CN117625734A - 一种三蛋白杂化纳米花信号探针及其制备方法和应用 - Google Patents

一种三蛋白杂化纳米花信号探针及其制备方法和应用 Download PDF

Info

Publication number
CN117625734A
CN117625734A CN202211001232.XA CN202211001232A CN117625734A CN 117625734 A CN117625734 A CN 117625734A CN 202211001232 A CN202211001232 A CN 202211001232A CN 117625734 A CN117625734 A CN 117625734A
Authority
CN
China
Prior art keywords
nanoflower
protein
hrp
amylase
cahpo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211001232.XA
Other languages
English (en)
Other versions
CN117625734B (zh
Inventor
陈强
焦隽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202211001232.XA priority Critical patent/CN117625734B/zh
Priority claimed from CN202211001232.XA external-priority patent/CN117625734B/zh
Publication of CN117625734A publication Critical patent/CN117625734A/zh
Application granted granted Critical
Publication of CN117625734B publication Critical patent/CN117625734B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/28Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving peroxidase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/40Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/29Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using visual detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/908Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • G01N2333/926Hydrolases (3) acting on glycosyl compounds (3.2) acting on alpha -1, 4-glucosidic bonds, e.g. hyaluronidase, invertase, amylase
    • G01N2333/928Hydrolases (3) acting on glycosyl compounds (3.2) acting on alpha -1, 4-glucosidic bonds, e.g. hyaluronidase, invertase, amylase acting on alpha -1, 4-glucosidic bonds, e.g. hyaluronidase, invertase, amylase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种三蛋白杂化纳米花信号探针及其制备方法和应用,所述三蛋白绿色杂化纳米花包括淀粉酶、辣根过氧化物酶和链霉亲和素构成的三蛋白体系以及以所述淀粉酶、辣根过氧化物酶和链霉亲和素作为结点均匀生长其上的呈花瓣状的磷酸氢钙晶体。链霉亲和素可以与生物素标记竞争剂结合进行识别及放大;淀粉酶‑辣根过氧化物酶可分别分解底物,进行双信号的自校正输出。检测体系依据实际情况灵活选取,在标志物传感器领域有着普适的应用。

Description

一种三蛋白杂化纳米花信号探针及其制备方法和应用
技术领域
本发明涉及纳米材料合成技术领域,特别是涉及一种三蛋白绿色杂化纳米花信号探针及其制备方法和应用。
背景技术
纳米花是由金属和蛋白质在温和条件下形成的纳米材料。它们得益于其超高的孔隙率、优异的电催化性能、优良的热稳定性和大的比表面积,在分析领域引起了特别的关注。例如, Zhang团队使用Pd修饰的In2O3纳米花在不同温度下同时检测CO和CH4;ElhamKamali Heidari利用Pb修饰的ZnO纳米花精确检测空气中的甲胺,且可在250℃的条件下检测到25 ppm的甲胺,实现实时监测食品是否腐败变质;同样,基于三种金属纳米花包裹乙酰胆碱酯酶的传感平台可以在水中检测11种金属离子的传感器也在近期被开发。因此,纳米花可能是一种潜在的优良材料,可作为保护酶的载体,并赋予传感器可信度高的灵敏度和长期稳定性。然而,在它们的应用中出现的一个具有挑战性的问题是重金属对酶结构的破坏,从而抑制了酶的活性并使反应条件更严苛。此外,这种纳米花对环境的污染也不容小觑。因此,迫切需要一种更环保且促进酶活性的纳米花。
此外,目前分析技术包括高效液相色谱(HPLC),串联质谱(LC-MS/MS)和放射免疫分析(RIA)等已开发用于测定生物标志物。虽然这些技术具有超高的灵敏度和检测速率,但仍然存在如设备昂贵、对操作人员的资质要求高及分析时间长等弊端。因此,它们无法满足集成到即时设备中以快速检测生物标志物的要求。近年来,生物传感器以其灵敏度高、操作简便、成本低廉等优点引起了广泛关注,使其更适合用于床边检测。个人血糖仪(BGM) 已被公认为最成功的现场测试设备之一。BGM可以直接读出信号,是促进皮质醇测定可行性较高的有力工具。然而,由于测试条件复杂,单信号测量可能会产生一些假阳性结果。此外,要在复杂环境中实现灵敏检测,关键问题之一是获得稳定且可区分的信号以及区分目标的独特放大策略。因此,有必要开发具有显著信号放大能力的新型纳米材料来构建双信号生物传感器,以充分避免误差,提高可靠性和灵敏度。
发明内容
本发明的目的是针对现有技术中纳米花存在的应用壁垒及非环保的弊端,而提供一种三蛋白绿色杂化纳米花,即CaHPO4-淀粉酶-辣根过氧化物酶-链霉亲和素复合材料。
本发明的另一个目的是提供所述三蛋白绿色杂化纳米花的制备方法。
本发明的另一个目的是提供所述三蛋白绿色杂化纳米花作为信号探针在生物传感器中的应用。
为实现本发明的目的所采用的技术方案是:
一种三蛋白绿色杂化纳米花,包括淀粉酶、辣根过氧化物酶和链霉亲和素构成的三蛋白体系以及以所述淀粉酶、辣根过氧化物酶和链霉亲和素作为结点均匀生长其上的呈花瓣状的磷酸氢钙晶体。
在上述技术方案中,所述三蛋白绿色杂化纳米花的花粒径为550-650nm。
在上述技术方案中,所述三蛋白绿色杂化纳米花通过以下步骤制备:
将淀粉酶α-AM的水溶液、辣根过氧化物酶SA的水溶液以及链霉亲和素HRP的水溶液,加入到PBS缓冲液中,轻微震动摇匀,然后加入CaCl2水溶液,再次轻微震荡混匀后,静置孵育,生成白色絮状沉淀物,离心后,对沉淀物进行洗涤得到所述的三蛋白绿色杂化纳米花,记作CaHPO4-AM-HRP-SA杂化纳米花。
在上述技术方案中,淀粉酶α-AM、辣根过氧化物酶SA、链霉亲和素HRP以及PBS缓冲液的质量比(0.1~100):(0.1~10):(1~40):(0.12~12)。
作为优选的,所述淀粉酶α-AM、辣根过氧化物酶SA、链霉亲和素HRP以及PBS缓冲液的质量比(2~100):(0.5~5):(5~20):(0.12~12)。
在上述技术方案中,所述淀粉酶α-AM的水溶液的浓度为2-50mg mL-1,PBS缓冲液的浓度为3-5mM,优选为3mM。
在上述技术方案中,所述淀粉酶α-AM与链霉亲和素HRP的质量比为2:1。
在上述技术方案中,孵育在25~30℃水浴锅中进行,孵育时间为15~36h。
在上述技术方案中,对沉淀物进行洗涤时,利用超纯水洗涤2~4次。
本发明的另一方面,还包括所述三蛋白绿色杂化纳米花作为信号探针在检测皮质醇中的应用。
在上述技术方案中,所述三蛋白绿色杂化纳米花中的辣根过氧化物酶SA作为识别单元识别与所述皮质醇竞争的生物素化皮质醇结合,链霉亲和素HRP为光信号输出单元,光信号是通过HPR在H2O2存在下催化TMB氧化,溶液的颜色由透明变为蓝色,继续在硫酸的作用下氧化成稳定的黄色,改变的颜色通过紫外可见分光光度计测量,或者用肉眼观察,手机拍照进行色调的识别;淀粉酶α-AM作为葡萄糖含量信号输出单元,葡萄糖含量信号是淀粉酶催化淀粉产生葡萄糖导致,葡萄糖含量信号可以通过便携式BGM进行测定。
与现有技术相比,本发明的有益效果是:
1、本发明提供的CaHPO4-淀粉酶-辣根过氧化物酶-链霉亲和素,采用一锅法在温和绿色条件下进行制备,该制备方法借助蛋白质作为结点进行金属(钙)纳米花的均匀生长,同时利用不同蛋白质功能,发挥纳米花容纳保护蛋白质(酶)的作用。
2、本发明提供的CaHPO4-淀粉酶-辣根过氧化物酶-链霉亲和素,具有三蛋白的复合体系,链霉亲和素可以与生物素标记竞争剂结合进行识别及放大,每个链霉亲和素可结合4个生物素标记竞争剂,可使反应明显放大;淀粉酶-辣根过氧化物酶可分别分解底物,进行双信号的自校正输出。检测体系依据实际情况灵活选取,在标志物传感器领域有着普适的应用。
3、本发明提供的CaHPO4-淀粉酶-辣根过氧化物酶-链霉亲和素,与游离的淀粉酶及辣根过氧化物酶相比,具有更高的底物分解能力(酶活性)及更高的稳定性(温度稳定性及储存稳定性),使得该复合纳米材料具有更广泛的应用场景。
附图说明
图1是CaHPO4-AM-HRP-SA杂化纳米花的扫描电镜(SEM)的成像结果,(a)、(b)为不同标尺下的图像。
图2所示为不同α-AM浓度的CaHPO4-AM-HRP-SA杂化纳米花形貌,α-AM浓度分别为(a)2mg mL-1(b)5mg mL-1(c)10mg mL-1(d)20mg mL-1(e)50mg mL-1(f)100mg mL-1
图3所示为不同PBS浓度的CaHPO4-AM-HRP-SA杂化纳米花形貌,PBS浓度分别为(a-b) 0.1mM(c-d)1mM(e-f)3mM(g-h)5mM(i-j)10mM。
图4所示为EDS对CaHPO4-AM-HRP-SA杂化纳米花的元素映射:(a)杂化纳米花在明场中的图像;图像(b-f)展示了磷、钙、氧、碳和氮的元素的mapping图;(h)全部元素分布的EDS谱。
图5所示为杂化纳米花的XRD谱图,CaHPO4-AM-HRP-SA纳米花,不含蛋白的CaHPO4纳米花,标准CaHPO4
图6所示为Ca纳米花的TGA谱图。
图7所示为不同杂化纳米花的荧光共聚焦图成像结果。(a-c)分别为CaHPO4-AM-HRP-SA 杂化纳米花与Cy3-biotin的明场图,543nm激发光下图,两者merge图。(d-f)分别为AM-HRP-CaHPO4杂化纳米花与Cy3-biotin的明场图,543nm激发光下图,两者merge图。
图8所示为(a)TMB液体底物的颜色。(b)CaHPO4-HRP-SA杂化纳米花、a淀粉酶和CaHPO4-AM-HRP-SA杂化纳米花在55℃水浴条件下,反应45min后产生的葡萄糖的测试结果。
图9所示为(a)在游离HRP和杂化纳米花及无HRP存在下,650nm处的时间依赖性吸光度变化。(b)游离HRP和杂化纳米花的Lineweaver-Burk图(c)在游离α-AM和杂化纳米花存在下,时间依赖性葡萄糖变化(d)游离α-AM和杂化纳米花的Lineweaver-Burk图。
图10所示为不同条件下制备的纳米花的检测结果。(a)不同α-AM:HRP比值下的吸光度信号(b)不同α-AM:HRP比值下的血糖仪信号(c)不同PBS浓度下的吸光度信号(d) 不同PBS浓度下的血糖仪信号。
图11所示是Ca纳米花性能验证。(a)游离HRP和杂化纳米花在不同温度下的热稳定性。 (b)室温下游离α-AM和杂化纳米花在PBS中的储存稳定性。(c)游离α-AM和杂化纳米花在不同温度下的热稳定性。(d)室温下游离α-AM和杂化纳米花在PBS中的储存稳定性。
具体实施方式
以下结合具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
一种三蛋白绿色杂化纳米花(CaHPO4-淀粉酶-辣根过氧化物酶-链霉亲和素复合材料),通过以下方法制备:
将一定浓度的α-AM(10μL,不同浓度),SA(10μL,1mg mL-1)和HRP(5μL,10mg mL-1)加入到的3mL的PBS(3mM,pH7.4)中,轻微震动摇匀,后加入60μL CaCl2(200 mM)水溶液,再次轻微震荡混匀后,置于25℃水浴锅中,静置孵育12h。生成肉眼可见的白色絮状沉淀物即为Ca纳米花。通过离心(10,000rpm min-1)收集制备的纳米花沉淀物,并用超纯水洗涤3次待用,记作CaHPO4-AM-HRP-SA杂化纳米花。
对比例1
制备CaHPO4-HRP-SA杂化纳米花:制备方法与实施例1相同,不同的是相较于CaHPO4-AM-HRP-SA杂化纳米花,制备过程中不添加α-AM。
制备CaHPO4-AM-SA杂化纳米花:制备方法与实施例1相同,不同的是相较于CaHPO4-AM-HRP-SA杂化纳米花,制备过程中不添加HRP。
制备CaHPO4-AM-HRP杂化纳米花:制备方法与实施例1相同,不同的是相较于CaHPO4-AM-HRP-SA杂化纳米花,制备过程中不添加SA。
实施例2
使用扫描电子显微镜(SEM)对实施例1制备的CaHPO4-AM-HRP-SA杂化纳米花进行表征。如图1所示,在3mM的PBS条件下,α-AM浓度为20mg mL-1时,制备得到的CaHPO4-AM-HRP-SA杂化纳米花均匀分布,平均尺寸为600nm左右。CaHPO4-AM-HRP-SA 杂化纳米花的SEM图像显示它们具有高表面积与体积比的分层结构,此结构看上去是由数百个纳米花瓣组装而成的(图1中b)。磷酸氢钙晶体的成核和生长,起源于这些Ca2+结合位点以形成独立的花瓣,这是形成纳米花的关键步骤。
CaHPO4-AM-HRP-SA杂化纳米花的形成及形貌受多种因素影响,包括蛋白浓度和PBS 浓度等。由于α-AM用量较大,SA和HRP用量较小,所以考察α-AM蛋白浓度对于形貌的影响,α-AM对于淀粉的分解产生葡萄糖速率较低,因此,其含量是保证杂化纳米花发挥分解淀粉的关键性能。如图2所示,对于掺杂不同浓度α-AM的CaHPO4-AM-HRP-SA杂化纳米花,如图2中a-f,随着α-AM蛋白浓度梯度增加(分别为2、5、10、20、50、100mg mL-1),在2-50mg mL-1的浓度范围内,其花粒径大小变化不大(600nm左右),形貌特征保持一致。仅100mg mL-1杂化纳米花,可能由于蛋白浓度过高,杂化纳米花的生成速度过快,导致其粒径骤增,约为2μm左右。因此α-AM在2-50mg mL-1的浓度范围内,都具有稳定且均匀分散的形貌及粒径。
PBS中的磷酸根,是提供CaHPO4-AM-HRP-SA杂化纳米花中CaHPO4的成分,其含量对于纳米花的形貌有着显著影响。固定了AM、HRP、SA蛋白浓度之后,依次改变PBS浓度,考察了其对于CaHPO4-AM-HRP-SA杂化纳米花形貌特征的影响。如图3所示,对于不同反应体系的PBS,CaHPO4-AM-HRP-SA杂化纳米花形貌差异显著。0.1mM的PBS中生长出来的纳米花似一个整体纹路铺展开来,不形成独立的花状个体;当PBS浓度升高到1mM时,有明显的独立花状个体生成,但花的封装现象严重,花瓣边缘不清晰;当PBS浓度升高到3mM 时,花瓣边缘清晰可辨,花瓣疏松。当PBS浓度升高到5mM时,部分花瓣边缘清晰可辨,有板结状物质生成。当PBS浓度升高到10mM时,生成物形态与5mM时差异不大,板结状物质更甚。纳米花的形貌状态与性质密切相关,后续将继续对其性能进行优化考察。
使用能量色散X射线光谱仪(EDS)对纳米晶体进行分析,以确认CaHPO4-AM-HRP-SA杂化纳米花的组成,图4中显示了元素磷、钙、氧、碳和氮的元素的叠加。其中,磷、钙、氧元素,由CaHPO4·2H2O主要提供,蛋白质对其中的磷、氧元素也做出提供。图中可以看出,磷、钙、氧元素分布概率与明场下的杂化纳米花轮廓清晰一致。而碳和氮元素由蛋白质单独提供,其轮廓相对模糊,但密集点分布与杂化纳米花也可重合。以上数据表明无机钙离子与有机蛋白成功结合,各个元素成分分布与纳米花分布一致,并在明场中确认了杂化纳米花的结构。此外,EDS能谱分布图(图4中h)显示,mapping中的各个元素得到了进一步的确认,两者共同佐证了CaHPO4-AM-HRP-SA杂化纳米花的制备。
为了证实CaHPO4-AM-HRP-SA杂化纳米花的成功制备,本研究再次实施了X射线衍射(Diffraction of x-rays,XRD)分析(图5)。有无蛋白的CaHPO4杂化纳米花,其所有的衍射峰都可以指向单斜晶系CaHPO4·2H2O(JCPDS 72-0713)。表明CaHPO4-AM-HRP-SA杂化纳米花的成功制备。
对CaHPO4-AM-HRP-SA杂化纳米花(Ca纳米花)进行热重量分析(Thermogravimetric Analysis,TGA),以形成系统成分的更清晰图像。结果表明,从常温升高到138℃,纳米花丢失的为CaHPO4·2H2O中的结晶水,重量比为5.63%。从138℃升高到525℃,纳米花丢失的为花中的有机成分(即a-淀粉酶,链霉亲和素,辣根过氧化物酶),重量百分比为10.86% (图6)。表明CaHPO4与三种蛋白的有效杂交。
通过使用Bradford蛋白测定法测量溶液上清液中游离a-淀粉酶,链霉亲和素,辣根过氧化物酶的浓度,计算了杂化纳米花的蛋白固定率为48.31%。验证了杂化纳米花中的蛋白成功负载。蛋白含量检测使用Bradford检测方法,在一系列标准BSA蛋白溶液100μL(0,2.5, 5,10,15,20,25,50,100μg mL-1)中添加了100μL的考马斯亮蓝溶液。15分钟后,对每种溶液的吸收度进行监控,以监测595nm的吸收度。标准曲线为Y=0.0136*X+0.4251(R2=0.9924)。对于上清液(CaHPO4-AM-HRP-SA杂化纳米花制备完成后的上清液)中的蛋白质测定,在100μL的考马斯亮蓝溶液中加入50μL的上清液和50μL的去离子水。然后,在595 nm监测这种混合溶液的吸收度,以确定基于校准曲线的自由蛋白质的浓度。此时,测得超自然溶液的蛋白质浓度为13.7672μg mL-1。对于固定效率计算,固定蛋白可以通过从系统中引入的蛋白质总量中减去自由蛋白质的量来计算。通过将固定蛋白质的含量除以总蛋白质的含量,可以获得固定效率。在这个系统中,总引入蛋白的浓度为26.3748μg mL-1(通过监测α-AM(10μL,20mg mL-1),SA(10μL,1mg mL-1)和HRP(5μL,10mg mL-1)混合溶液的吸收度,结合标准曲线得到),根据计算方法,固定效率为48.31%。
为了测试SA在CaHPO4-AM-HRP-SA杂化纳米花中的性能,平行制备CaHPO4-AM-HRP杂化纳米花,使用荧光共聚焦显微镜,通过考察带有Cy3-biotin标签在杂化纳米花中的分布位置,用以表征对SA在CaHPO4-AM-HRP-SA杂化纳米花中是否成功掺杂以及是否保留原有活性。如图7中a-c所示,Cy3-biotin与CaHPO4-AM-HRP-SA杂化纳米花中的SA结合,在激发波长543nm条件下发出红色荧光,与明场下的杂化纳米花的merge图片完全重合。相较于CaHPO4-AM-HRP杂化纳米花,Cy3-biotin无法与之特异性结合,在543nm激发条件下无荧光(图7中d-f),Cy3-biotin表现出荧光特异性,一方面,可以定位SA在CaHPO4-AM-HRP-SA 杂化纳米花中的位置,另一方面,Cy3-biotin在纳米花上特异性均匀附着,表明 CaHPO4-AM-HRP-SA杂化纳米花中的SA仍保持着强大的捕获能力。
对于基于酶活性的信号放大策略,增加酶的负载量必不可少,与此同时还需要保持酶活性。以往研究表明,形成纳米花的过程可以积累丰富的蛋白质。已经确认SA作为链接者,保持着丰富的含量以及显著的活性时,接下来又对包封在CaHPO4-AM-HRP-SA杂化纳米花中HRP及α-AM的活性进行了检测。还原型3,3',5,5'-四甲基联苯胺(TMB)作为一种HRP 色原底物呈现无色,HRP在H2O2存在下使得还原型TMB被氧化生成蓝色的一价ox-TMB,且在硫酸的作用下生成较为稳定的黄色二价ox-TMB。基于此原理进行CaHPO4-AM-HRP-SA 杂化纳米花中HRP的含量测定。
如图8所示,CaHPO4-AM-HRP-SA杂化纳米花与游离HRP均可以催化TMB液体底物在室温下由透明变为蓝色,二者保持相同的酶活性,对于不含HRP的CaHPO4-AM-HRP-SA杂化纳米花来讲,没有催化底物TMB的能力,颜色保持不变。
同样的,α-淀粉酶可以水解淀粉内部的α-1,4-糖苷键,水解产物为糊精、低聚糖和葡萄糖。产生的葡萄糖可以通过血糖仪(Blood Glucose Meters,BGM)进行测量。本研究对于α-AM 淀粉酶分解淀粉产生葡萄糖进行了考察,分别对比了CaHPO4-HRP-SA杂化纳米花、a淀粉酶和CaHPO4-AM-HRP-SA杂化纳米花在55℃水浴条件下,反应45min后产生的葡萄糖,测试结果如图8所示,α淀粉酶、CaHPO4-AM-HRP-SA杂化纳米花具有良好的分解淀粉产生葡萄糖的能力,对于不含α淀粉酶的CaHPO4-AM-HRP-SA杂化纳米花来讲,没有分解淀粉酶产生葡萄糖的能力。
对于CaHPO4-AM-HRP-SA杂化纳米花的动力学分析,其中HRP的酶动力学,采用TMB-H2O2-HRP系统,使用5mM H2O2和不同浓度的TMB(50,100,200,300,500μM) 进行。所有反应均由多功能酶标仪以650nm的时间扫描模式进行监测。其中α-AM的酶动力学,采用α-AM水解可溶性淀粉生成葡萄糖系统,使用不同浓度的可溶性淀粉(10,50,100, 200,300mg mL-1)进行,反应温度55℃。不同时间点采集的数据均由血糖仪BGM读取。两者计算方法一致。根据一系列初始反应速率并将其应用于Michaelis-Menten方程的双倒数, 1/ν=(Km/Vmax)·(1/[S])+1/Vmax其中ν是初始速度,[S]是底物浓度,Km是Michaelies-Menten 常数,Vmax是最大反应速度。为了进一步研究纳米花的酶动力学,本研究通过 Lineweaver-Burk图,如图9所示,计算游离HRP与杂化纳米花的米氏常数(Km)分别为18.49 和13.84μM,游离α-AM和混合纳米花的Km分别为84.57和17.66mg mL-1,这反映了杂化纳米花与游离HRP,游离α-AM相比,具有更强的与对底物的亲和力。
纳米花中酶的活性增强可能源于以下影响:(i)纳米花的高表面积,不会导致显着的传质限制;(ii)纳米级酶分子的协同效应;(iii)对于α-AM,α-AM可能与Ca2+离子的纳米花微环境之间相互作用(纳米花中Ca2+离子的可能有助于α-AM的活性)。其方式类似于在溶液中Ca2+离子使游离α-AM的活性增加。掺入α-AM与HRP的纳米花的优良催化性能表明蛋白质和无机纳米结构的协同作用。
本研究进一步研究了杂化纳米花对高温的稳定性。如图11中a和c所示, CaHPO4-AM-HRP-SA杂化纳米花在高达80℃的温度下加热10min,HRP仍表现出稳定的性能,而游离HRP在高于70℃的温度下失去了将近一半催化活性,同时,在80℃的温度下加热10min,CaHPO4-AM-HRP-SA杂化纳米的α-AM仍然具有80%的活性,游离α-AM在70℃时已经丢失70%的酶活性能。表明酶的固定化在纳米花中具有增强的稳定性。由于蛋白质主要位于纳米花的核心,在某种程度上,磷酸氢钙花瓣作为保护层来维持杂化纳米花中HRP和α-AM的活性。用以适应更高的温度(60℃、70℃、80℃)。
此外,本研究还进一步比较了杂化纳米花与游离HRP,α-AM的稳定性情况。杂化纳米花在室温下在PBS中储存一个月后,其HRP催化活性保持在80%左右,而游离HRP仅保持其初始活性的大约20%(图11中b)。同样的在储存一个月后,α-AM催化活性也保持在80%左右,而游离α-AM保持其初始活性的大约50%(图11中d)。可见,磷酸氢钙花瓣作为保护层,能够有效延长其中蛋白在常温放置中的稳定性。
实施例3
实施例1合成的CaHPO4-AM-HRP-SA杂化纳米花可用于皮质醇的检测。
CaHPO4-AM-HRP-SA杂化纳米花中的SA作为结合识别单元,HRP和α-AM作为双信号输出单元,CaHPO4-AM-HRP-SA杂化纳米花进一步用于构建的双信号输出传感器,对“压力因子”生物标志物皮质醇进行超灵敏检测。如图4中b所示,皮质醇是被用于这项工作中的模型蛋白。96孔板通过物理吸附与捕获将皮质醇抗体连接,并用BSA封闭。在靶标蛋白皮质醇存在的情况下,会与生物素化皮质醇竞争结合底物抗体。生物素化皮质醇的含量,随后被CaHPO4-AM-HRP-SA杂化纳米花中的SA识别,并通过生物素-链霉亲和素反应与生物素化的皮质醇结合。
同时,纳米花中的HRP与α-AM作为信号输出单元,可以输出光信号与葡萄糖含量信号。光信号是通过HPR在H2O2存在下催化TMB氧化,溶液的颜色由透明变为蓝色。改变的颜色很容易通过紫外可见分光光度计测量,甚至可以用肉眼观察,手机拍照进行色调(Hue)的识别。葡萄糖含量信号是淀粉酶催化淀粉产生葡萄糖导致,信号可以通过便携式BGM进行测定。可实现双信号,三检测系统的自校正检测。
在没有目标的情况下,生物素化皮质醇充分与底物结合,具有最深的颜色与最高的葡萄糖信号输出。当目标样本中皮质醇增多,会与生物素化皮质醇产生竞争,颜色信号与葡萄糖信号都成比例的降低。因此,只需监测紫外-可见光吸收强度或肉眼观察,相机捕获颜色变化即可确定目标蛋白的浓度。同时,使用BGM监测葡萄糖含量则为确定目标蛋白的浓度的第二信号。
在测定中,传感器的性能受到所采用的纳米花的影响。一方面,生物素化皮质醇与CaHPO4-AM-HRP-SA杂化纳米花之间的识别效率受纳米花中固定SA量的影响,SA的含量已经通过荧光定位固定。另一方面,比色信号由杂化纳米花中的α-AM与HRP的负载量直接确定,同时要兼顾二者的信号输出。此外,PBS浓度对于蛋白固定的影响直接影响杂化纳米花的信号输出。本研究首先考察了不同α-AM与HRP配比下,吸光度的差值与血糖仪的读数。如图10中a-b所示,在650nm下,当α-AM:HRP从2:1降低到1:5之间,信号差异不大,而对于α-AM反应出的血糖仪的读数,在α-AM:HRP比值为2:1时,血糖仪读数最大,结合二者信号输出,遂选取出两者最佳的配比量为2:1。此外,鉴于PBS对信号输出的影响,本研究分别考察了PBS从0.1升高到10mM的区间里,二者信号输出的差异变化。如图10 中c-d所示,3mM与5mM浓度的PBS的纳米花吸光度相当,为最优浓度选择,3mM浓度的PBS的纳米花经过反应的血糖仪读数最高。经二者数据结合分析,选取了3mM的PBS浓度体系进行纳米花制备,用于进一步的ELISA的纳米花体系。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种三蛋白绿色杂化纳米花,其特征在于,包括淀粉酶、辣根过氧化物酶和链霉亲和素构成的三蛋白体系以及以所述淀粉酶、辣根过氧化物酶和链霉亲和素作为结点均匀生长其上的呈花瓣状的磷酸氢钙晶体。
2.如权利要求1所述的三蛋白绿色杂化纳米花,其特征在于,所述三蛋白绿色杂化纳米花的花粒径为550-650nm。
3.如权利要求1所述的三蛋白绿色杂化纳米花,其特征在于,所述三蛋白绿色杂化纳米花通过以下步骤制备:
将淀粉酶α-AM的水溶液、辣根过氧化物酶SA的水溶液以及链霉亲和素HRP的水溶液,加入到PBS缓冲液中,轻微震动摇匀,然后加入CaCl2水溶液,再次轻微震荡混匀后,静置孵育,生成白色絮状沉淀物,离心后,对沉淀物进行洗涤得到所述的三蛋白绿色杂化纳米花,记作CaHPO4-AM-HRP-SA杂化纳米花。
4.如权利要求3所述的三蛋白绿色杂化纳米花,其特征在于,淀粉酶α-AM、辣根过氧化物酶SA、链霉亲和素HRP以及PBS缓冲液的质量比(0.1~100):(0.1~10):(1~40):(0.12~12)。
5.如权利要求4所述的三蛋白绿色杂化纳米花,其特征在于,所述淀粉酶α-AM、辣根过氧化物酶SA、链霉亲和素HRP以及PBS缓冲液的质量比(2~100):(0.5~5):(5~20):(0.12~12)。
6.如权利要求3所述的三蛋白绿色杂化纳米花,其特征在于,所述淀粉酶α-AM的水溶液的浓度为2-50mg mL-1,PBS缓冲液的浓度为3-5mM,优选为3mM,所述淀粉酶α-AM与链霉亲和素HRP的质量比为2:1。
7.如权利要求3所述的三蛋白绿色杂化纳米花,其特征在于,孵育在25~30℃水浴锅中进行,孵育时间为15~36h;对沉淀物进行洗涤时,利用超纯水洗涤2~4次。
8.如权利要求1-7中任一项所述三蛋白绿色杂化纳米花作为信号探针在检测皮质醇中的应用。
9.如权利要求8所述的应用,其特征在于,所述三蛋白绿色杂化纳米花中的辣根过氧化物酶SA作为识别单元识别与所述皮质醇竞争的生物素化皮质醇结合,链霉亲和素HRP为光信号输出单元,光信号是通过HPR在H2O2存在下催化TMB氧化,溶液的颜色由透明变为蓝色,继续在硫酸的作用下氧化成稳定的黄色,改变的颜色通过紫外可见分光光度计测量,或者用肉眼观察,手机拍照进行色调的识别;淀粉酶α-AM作为葡萄糖含量信号输出单元,葡萄糖含量信号是淀粉酶催化淀粉产生葡萄糖导致,葡萄糖含量信号可以通过便携式BGM进行测定。
10.一种三蛋白绿色杂化纳米花的制备方法,其特征在于,包括以下步骤:将淀粉酶α-AM的水溶液、辣根过氧化物酶SA的水溶液以及链霉亲和素HRP的水溶液,加入到PBS缓冲液中,轻微震动摇匀,然后加入CaCl2水溶液,再次轻微震荡混匀后,静置孵育,生成白色絮状沉淀物,离心后,对沉淀物进行洗涤得到所述的三蛋白绿色杂化纳米花,记作CaHPO4-AM-HRP-SA杂化纳米花。
CN202211001232.XA 2022-08-19 一种三蛋白杂化纳米花信号探针及其制备方法和应用 Active CN117625734B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211001232.XA CN117625734B (zh) 2022-08-19 一种三蛋白杂化纳米花信号探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211001232.XA CN117625734B (zh) 2022-08-19 一种三蛋白杂化纳米花信号探针及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN117625734A true CN117625734A (zh) 2024-03-01
CN117625734B CN117625734B (zh) 2024-10-22

Family

ID=

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170336398A1 (en) * 2016-04-26 2017-11-23 Washington State University Compositions and methods for antigen detection incorporating inorganic nanostructures to amplify detection signals
CN110669755A (zh) * 2019-09-10 2020-01-10 桂林理工大学 一种有机-无机杂化纳米花及其制备方法
CN114480365A (zh) * 2022-01-18 2022-05-13 南昌大学 一种高分子-酶-无机杂化纳米花及其制备方法与其在降解食用油中真菌毒素的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170336398A1 (en) * 2016-04-26 2017-11-23 Washington State University Compositions and methods for antigen detection incorporating inorganic nanostructures to amplify detection signals
CN110669755A (zh) * 2019-09-10 2020-01-10 桂林理工大学 一种有机-无机杂化纳米花及其制备方法
CN114480365A (zh) * 2022-01-18 2022-05-13 南昌大学 一种高分子-酶-无机杂化纳米花及其制备方法与其在降解食用油中真菌毒素的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENGNAN YANG等: "All-in-one calcium nanoflowers for dual outputs biosensor: A simultaneous strategy for depression drug evaluation and non-invasive stress assessment", BIOSENSORS AND BIOELECTRONICS, vol. 216, 26 August 2022 (2022-08-26), pages 114655 *

Similar Documents

Publication Publication Date Title
Jin et al. Tandem catalysis driven by enzymes directed hybrid nanoflowers for on-site ultrasensitive detection of organophosphorus pesticide
Tang et al. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition
Lin et al. Glucose oxidase@ Cu-hemin metal-organic framework for colorimetric analysis of glucose
Song et al. Enzyme-triggered in situ formation of Ag nanoparticles with oxidase-mimicking activity for amplified detection of alkaline phosphatase activity
Zhu et al. “Switch-On” fluorescent nanosensor based on nitrogen-doped carbon dots-MnO2 nanocomposites for probing the activity of acid phosphatase
Mazumdar et al. Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle–DNAzyme conjugates
Wang et al. A ratiometric fluorescence and colorimetric dual-mode assay for H2O2 and xanthine based on Fe, N co-doped carbon dots
CN109266332B (zh) 一种用于定量检测血液中AChE和BChE的比率型荧光探针的制备方法
Li et al. Ratiometric fluorescent hydrogel for point-of-care monitoring of organophosphorus pesticide degradation
Zhang et al. Apoferritin nanoparticle: a novel and biocompatible carrier for enzyme immobilization with enhanced activity and stability
CN107110784A (zh) 光学生物传感器
Liao et al. Nanobody@ Biomimetic mineralized MOF as a sensing immunoprobe in detection of aflatoxin B1
Kim et al. Label-free fluorescent detection of alkaline phosphatase with vegetable waste-derived green carbon probes
Yang et al. Design of metalloenzyme mimics based on self-assembled peptides for organophosphorus pesticides detection
Hu et al. Carbon dots@ zeolitic imidazolate framework nanoprobe for direct and sensitive butyrylcholinesterase assay with non-enzymatic reaction
Chen et al. Upconversion nanoparticles with bright red luminescence for highly sensitive quantifying alkaline phosphatase activity based on target-triggered fusing reaction
Han et al. A ratiometric nanoprobe consisting of up-conversion nanoparticles functionalized with cobalt oxyhydroxide for detecting and imaging ascorbic acid
Nguyen et al. Reagent-free colorimetric cholesterol test strip based on self color-changing property of nanoceria
Yin et al. Turn-on fluorescent inner filter effect-based B, S, N co-doped carbon quantum dots and vanadium oxide nanoribbons for α-glucosidase activity detection
An et al. Determination of xanthine using a ratiometric fluorescence probe based on boron-doped carbon quantum dots and gold nanoclusters
CN109580607A (zh) MXene-CuS纳米复合材料的制备及其应用
Liang et al. Glucose oxidase-loaded liposomes for in situ amplified signal of electrochemical immunoassay on a handheld pH meter
CN114062333A (zh) Zif-8包覆金纳米簇复合材料的应用、有机磷的检测方法
Zhang et al. Surface lanthanide activator doping for constructing highly efficient energy transfer-based nanoprobes for the on-site monitoring of atmospheric sulfur dioxide
Xu et al. MOF@ MnO2 nanocomposites prepared using in situ method and recyclable cholesterol oxidase–inorganic hybrid nanoflowers for cholesterol determination

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant