫措夫·安·弗,碳材料化学技术:教学参考书,托木斯克,出版社:托木斯克理工大学,2008年,第14页)此外,在烧制过程中,碳石墨坯料的氧化部分和非氧化部分会发生不同程度的收缩,这不可避免地会导致开裂和断裂。因此,在400-600°C的焙烧温度范围内,需要以最负责任的方式选择气体介质。
通过墙壁对产品进行间接加热,以确保烧制过程的质量。然而,在绝大多数情况下,这还远远不够。解决这一问题的方法是将碳石墨坯料置于填料(填土)中,这样可以部分保护产品免受氧化和变形,使温度场更均匀地分布在加热室的容积中,从而减小温度梯度,影响炉内气体环境的成分和压力。(列娃绍娃·安·伊、克拉夫措夫·安·弗,碳材料化学技术:教学参考书,托木斯克,出版社:托木斯克理工大学,2008年,第72页)碾碎的冶金焦炭或无烟煤与河沙的混合物被用作填土。
有一种获得碳石墨制品的已知方法,其热处理方法是在粘合剂相变区域定期降低制品的焙烧温度(RU 2230380, МПК G21C 21/02 (2000.01), 发布于2004年6月10日)。这种烧制需要在惰性或还原气氛中进行热处理,这就使工艺的设备设计变得复杂。
获得碳石墨产品的方法是已知的,根据这种方法,产品的焙烧是在一个容器中进行的,容器中的挥发性气体处于高压状态(SU 865789, МПК С01В 31/04 (2000.01),发布于1981年9月23日)。这种方法的缺点是,在将工件压入容器并进行后续热处理时,释放出的挥发性气体压力高达几十个大气压。此外,还需要一个专门定制的容器,因此很难将这种方法用于大规模生产产品。
在技术本质和所解决的问题上最接近的是一种获得碳石墨产品的方法,包括将碳石墨坯料放置在容器中,在坯料和容器壁之间填充碳,然后在释放挥发物的压力下在密封容器中烧制坯料并使其石墨化(GB 759160, МПК C04B 35/532,发布于1956年10月17日)。这种方法在获得大型产品方面非常有效,因为填土材料中的空气量不足以使被烧制的钢坯表面明显氧化。然而,在有填土的情况下烧制小尺寸坯料会导致坯料部分氧化,并使填土粘附在成品表面。此外,在高温高压(几十个大气压)的密封容器中进行烧制,也使工艺的硬件设计变得更加复杂。
发明的本质
本发明的任务和使用本发明所取得的技术成果是简化焙烧工艺,提高碳石墨产品的质量,特别是小尺寸产品的质量,因为排除了它们的氧化和填土的凝结。
根据本发明,在获取碳石墨制品的方法中,包括将坯料放入装有填土的容器中,并在空气环境中烧制,尿素被用作容器的填土,坯料的装载量为5-10重量%,容器被放置在一个封闭的容器中,该容器与空气的接触受到限制,容器中装满了同样含有尿素的碳填土,填土的装载量为5-10重量%,从而解决了上述问题。
确认实施本发明的可能性的信息
在本发明的具体实施例中:
- 格拉弗莱克斯或石墨被用作坯料的容器材料;
- 石油粒状焦用作碳填土;
- 坯料在加热至750-800°C时进行烧制。
将尿素(NH2)2CO)添加到碳填充物和装有待烧制样品的容器中,以便在退火过程中提供(创造)保护气氛。加热到 150°C 及以上时,尿素会分解生成氨和二氧化碳。而二氧化碳在温度≥ 500°C 时与碳发生反应生成一氧化碳:
С +СО2 =2СО
由此产生的一氧化碳和氨气可作为保护气氛,防止烧制样品氧化。
对通过压制石墨粉与苯酚-甲醛树脂的混合物而获得的环境坯料,测试了拟议的碳石墨产品烧制方法。
方法的实施。
由粒径小于 100 微米的石墨粉МПГ-6(5-100微米)和人造石墨混合物以及粘合剂材料(即СФП 011А级苯酚-甲醛树脂,为18重量%)制成的坯料尺寸约为12.8 x 55毫米(直径 х 长度),在 70 - 130°C 的温度和 8-10 兆帕的压力下进行压制。
根据所要求的技术解决方案,压缩的环境坯料被放置在由ГМЗ石墨和格拉弗莱克斯制成的圆柱形容器中,容器中的尿素填土量占装载坯料的5-10重量%。
装有钢坯和尿素的容器被放置在一个由耐热钢制成的容器中,该容器通过盖子提供有限的空气流通,上面覆盖着焦炭填土,其中还含有占填土5-10重量%的尿素。焙烧在SNOL6/10型标准煅烧马弗炉中进行,加热速度为30-50°C/小时,最高温度为750°C。第1号对照样品(见表)是在不添加尿素的情况下烧制的。碳石墨样品的烧制结果见下表。
表中给出的焙烧结果显示,样品的重量损失在6.9%到10.2%之间。样品的这种质量损失主要是由于粘合剂,即苯酚-甲醛树脂СФП 011А,的热分解造成的,其次是由于碳的部分氧化造成的。由于所有样品因粘合剂热分解而造成的质量损失大致相同,因此可以通过烧制样品的总质量损失(粘合剂热分解造成的质量损失加上碳氧化造成的损失)来判断样品的氧化程度。
从所提供的数据可以看出,3-5号样品的质量损失最小,这些样品是在碳填充物中添加了5-10重量%的尿素后烧制的,容器则是退火样品。这些烧制后的样品表面光滑发亮,没有明显的氧化痕迹。
实验数据显示,当填土材料中的尿素含量超过规定范围的上限时,产品(样品)的质量损失不会发生明显变化,而当超过规定范围的下限时,样品的质量损失会增加,因此,退火样品的表面也会出现明显的氧化现象。
所提出的方法可以大大简化碳石墨产品的生产,因为它可以在传统的煅烧马弗炉中进行热处理,而无需使用惰性气体和还原气体,也无需使用复杂的聚合系统来密封装有烧制样品的容器,而且由于排除了表面氧化和填料与表面的咬合,还可以提高产品的质量。
所提出的碳石墨产品获取方法既可用于烧制通过粉末冶金法获得的环境坯料,也可用于用各种金属的盐溶液浸渍石墨和其他多孔陶瓷材料。建议的方法对获得小尺寸产品特别有效,对产品的氧化可能性、无裂纹和表面状况都有严格的要求。

Claims (4)

1.获取碳石墨制品的方法中,包括将坯料放入装有填土的容器中,并在空气环境中烧制,其特征在于尿素被用作容器的填土,坯料的装载量为5-10重量%,容器被放置在一个封闭的容器中,该容器与空气的接触受到限制,容器中装满了同样含有尿素的碳填土,填土的装载量为5-10重量%,从而解决了上述问题。
2.根据权利要求1所述的方法,其特征在于格拉弗莱克斯或石墨被用作坯料的容器材料。
3.根据权利要求1所述的方法,其特征在于石油粒状焦用作碳回填。
4.根据权利要求1所述的方法,其特征在于坯料通过加热至750-800℃的温度进行烧制。
CN202180101485.1A 2021-10-21 2021-12-08 碳石墨制品的生产方法 Pending CN117794855A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2021130743A RU2780454C1 (ru) 2021-10-21 Способ получения углеграфитовых изделий
RU2021130743 2021-10-21
PCT/RU2021/000550 WO2023068964A1 (ru) 2021-10-21 2021-12-08 Способ получения углеграфитовых изделий

Publications (1)

Publication Number Publication Date
CN117794855A true CN117794855A (zh) 2024-03-29

Family

ID=86058420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180101485.1A Pending CN117794855A (zh) 2021-10-21 2021-12-08 碳石墨制品的生产方法

Country Status (5)

Country Link
EP (1) EP4421033A1 (zh)
KR (1) KR20240034196A (zh)
CN (1) CN117794855A (zh)
CA (1) CA3225729A1 (zh)
WO (1) WO2023068964A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB759160A (en) 1953-08-04 1956-10-17 Atomic Energy Authority Uk Improvements in or relating to production of carbon masses
SU920345A1 (ru) * 1979-06-18 1982-04-15 Государственный Научно-Исследовательский И Проектно-Конструкторский Институт Электродной Промышленности Способ получени углеграфитовых изделий
SU863567A1 (ru) * 1979-12-18 1981-09-15 Предприятие П/Я А-1837 Засыпка дл термообработки углеродных изделий
SU865789A1 (ru) * 1979-12-28 1981-09-23 Предприятие П/Я М-5409 Способ получени углеграфитовых изделий и контейнер дл размещени и обжига коксопековых заготовок
SU1685868A1 (ru) * 1989-07-11 1991-10-23 Предприятие П/Я М-5409 Способ пакетировки крупногабаритных длинномерных углеродных заготовок в процессе обжига
RU2230380C2 (ru) 2002-07-24 2004-06-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт Научно-производственное объединение "Луч" Способ получения углеграфитовых изделий

Also Published As

Publication number Publication date
KR20240034196A (ko) 2024-03-13
EP4421033A1 (en) 2024-08-28
CA3225729A1 (en) 2023-04-27
WO2023068964A1 (ru) 2023-04-27

Similar Documents

Publication Publication Date Title
US3700435A (en) Method for making powder metallurgy shapes
US4693863A (en) Process and apparatus to simultaneously consolidate and reduce metal powders
Rongti et al. Kinetics and mechanism of carbothermic reduction of magnesia
Angers et al. Hot-pressing of boron carbide
US4227927A (en) Powder metallurgy
US2546320A (en) Method of sintering titanium and like metals
US2526805A (en) Method of forming uranium carbon alloys
CN117794855A (zh) 碳石墨制品的生产方法
US3341325A (en) Method for producing alloy-steel articles
Kim et al. Grain growth and densification of uranium mononitride during spark plasma sintering
US3011982A (en) Refractory and method of making the same
US2352316A (en) Method of producing shaped bodies from powdery ferrous material
RU2780454C1 (ru) Способ получения углеграфитовых изделий
US3450528A (en) Method for producing dispersioned hardenable steel
US4407775A (en) Pressureless consolidation of metallic powders
NO781522L (no) Fremgangsmaate for fremstilling av ildfaste gjenstander av metalldiborider
US3258317A (en) Preparation of dense uranium oxide
Hausner et al. The powder metallurgy of uranium
Sadrnezhaad et al. Effect of Si antioxidant on the rate of oxidation of carbon in MgO-C refractory
EA047344B1 (ru) Способ получения углеграфитовых изделий
US2823116A (en) Method of preparing sintered zirconium metal from its hydrides
Markoulides et al. Important factors which affect the removal of organic residues during the presintering of WC-Co
JP3038489B2 (ja) 金属複合カーボン材の製造方法
US3114629A (en) Production of columbium and tantalum
US3053649A (en) Methods for the obtainment of articles of chromium or containing chromium and in articles obtained by these methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination