CN117702141A - 有机配体吸附效应促进电催化乙二醇制乙醇酸的方法 - Google Patents

有机配体吸附效应促进电催化乙二醇制乙醇酸的方法 Download PDF

Info

Publication number
CN117702141A
CN117702141A CN202311787736.3A CN202311787736A CN117702141A CN 117702141 A CN117702141 A CN 117702141A CN 202311787736 A CN202311787736 A CN 202311787736A CN 117702141 A CN117702141 A CN 117702141A
Authority
CN
China
Prior art keywords
organic ligand
glycol
electrocatalytic
promoting
adsorption effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311787736.3A
Other languages
English (en)
Inventor
栗振华
于燕国
闫一凡
张秩远
周华
邵明飞
段雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quzhou Resource Chemical Innovation Research Institute
Beijing University of Chemical Technology
Original Assignee
Quzhou Resource Chemical Innovation Research Institute
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quzhou Resource Chemical Innovation Research Institute, Beijing University of Chemical Technology filed Critical Quzhou Resource Chemical Innovation Research Institute
Priority to CN202311787736.3A priority Critical patent/CN117702141A/zh
Publication of CN117702141A publication Critical patent/CN117702141A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,以负载阳极催化剂(贵金属/有机配体)的导电基底作为阳极、以阴极催化剂作为阴极、与电解液组装成电解池,在电解液中加入乙二醇,在电催化条件下,乙二醇在阳极被氧化生成乙醇酸,水在阴极被还原成氢气。本发明利用有机配体与乙二醇之间的吸附效应,在催化剂表面吸附富集乙二醇,并利用贵金属产生的活性氧催化氧化乙二醇,从而大幅提高电流密度,使其达到工业生产需求,为PET塑料高效绿色转化提供了新思路,同时水在阴极被还原为氢气,进一步提高其社会经济效益。

Description

有机配体吸附效应促进电催化乙二醇制乙醇酸的方法
技术领域
本发明属于乙醇酸生产技术领域,具体涉及一种有机配体吸附效应促进电催化乙二醇制乙醇酸的方法。
背景技术
乙二醇是聚对苯二甲酸乙二醇酯(PET)塑料的关键单体。全球每年生产大约7000万吨的PET塑料,但仅有不到20%的PET通过传统机械回收方法得以回收再利用,剩下的PET产品被填埋或丢弃,造成了严重的环境污染问题,同时也浪费了大量有价值的乙二醇资源(Nat. Commun. 2021, 12, 4679)。
乙醇酸是乙二醇的氧化产物,其是生物可降解聚合物(聚乙醇酸)的单体,同时被广泛用于医疗及工业清洗剂领域。但目前乙二醇制备乙醇酸以热催化方法为主,其需要高温高压的环境,不利于工业化生产(Appl. Catal. B 2021, 284, 119803)。电催化是一种新兴绿色技术,近年来备受研究人员的关注。目前已有文献利用贵金属基催化剂实现了电催化乙二醇制乙醇酸(J. Am. Chem. Soc. 2023, 145(11), 6144-6155),但如何进一步提高电流密度,仍然是一个科研难题。
金属有机框架是一种由金属离子或簇和有机配体构成的晶体结构材料,具有高度有序的孔隙结构和巨大的比表面积。有机配体可以吸附富集溶解在水中的醇类分子,从而提高反应物局部浓度,进而提高电流密度。因此如果可以将有机配体吸附效应用于电氧化乙二醇制备乙醇酸,将对可持续发展做出重大贡献。
发明内容
本发明是为了解决目前电催化乙二醇制乙醇酸技术中乙二醇局部浓度低而提出的,其目的是提供一种有机配体吸附效应促进电催化乙二醇制乙醇酸的方法。
本发明是通过以下技术方案实现的:
一种有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,包括以下步骤:
(Ⅰ)组装电解池
将负载阳极催化剂的导电基底作为阳极,将阴极催化剂作为阴极,与电解液组装成电解池;
所述阳极催化剂为有机配体负载贵金属;
(Ⅱ)电催化反应
在电解液中加入乙二醇,在电催化条件下,乙二醇在阳极被氧化生成乙醇酸,水在阴极被还原生成氢气。
在上述技术方案中,所述电解液为电解质水溶液、酸溶液或磷酸缓冲溶液;所述电解质为氢氧化钾、氢氧化钠、碳酸氢钠、碳酸钠、氯化钠、碳酸氢钾、碳酸钾或氯化钾中的任意一种或几种;所述电解质水溶液中电解质的质量浓度为2 g/L ~500 g/L;所述酸溶液为硫酸溶液、盐酸溶液或硝酸溶液中的任意一种或几种,酸溶液中H+溶度为1 g/L ~100 g/L;所述磷酸缓冲溶液的浓度为10 g/L ~200 g/L。
在上述技术方案中,所述阴极催化剂为过渡金属磷化物、过渡金属氧化物、过渡金属氮化物、过渡金属硫化物、过渡金属硼化物、铂基催化剂、镍基催化剂、钌基催化剂、铑基催化剂或铜基催化剂中的任意一种或几种的混合物;当阴极催化剂为粉体时,所述阴极由导电基底负载阴极催化剂组成。
在上述技术方案中,所述导电基底为泡沫镍、镍片、镍网、泡沫钛、钛网、钛片、泡沫铜、铜网、铜片、泡沫锌、泡沫铝、碳布、碳纸、不锈钢片或不锈钢网中的任意一种。
在上述技术方案中,所述有机配体为2-甲基咪唑、对苯二甲酸、十二烷基磺酸钠、十二烷基硫酸钠、2,2'-联吡啶酮、2,6-二甲基吡啶或邻菲啰啉中的任意一种;所述贵金属为铑、钌、铱、钯、银、铂或金中的任意一种或几种。
在上述技术方案中,所述有机配体通过水热法、电沉积法、离子交换法、液相还原法或热熔融法合成于导电基体上。
在上述技术方案中,所述导电基体负载的有机配体的水热合成方法具体为:在N,N-二甲基甲酰胺与水的混合溶剂中,加入有机配体、可溶的过渡金属盐和氢氧化钠,超声分散获得混合溶液,然后将导电载体和混合溶液放入反应釜中水热反应,即得到导电载体负载的有机配体。上述导电基底负载有机配体的合成过程中加入过渡金属盐,有机配体+过渡金属组成MOF材料,即金属有机框架化合物,实现载体作用,过渡金属的加入稳定了有机配体,避免有机配体与导电基体脱离,过渡金属的加入对后续负载贵金属和催化都没有影响。
在上述技术方案中,所述贵金属通过电沉积法负载于有机配体上。
在上述技术方案中,所述电沉积为循环伏安法,所述循环伏安法的具体条件为0 V~-0.5 V vs. RHE电压下电沉积5~40圈。
在上述技术方案中,所述电解液中乙二醇的浓度为2 g/L ~100 g/L。
在上述技术方案中,所述步骤(Ⅱ)的电催化条件是在室温常压下进行,电压为0 V~2 V vs. RHE。
本发明的有益效果是:
本发明提供了一种有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,构筑贵金属/有机配体催化剂作为阳极电催化剂,以水分子作为氧化还原反应中的氢和氧的来源,利用有机配体与乙二醇分子之间的吸附效应吸附富集溶解在水中的乙二醇,提高催化剂表面的乙二醇局部浓度,从而大幅提高电流密度,以满足工业生产需求(>300 mA/cm2),为绿色高效制备乙醇酸提供了新的思路。
附图说明
图1是本发明碱性环境中电催化氧化乙二醇及氢气析出的原理示意图;
图2是本发明实施例1中阳极催化剂的扫描电镜图;
图3是本发明实施例1中阳极催化剂电催化乙二醇的线性极化曲线图;
图4是本发明实施例1氧化产物的高效液相色谱图。
图5是本发明实施例2中阳极催化剂的扫描电镜图;
图6是本发明实施例2乙二醇氧化产物的高效液相色谱图。
图7是本发明实施例3中阳极催化剂的扫描电镜图;
图8是本发明实施例3乙二醇氧化产物的高效液相色谱图。
对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据以上附图获得其他的相关附图。
具体实施方式
为了使本技术领域的人员更好地理解本发明技术方案,下面结合说明书附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例1
Pt/ZIF-67(铂/钴-2-甲基咪唑)用于高效电催化乙二醇制乙醇酸耦合产氢:
(1)制备阳极和阴极
A. 阳极(泡沫镍负载Pt/ZIF-67)的制备
首先,制备泡沫镍负载的ZIF-67,具体方法为:在10 ml的N,N-二甲基甲酰胺与30ml的水溶液中,加入0.33 g的2-甲基咪唑、0.58 g的六水合硝酸钴和0.64 g的氢氧化钠。超声30 min,然后将泡沫镍和该混合溶液放入反应釜中,在100 ℃下反应10 h,以得到泡沫镍负载的ZIF-67。
然后,制备泡沫镍负载的Pt/ZIF-67,具体方法为:配置5 mM 的六水合六氯铂酸与2.5 mM氯化钠混合溶液,将泡沫镍负载的ZIF-67用作工作电极、铂片用作对电极、饱和甘汞电极为参比电极组成三电极体系;采用循环伏安法,设置参数为:0至-0.5 V vs. SCE,电沉积10圈,即可获得阳极泡沫镍负载Pt/ZIF-67。
所得阳极催化剂Pt/ZIF-67的扫描电镜图如图2所示,由图2可以看出,ZIF-67为纳米片阵列结构。
B. 阴极(铂片)的制备
剪裁尺寸为15 mm *15 mm *2 mm的铂片,剪裁后铂片用去离子水冲洗干净,即可使用。
(2)配置电解液
将5 g乙二醇加入100 mL质量浓度为50 g/L 的KOH水溶液中,得到电解液。
(3)电催化反应
将步骤(1)得到的阳极(泡沫镍负载的Pt/ZIF-67)和阴极(铂片)放入步骤(2)得到的电解液中组成电解池,然后在常温常压进行测试。LSV显示(图3),由于有机配体吸附富集乙二醇,Pt/ZIF-67的电流密度远高于Pt。随后在0.9 V vs. RHE偏压下电解1 h,完成乙醇酸的制备。
(4)检测
反应结束后,取1 mL反应液并用酸中和,振荡摇匀,过滤掉杂质后,用高效液相色谱检测产物,色谱结果如图4所示,显示乙醇酸的选择性为89.96%。由于本发明反应电压未达到OER起始电压(>1.4 V vs. RHE),且由液相结果计算法拉第效率可知,总法拉第效率为100%。
实施例2
Pt/ZIF-8(铂/锌-2-甲基咪唑)用于高效电催化乙二醇制乙醇酸耦合产氢:
(1)制备阳极和阴极
A. 阳极(泡沫镍负载的Pt/ZIF-8)的制备
首先,制备泡沫镍负载的ZIF-8,具体方法为:在10 ml的N,N-二甲基甲酰胺与30ml的水溶液中,加入0.33 g的2-甲基咪唑、0.58 g的六水合硝酸锌和0.64 g氢氧化钠。超声30 min,然后将泡沫镍和该混合溶液放入反应釜中,在100℃下反应15 h,以得到泡沫镍负载的ZIF-8
然后,制备泡沫镍负载的Pt/ZIF-8,具体方法为:配置5 mM 的六水合六氯铂酸与2.5 mM氯化钠混合溶液,将泡沫镍负载的ZIF-8用作工作电极、铂片用作对电极、饱和甘汞电极为参比电极组成三电极体系;采用循环伏安法,设置参数为:0至-0.5 V vs. SCE,电沉积5圈,即可获得阳极泡沫镍负载Pt/ZIF-8。
所得阳极催化剂Pt/ZIF-8的扫描电镜图如图5所示,由图5可以看出,ZIF-8为纳米片阵列结构,Pt颗粒为300 nm左右。
B. 阴极(泡沫镍负载Pt颗粒)的制备
制备泡沫镍负载Pt颗粒,具体方法为:配置5 mM 的六水合六氯铂酸与2.5 mM氯化钠混合溶液,将泡沫镍用作工作电极、铂片用作对电极、饱和甘汞电极为参比电极组成三电极体系;采用循环伏安法,设置参数为:0至-0.5 V vs. SCE,电沉积5圈,即可获得阳极泡沫镍负载的Pt颗粒(Pt/NF)。
(2)配置电解液
将3 g乙二醇加入250 ml质量浓度为100 g/L 的KOH水溶液中,得到电解液。
(3)电催化反应
将步骤(1)得到的阳极(泡沫镍负载的Pt/ZIF-8)和阴极(泡沫镍负载Pt颗粒)放入步骤(2)得到的电解液中组成电解池,然后在常温常压,1.1 V vs. RHE偏压下电解1 h,完成乙醇酸的制备。
(4)检测
反应结束后,取1 mL反应液并用酸中和,振荡摇匀,过滤掉杂质后,用高效液相色谱检测产物,色谱结果如图6所示,显示乙醇酸的选择性为90.87%。总法拉第效率为100%。
实施例3
Au/Ni-BDC(金/镍-对苯二甲酸)用于高效电催化乙二醇制乙醇酸耦合产氢:
(1)制备阳极和阴极
A. 阳极(泡沫镍负载Au/Ni-BDC)的制备
首先,制备泡沫镍负载的Ni-BDC,具体方法为:在10 ml的N,N-二甲基甲酰胺与30ml的水溶液中,加入0.33 g的对苯二甲酸、0.58 g的硝酸镍和0.64 g的氢氧化钠。超声30min,然后将泡沫镍和该混合溶液放入反应釜中,在100℃下反应15 h,以得到泡沫镍负载的Ni-BDC。
然后,制备泡沫镍负载的Au/Ni-BDC,具体方法为:配置5 mM 的氯化金与2.5 mM氯化钠混合溶液,将泡沫镍负载的Ni-BDC用作工作电极、铂片用作对电极、饱和甘汞电极为参比电极组成三电极体系;采用循环伏安法,设置参数为:0至-0.5 V vs. SCE,电沉积20圈,即可获得阳极泡沫镍负载Au/Ni-BDC。
所得阳极催化剂Au/Ni-BDC的扫描电镜图如图7所示,由图7可以看出,Ni-BDC为纳米片阵列结构, Au颗粒大小为300 nm左右。
B. 阴极(泡沫镍负载氧化镍)的制备
首先在0.3 M的硝酸镍溶液中,泡沫镍用作工作电极,铂片用作对电极,饱和甘汞电极为参比电极组成三电极体系,在-1.2 V vs. RHE下电沉积600 s得到Ni(OH)2
然后将Ni(OH)2放入马弗炉中,在400 ℃下煅烧2 h,以获得泡沫镍负载的氧化镍。
(2)配置电解液
将2 g乙二醇加入10 mL 质量浓度为20 g/L 的KOH水溶液中,得到电解液。
(3)电催化反应
将步骤(1)得到的阳极(泡沫镍负载的Au/Ni-BDC)和阴极(泡沫镍负载的氧化镍)放入步骤(2)得到的电解液中组成电解池,然后在常温常压,0.8 V vs. RHE偏压下电解1h,完成乙醇酸的制备。
(4)检测
反应结束后,取1 mL反应液并用酸中和,振荡摇匀,过滤掉杂质后,用高效液相色谱检测产物,色谱结果如图8所示,显示乙醇酸的选择性为90.03%。总法拉第效率为100%。
本发明的设计原理:
如图1所示,本发明构筑贵金属/有机配体作为阳极电催化剂,以水中氢原子/氧原子作为氧化还原反应中[H]/[O]来源,利用有机配体吸附富集溶解在水中的反应物分子,从而提高反应物局部浓度,进而提高电流密度,使其达到工业生产需求。
化学反应方程式为:
阳极反应为:C2H6O2+ 4OH-- 4e-→ C2H4O3+ 2H2O;
阴极反应为:2H2O + 2e-→ H2 + 2OH-
本发明响应可持续发展社会的呼吁,开发了有机配体吸附效应促进电催化乙二醇制乙醇酸的生产方法,通过机配体吸附富集溶解在水中的反应物分子,从而提高反应物局部浓度,进而提高电流密度,使其达到工业生产需求。为绿色高效制备乙醇酸提供了新的思路和方法。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (10)

1. 一种有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,其特征在于:包括以下步骤:
(Ⅰ)组装电解池
将负载阳极催化剂的导电基底作为阳极,将阴极催化剂作为阴极,与电解液组装成电解池;
所述阳极催化剂为有机配体负载贵金属;
(Ⅱ)电催化反应
在电解液中加入乙二醇,在电催化条件下,乙二醇在阳极被氧化生成乙醇酸,水在阴极被还原生成氢气。
2. 根据权利要求1所述的有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,其特征在于:所述电解液为电解质水溶液、酸溶液或磷酸缓冲溶液;所述电解质为氢氧化钾、氢氧化钠、碳酸氢钠、碳酸钠、氯化钠、碳酸氢钾、碳酸钾或氯化钾中的任意一种或几种;所述电解质水溶液中电解质的质量浓度为2 g/L ~500 g/L;所述酸溶液为硫酸溶液、盐酸溶液或硝酸溶液中的任意一种或几种,酸溶液中H+溶度为1 g/L ~100 g/L;所述磷酸缓冲溶液的浓度为10 g/L ~200 g/L。
3.根据权利要求1所述的有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,其特征在于:所述阴极催化剂为过渡金属磷化物、过渡金属氧化物、过渡金属氮化物、过渡金属硫化物、过渡金属硼化物、铂基催化剂、镍基催化剂、钌基催化剂、铑基催化剂或铜基催化剂中的任意一种或几种的混合物;当阴极催化剂为粉体时,所述阴极由导电基底负载阴极催化剂组成。
4.根据权利要求1或3所述的有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,其特征在于:所述导电基底为泡沫镍、镍片、镍网、泡沫钛、钛网、钛片、泡沫铜、铜网、铜片、泡沫锌、泡沫铝、碳布、碳纸、不锈钢片或不锈钢网中的任意一种。
5.根据权利要求1所述的有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,其特征在于:所述有机配体为、2-甲基咪唑、对苯二甲酸、十二烷基磺酸钠、十二烷基硫酸钠、2,2'-联吡啶酮、2,6-二甲基吡啶或邻菲啰啉中的任意一种;所述贵金属为铑、钌、铱、钯、银、铂或金中的任意一种或几种。
6.根据权利要求1所述的有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,其特征在于:所述有机配体通过水热法、电沉积法、离子交换法、液相还原法或热熔融法合成于导电基体上。
7.根据权利要求1所述的有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,其特征在于:所述贵金属通过电沉积法负载于有机配体上。
8. 根据权利要求7所述的有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,其特征在于:所述电沉积为循环伏安法,所述循环伏安法的具体条件为0 V~-0.5 V vs. RHE电压下电沉积5~40圈。
9. 根据权利要求1所述的有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,其特征在于:所述电解液中乙二醇的浓度为2 g/L ~100 g/L。
10. 根据权利要求1所述的有机配体吸附效应促进电催化乙二醇制乙醇酸的方法,其特征在于:所述步骤(Ⅱ)的电催化条件是在室温常压下进行,电压为0 V~2 V vs. RHE。
CN202311787736.3A 2023-12-25 2023-12-25 有机配体吸附效应促进电催化乙二醇制乙醇酸的方法 Pending CN117702141A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311787736.3A CN117702141A (zh) 2023-12-25 2023-12-25 有机配体吸附效应促进电催化乙二醇制乙醇酸的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311787736.3A CN117702141A (zh) 2023-12-25 2023-12-25 有机配体吸附效应促进电催化乙二醇制乙醇酸的方法

Publications (1)

Publication Number Publication Date
CN117702141A true CN117702141A (zh) 2024-03-15

Family

ID=90156836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311787736.3A Pending CN117702141A (zh) 2023-12-25 2023-12-25 有机配体吸附效应促进电催化乙二醇制乙醇酸的方法

Country Status (1)

Country Link
CN (1) CN117702141A (zh)

Similar Documents

Publication Publication Date Title
Arshad et al. Recent advances in electrocatalysts toward alcohol-assisted, energy-saving hydrogen production
Morales et al. Electrocatalytic conversion of glycerol to oxalate on Ni oxide nanoparticles-modified oxidized multiwalled carbon nanotubes
Guzmán et al. CO 2 valorisation towards alcohols by Cu-based electrocatalysts: Challenges and perspectives
CN113774398B (zh) 醇或醛选择性氧化耦合产氢的方法
CN111672514A (zh) 一种双功能电催化材料及其制备方法与应用
CN113828300A (zh) 金属掺杂铋层状氧化物的制备方法及其在电催化还原co2中的应用
CN114277398B (zh) 一种纳米铜催化剂的制备方法与应用
Badreldin et al. A critical look at alternative oxidation reactions for hydrogen production from water electrolysis
CN110538650A (zh) 一种氧化铈负载铋纳米催化剂及其制备方法和应用
Bellini et al. Energy & chemicals from renewable resources by electrocatalysis
CN115505945A (zh) 二氧化碳电还原耦合醇氧化无隔膜共产甲酸盐的工艺方法
Li et al. Recent advances in hybrid water electrolysis for energy-saving hydrogen production
Khan et al. Zero-crossover electrochemical CO2 reduction to ethylene with co-production of valuable chemicals
CN114457365A (zh) 一种Pt-Ni复合材料、其制备方法及其作为电解水制氢催化剂的应用
Chen et al. Minireview of Coupled Electrochemical Hydrogen Production and Organic-Oxidation for Low Energy Consumption
CN115896822A (zh) 电催化多元醇制备多元醇酸耦合产氢的方法
CN111992219B (zh) 一种新型镍铁电解水产氧催化剂及其制备方法
CN117702141A (zh) 有机配体吸附效应促进电催化乙二醇制乙醇酸的方法
CN113215616B (zh) 一种IrCoFe@MXene复合催化剂及其制备方法和应用
CN110354860B (zh) 一种析氧反应电化学催化剂、制备方法及应用
Angizi et al. Toward valorization of crude glycerol via controlled electro-oxidation
Wang et al. A review of carbon-based catalysts and catalyst supports for simultaneous organic electro-oxidation and hydrogen evolution reactions
Dong et al. Recent advances in glycerol valorization through electrocatalytic methods
Cheng et al. Reducing Energy Costs during Hydrogen Production from Water Electrolysis by Coupling Small Molecule Oxidation: From Molecular Catalysis to Industrial Exploration
Zhou et al. Glycerol Electrooxidation to Value-Added C1–C3 Chemicals: Mechanism Analyses, Influencing Factors, Catalytic Regulation, and Paired Valorization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination