CN117646171A - 一种用于硅异质结太阳能电池的锡基透明导电层的制备方法 - Google Patents

一种用于硅异质结太阳能电池的锡基透明导电层的制备方法 Download PDF

Info

Publication number
CN117646171A
CN117646171A CN202311428108.6A CN202311428108A CN117646171A CN 117646171 A CN117646171 A CN 117646171A CN 202311428108 A CN202311428108 A CN 202311428108A CN 117646171 A CN117646171 A CN 117646171A
Authority
CN
China
Prior art keywords
tin
transparent conductive
vacuum chamber
conductive layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311428108.6A
Other languages
English (en)
Inventor
郭佳成
赵东明
周玉荣
王立闯
陈传科
罗丽珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaneng Clean Energy Research Institute
University of Chinese Academy of Sciences
Original Assignee
Huaneng Clean Energy Research Institute
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaneng Clean Energy Research Institute, University of Chinese Academy of Sciences filed Critical Huaneng Clean Energy Research Institute
Priority to CN202311428108.6A priority Critical patent/CN117646171A/zh
Publication of CN117646171A publication Critical patent/CN117646171A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,将固体的纯锡金属颗粒装入金属钼舟中;打开真空腔室门,将装有纯锡金属颗粒的钼舟置入水冷坩埚内;将衬底放在旋转架上;将真空腔室抽真空;在阴极钽管中通入氩气,定向偏转并轰击在钼舟中的纯锡金属颗粒上,使得纯锡金属颗粒熔化并蒸发;向真空腔室内通入氧气;反应生成氧化锡;将沉积的金属氧化物薄膜从真空腔室中取出。本申请使用RPD设备与磁控溅射等制备方法相比,使用金属靶材相比陶瓷靶材具有价格优势,使用锡基金属合金作为蒸发源,有利于提高产品的市场竞争力。本申请透明导电层具有高透过、高电导率的特点,优势在于成本低、适用于大规模工业生产。

Description

一种用于硅异质结太阳能电池的锡基透明导电层的制备方法
技术领域
本发明涉及太阳能电池技术领域,尤其涉及一种用于硅异质结太阳能电池的锡基透明导电层的制备方法。
背景技术
透明导电氧化物TCO材料是由一种或两种金属元素组成的双相或三相化合物,其消光系数(κ)在光学区<0.0001,带隙(Eg)>3eV。TCO材料因其显著的透明度和导电性而闻名,气体传感器、平板显示器、太阳能电池、发光二极管和飞机挡风玻璃是TCO的一些应用。
具有高近红外(NIR)透过率的透明导电氧化物(TCOs)是制造具有宽光谱灵敏度的高效薄膜太阳能电池的关键材料之一。具有优异近红外透明度的TCO薄膜的关键要求是载流子电子的高霍尔迁移率(μ),并将载流子密度控制在中等范围内,抑制自由载流子吸收。为了在TCO薄膜中实现优异的近红外透明度,开发提供高迁移率(μ)载流子的掺杂剂非常重要。通常已知的TCO材料是n型半导体,如Sb或F掺杂的氧化锡,Zn或Sn掺杂的氧化铟,Ga或Al或B掺杂的氧化锌。本专利以单质金属锡为主要蒸发源,掺入钨或铝作为掺杂剂制备n型TWO薄膜(p型TAO薄膜)。
铟价和铟金属的稀有性限制ITO靶材大规模应用,低铟化、无铟化靶材是异质结大规模量产的前提。SnO2透明导电氧化物由于成本低廉,在某些应用中具有替代In2O3基透明导电氧化物的潜力。相比较传统的薄膜沉积技术(如:真空热蒸发法、电子束沉积法、磁控溅射法、化学气相沉积法),反应等离子沉积(reactive plasma deposition,RPD)在工业大规模生产时具有沉积衬底温度低、材料利用率高的优势。反应等离子体沉积的核心是气体放电过程。在平行电极中加入反应气体,通过射频方式激发气体形成等离子体系。在等离子体反应区内,反应气体进行化学反应生成所需的化合物或合金薄膜,通常反应气体中的化学反应需要高能离子介入促进反应。
反应气体组分和流量是反应等离子体沉积控制的两个重要参数,沉积过程中,严格控制气体组分与流量在适当范围内,以确保反应生成所需的化合物和合金薄膜。射频功率是反应等离子体沉积的另一个重要控制参数,射频功率可以调节等离子体反应区内的电荷密度和能量,高射频功率可以增加电子密度和电荷能量,并促进反应气体的化学反应,以达到更高的沉积速率;低射频功率则可以降低沉积速率和沉积温度,从而降低薄膜表面粗糙度生成致密均匀的薄膜。衬底温度是反应等离子体沉积最重要的温度参数,衬底温度决定了化学反应的速率和挥发物的扩散程度。在反应等离子体沉积过程中,需要调整衬底温度使沉积层致密且与衬底之间有良好的结合能力。对于硅基异质结太阳能电池来说,整个电池的工艺温度均控制在200摄氏度以下,防止非晶硅钝化层中的氢元素受热溢出造成电池空位缺陷增加,致使载流子复合电池效率降低。
因此需要设计一种用于硅异质结太阳能电池的锡基透明导电层的制备方法。
发明内容
为了克服现有技术中的缺陷,提供一种用于硅异质结太阳能电池的锡基透明导电层的制备方法。
本发明通过下述方案实现:
一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,该方法包括以下步骤:
步骤1、将固体的纯锡金属颗粒装入金属钼舟中;
步骤2、打开真空腔室门,将装有纯锡金属颗粒的钼舟置入水冷坩埚内;
步骤3、将衬底放在旋转架上;
步骤4、关闭真空腔室门,将真空腔室抽真空;
步骤5、在阴极钽管中通入氩气,通电使氩气电离起辉产生阴离子束,阴离子束在偏转线圈产生的偏转磁场作用下定向偏转并轰击在钼舟中的纯锡金属颗粒上,使得纯锡金属颗粒熔化并蒸发;
步骤6、向真空腔室内通入氧气;在通电的情况下,部分氧气被电离成活性氧,在真空腔室内,活性氧和蒸发的纯锡金属相碰撞,反应生成氧化锡;
步骤7、打开挡板,所述步骤6生成的氧化锡最终沉积到衬底上,形成金属氧化物薄膜;
步骤8、将所述步骤7沉积的金属氧化物薄膜从真空腔室中取出。
在所述钼舟的上方对应设有可以加热的金属丝。
所述金属丝采用直流电源加热,所述金属丝包括铝丝、钨丝中的一种。
所述固体纯锡金属颗粒的纯度为99.99wt%,所描述固体纯锡金属颗粒装载到金属钼舟高度的三分之二位置处。
在步骤4中,所述真空腔室抽真空是将真空腔室抽到5×10-4Pa以下的压强。
在步骤5中,在所述在阴极钽管中通入氩气的通量为120~100sccm。
在步骤5中,在所述氩气电离起辉后,在所述在阴极钽管中通入氩气的通量为100-50sccm。
在步骤5中,所述通电的电流大小为35-60A。
在步骤6中,所述通入氧气的通量为90-110sccm。
本发明的有益效果为:
1.本申请使用RPD(反应等离子体)设备与磁控溅射等制备方法相比,使用金属靶材相比陶瓷靶材具有价格优势,使用锡基金属合金作为蒸发源,有利于提高产品的市场竞争力。本申请沉积的氧化锡透明导电层具有高透过、高电导率的特点,和其他异质结电池的透明导电层(ITO、ICO、IWO、IMO)相比,最大的优势在于成本低、适用于大规模工业生产。
2.本发明一种用于硅异质结太阳能电池的锡基透明导电层的制备方法蒸发源中除Sn以外,还有W或Al、In等金属作为掺杂金属,通过在RPD工作过程中向其中通入氧气、氢气等,使被离化的金属离子氧化成为掺氢金属氧化物,并最终在衬底上形成透光性好、电导率高的TCO薄膜。
3.本发明的特点是利用锡基金属合金作为RPD蒸发源蒸镀TCO薄膜,通过这种方式蒸镀的TCO薄膜具有透光性高、电导率高等特点。
附图说明
图1为RPD设备的结构示意图。
具体实施方式
下面结合具体实施例对本发明进一步说明:
一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,该方法包括以下步骤:
步骤1、将固体的纯锡金属颗粒装入金属钼舟中;
步骤2、打开真空腔室门,将装有纯锡金属颗粒的钼舟置入水冷坩埚内;
步骤3、将衬底放在旋转架上;
步骤4、关闭真空腔室门,将真空腔室抽真空;
步骤5、在阴极钽管中通入氩气,通电使氩气电离起辉产生阴离子束,阴离子束在偏转线圈产生的偏转磁场作用下定向偏转并轰击在钼舟中的纯锡金属颗粒上,使得纯锡金属颗粒熔化并蒸发;
步骤6、向真空腔室内通入氧气;在通电的情况下,部分氧气被电离成活性氧,在真空腔室内,活性氧和蒸发的纯锡金属相碰撞,反应生成氧化锡;
步骤7、打开挡板,所述步骤6生成的氧化锡最终沉积到衬底上,形成金属氧化物薄膜;
步骤8、将所述步骤7沉积的金属氧化物薄膜从真空腔室中取出。
在所述钼舟的上方对应设有可以加热的金属丝。
所述金属丝采用直流电源加热,所述金属丝包括铝丝、钨丝中的一种。
所述固体纯锡金属颗粒的纯度为99.99wt%,所描述固体纯锡金属颗粒装载到金属钼舟高度的三分之二位置处。
在步骤4中,所述真空腔室抽真空是将真空腔室抽到5×10-4Pa以下的压强。
在步骤5中,在所述在阴极钽管中通入氩气的通量为120~100sccm。
在步骤5中,在所述氩气电离起辉后,在所述在阴极钽管中通入氩气的通量为100-50sccm。
在步骤5中,所述通电的电流大小为35-60A。
在步骤6中,所述通入氧气的通量为90-110sccm。
RPD设备结构如图1所示,RPD设备及其内部零部件的具体结构、连接方式、工作原理和过程为公知技术,在此不再赘述。
下面结合具体的实施例对本申请做进一步阐述:
实施例1
将纯金属锡颗粒作为主要蒸发源放入坩埚,用机械泵及分子泵将RPD腔体抽至背底真空8×10-4Pa,之后通过流量计通入不同流量的氩气、氧气以及氢气,并开始调节压力。电源开始工作前,RPD腔体内压力应为0.3Pa,氩气的流量为60sccm,氧气的流量为90sccm。RPD腔体内压力调节完成后,调整电源电流为60A并启动电源,此时对应的电源电压为40V,当观察到成功启辉且辉光稳定后打开挡板开始镀膜。
实施例2
本实施例中与实施例1相同之处不再赘述,不同之处如下所述:将纯金属锡颗粒作为主要蒸发源放入坩埚,同时直流加热电源缠绕钨丝,直流电源加热电压为15V,氩气的流量为50sccm,氧气的流量为90sccm。其余与实例一相同。
实施例3
本实施例中与实施例1相同之处不再赘述,不同之处如下所述:将纯金属锡颗粒作为主要蒸发源放入坩埚,同时直流加热电源缠绕铝丝,直流电源加热电压为15V,氩气的流量为40sccm,氧气的流量为90sccm。其余与实例一相同。
对各个实施例所得TCO薄膜进行检测(具体检测方法和过程为公知技术,在此不再赘述),结果表明以上所有实施例中TCO薄膜的典型厚度70-110nm,方块电阻为50-200Ω.m,透过率在可见光波段达到90%以上,各参数均达到或超过了常见TCO薄膜的典型值。
本发明一种用于硅异质结太阳能电池的锡基透明导电层的制备方法:将纯金属锡颗粒放入RPD设备的金属钼坩埚内,将衬底放置在旋转架上;关闭RPD真空腔室门,随后使用机械泵和分子泵将RPD真空腔室抽真空;向阴极钽管通入适量氩气调整腔体生长气压,启动RPD电源并调节电流融化纯金属锡颗粒;向真空腔室内通入氧气与金属锡反应生成氧化锡,打开挡板后,氧化锡最终沉积在衬底上形成硅基异质结太阳能电池的透明导电层,必要时,直流电源加热钨丝(铝丝)形成n型TWO薄膜(p型TAO薄膜)。本申请沉积的氧化锡透明导电层具有高透过、高电导率的特点,和其他异质结电池的透明导电层(ITO、ICO、IWO、IMO)相比,最大的优势在于成本低、适用于大规模工业生产。
尽管已经对本发明的技术方案做了较为详细的阐述和列举,应当理解,对于本领域技术人员来说,对上述实施例做出修改或者采用等同的替代方案,这对本领域的技术人员而言是显而易见,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (9)

1.一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,其特征在于,该方法包括以下步骤:
步骤1、将固体的纯锡金属颗粒装入金属钼舟中;
步骤2、打开真空腔室门,将装有纯锡金属颗粒的钼舟置入水冷坩埚内;
步骤3、将衬底放在旋转架上;
步骤4、关闭真空腔室门,将真空腔室抽真空;
步骤5、在阴极钽管中通入氩气,通电使氩气电离起辉产生阴离子束,阴离子束在偏转线圈产生的偏转磁场作用下定向偏转并轰击在钼舟中的纯锡金属颗粒上,使得纯锡金属颗粒熔化并蒸发;
步骤6、向真空腔室内通入氧气;在通电的情况下,部分氧气被电离成活性氧,在真空腔室内,活性氧和蒸发的纯锡金属相碰撞,反应生成氧化锡;
步骤7、打开挡板,所述步骤6生成的氧化锡最终沉积到衬底上,形成金属氧化物薄膜;
步骤8、将所述步骤7沉积的金属氧化物薄膜从真空腔室中取出。
2.根据权利要求1所述的一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,其特征在于:在所述钼舟的上方对应设有可以加热的金属丝。
3.根据权利要求2所述的一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,其特征在于:所述金属丝采用直流电源加热,所述金属丝包括铝丝、钨丝中的一种。
4.根据权利要求1所述的一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,其特征在于:所述固体纯锡金属颗粒的纯度为99.99wt%,所描述固体纯锡金属颗粒装载到金属钼舟高度的三分之二位置处。
5.根据权利要求1所述的一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,其特征在于:在步骤4中,所述真空腔室抽真空是将真空腔室抽到5×10-4Pa以下的压强。
6.根据权利要求1所述的一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,其特征在于:在步骤5中,在所述在阴极钽管中通入氩气的通量为120~100sccm。
7.根据权利要求1所述的一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,其特征在于:在步骤5中,在所述氩气电离起辉后,在所述在阴极钽管中通入氩气的通量为100-50sccm。
8.根据权利要求1所述的一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,其特征在于:在步骤5中,所述通电的电流大小为35-60A。
9.根据权利要求1所述的一种用于硅异质结太阳能电池的锡基透明导电层的制备方法,其特征在于:在步骤6中,所述通入氧气的通量为90-110sccm。
CN202311428108.6A 2023-10-31 2023-10-31 一种用于硅异质结太阳能电池的锡基透明导电层的制备方法 Pending CN117646171A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311428108.6A CN117646171A (zh) 2023-10-31 2023-10-31 一种用于硅异质结太阳能电池的锡基透明导电层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311428108.6A CN117646171A (zh) 2023-10-31 2023-10-31 一种用于硅异质结太阳能电池的锡基透明导电层的制备方法

Publications (1)

Publication Number Publication Date
CN117646171A true CN117646171A (zh) 2024-03-05

Family

ID=90042363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311428108.6A Pending CN117646171A (zh) 2023-10-31 2023-10-31 一种用于硅异质结太阳能电池的锡基透明导电层的制备方法

Country Status (1)

Country Link
CN (1) CN117646171A (zh)

Similar Documents

Publication Publication Date Title
US4514437A (en) Apparatus for plasma assisted evaporation of thin films and corresponding method of deposition
EP0385475A2 (en) Method of forming a transparent conductive film
US4596645A (en) Reactively-sputtered zinc semiconductor films of high conductivity for heterojunction devices
US4336277A (en) Transparent electrical conducting films by activated reactive evaporation
US20090014065A1 (en) Method for the production of a transparent conductive oxide coating
JP2000040429A (ja) 酸化亜鉛系透明導電膜の製造方法
US20120160663A1 (en) Sputter Deposition and Annealing of High Conductivity Transparent Oxides
US20100193352A1 (en) Method for manufacturing solar cell
JP2003105533A (ja) 透明導電膜の製造方法及び透明導電膜
US5952061A (en) Fabrication and method of producing silicon films
CN101509122B (zh) 一种碘化亚铜半导体膜的微波等离子体制备方法
CN117646171A (zh) 一种用于硅异质结太阳能电池的锡基透明导电层的制备方法
JP4170507B2 (ja) 透明導電膜の製造方法
CN112941476B (zh) 一种二氧化锡/铜/二氧化锡多层透明导电薄膜及其制备方法与应用
US20100206719A1 (en) Method for manufacturing solar cell
Amosova et al. Deposition of transparent indium tin oxide electrodes by magnetron sputtering of a metallic target on a cold substrate
JPH0329216A (ja) 透明電導膜の形成方法
WO2010051282A1 (en) Low-temperature pulsed dc reactive sputtering deposition of thin films from metal targets
JP3261049B2 (ja) スパッタリング成膜方法
JPH09170993A (ja) 酸化スズ薄膜の製造方法および該薄膜を用いたガス感知用センサ
US20100258180A1 (en) Method of forming an indium-containing transparent conductive oxide film, metal targets used in the method and photovoltaic devices utilizing said films
JPH06204537A (ja) 薄膜半導体太陽電池
Szyszka Magnetron sputtering of ZnO films
CN112941479B (zh) 一种二氧化锡/银/二氧化锡透明导电膜调整银层厚度的方法及应用
EP2796589B1 (en) Method of manufacturing an organic light-emitting display

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination