CN117568241A - 一株具有对硝酸盐较高还原力的鱼发酵葡萄球菌 - Google Patents

一株具有对硝酸盐较高还原力的鱼发酵葡萄球菌 Download PDF

Info

Publication number
CN117568241A
CN117568241A CN202410050762.6A CN202410050762A CN117568241A CN 117568241 A CN117568241 A CN 117568241A CN 202410050762 A CN202410050762 A CN 202410050762A CN 117568241 A CN117568241 A CN 117568241A
Authority
CN
China
Prior art keywords
staphylococcus
fsujl109
fish
fermented
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410050762.6A
Other languages
English (en)
Other versions
CN117568241B (zh
Inventor
黄桂东
陈宇
钟先锋
王阿利
郑剑玮
任红
晏雅馨
蔡煜明
汪柳赤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan University
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN202410050762.6A priority Critical patent/CN117568241B/zh
Publication of CN117568241A publication Critical patent/CN117568241A/zh
Application granted granted Critical
Publication of CN117568241B publication Critical patent/CN117568241B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/60Comminuted or emulsified meat products, e.g. sausages; Reformed meat from comminuted meat product
    • A23L13/65Sausages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • A23L13/70Tenderised or flavoured meat pieces; Macerating or marinating solutions specially adapted therefor
    • A23L13/72Tenderised or flavoured meat pieces; Macerating or marinating solutions specially adapted therefor using additives, e.g. by injection of solutions
    • A23L13/74Tenderised or flavoured meat pieces; Macerating or marinating solutions specially adapted therefor using additives, e.g. by injection of solutions using microorganisms or enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/20Removal of unwanted matter, e.g. deodorisation or detoxification
    • A23L5/28Removal of unwanted matter, e.g. deodorisation or detoxification using microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/44Staphylococcus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一株具有对硝酸盐较高还原力的鱼发酵葡萄球菌,属于微生物技术领域。本发明提供了一株鱼发酵葡萄球菌FSUJL109,所述菌株不表达毒力基因,且具有将硝酸盐还原为亚硝酸盐的能力。将鱼发酵葡萄球菌FSUJL109用于发酵肉制品中,可以显著提升肉制品的鲜红色,并且能显著降低肉制品的硬度与咀嚼性,能帮助消化系统更好的消化吸收肉制品中的营养。

Description

一株具有对硝酸盐较高还原力的鱼发酵葡萄球菌
技术领域
本发明涉及一株具有对硝酸盐较高还原力的鱼发酵葡萄球菌,属于微生物技术领域。
背景技术
葡萄球菌(Staphylococcus)是一群革兰氏阳性球菌,无鞭毛,无芽孢,常聚集为葡萄状而得名。其中凝固酶阴性葡萄球菌(Coagulase-negative staphylococcus,CNS)是发酵食品中常见的葡萄球菌。葡萄球菌由于其良好的耐盐特性,成为高盐类发酵食品中的优势菌株之一,如发酵火腿、发酵鱼和发酵香肠等。
发酵肉制品在加工过程中需添加一定量的硝酸钠或亚硝酸钠,其目的是对肉制品进行护色和杀菌。但亚硝酸钠作为具有为潜在危害人体健康的物质,其用量具有严格限定。现行GB2760-2014中规定了硝酸钠在发酵肉制品中的最大使用量为0.5 g/kg,亚硝酸钠在发酵肉制品中的最大使用量为0.15 g/kg;除了用量有严格规定外,发酵肉制品中的亚硝酸钠残留量,也有严格规定,GB2760-2014限定了发酵肉制品中的亚硝酸钠≤30mg/kg。添加硝酸盐或亚硝酸盐的护色原理是相同的,两者的最终产物为亚硝基肌红蛋白(鲜红色)。但是,在发酵肉制品的制作过程中,直接添加亚硝酸盐可能会使发酵体系中的亚硝酸含量过高,从而促进亚硝酸与多种氨基化合物作用生成具有致癌性的亚硝基化合物,增加潜在危害健康的因素。
随着微生物发色作用的研究,微生物发酵替代发酵肉制品中的亚硝酸盐成为可能。向发酵肉制品中添加微生物替代亚硝酸盐往往能获得更好的护色效果。在微生物产生的蛋白酶、脂肪酶等一系列酶系作用下,为亚硝基肌红蛋白的合成增加了一条由L-精氨酸合成亚硝基肌红蛋白的途径,并且还能够使发酵肉制品的质构发生改变。除此以外,发酵肉制品中的蛋白质和脂肪被酶解为氨基酸和一些其他小分子化合物,为风味物质的合成提供了物质基础,大量研究表明向发酵肉制品接种微生物能够显著提升风味物质的含量及种类,如接种葡萄球菌属能够有效增加发酵肉制品中的3-甲基丁醛(苹果香味)等醛类物质的含量。
Guo J等人于2020年在《Food Research International》期刊上发表了“Co-inoculation of Staphylococcus piscifermentans and salt-tolerant yeastsinhibited biogenic amines formation during soy sauce fermentation”一文。该文研究了将staphylococcus piscifermentans和salt-tolerant yeasts共同接种到酱醪中。实验组和对照组相比,实验组能够显著降低酱油发酵过程中生物胺的形成,并且增加实验组中酚类、醛类以及酯类等化合物的含量。Majumder R K等人在2022年发表在《Journal ofApplied Microbiology》的“Starter inoculums assisted fermentation of Puntiussp.—Role of Lactiplantibacillus plantarum and staphylococcus piscifermentansto reduce fermentation time while increasing safety”一文则表明将Lactiplantibacillus plantarumandstaphylococcus piscifermentans接种到发酵鱼制品中,可以缩短发酵鱼制品的发酵时间,并且能提高发酵鱼制品的总体可接受度。
以上文献都证明了可以将staphylococcus piscifermentans应用于发酵食品,达到改善发酵食品品质的目的。
中国专利CN202310812674.0公开了一种模仿葡萄球菌,将该模仿葡萄球菌应用于发酵肉制品,其发酵肉制品残留的亚硝酸盐浓度为38.4±0.43mg/kg;其色差值中的a值为6.08±0.69;发酵时间较长为1-2周。虽然上述葡萄球菌的添加有助于改善发酵肉制品的色泽,但是其对肉制品色泽的调控程度较弱,并且对于肉制品的香味没有贡献,且所需发酵时间长,不利于工业化应用;另外,上述发酵肉制品中残留的亚硝酸盐含量不满足GB2760-2014中对于肉制品中亚硝酸盐残留量的标准。
因此,亟需一种在满足肉制品中亚硝酸盐残留量标准的前提下,经过短时间发酵,就可以改善肉制品的色泽与香味的葡萄球菌。
发明内容
本发明涉及的鱼发酵葡萄球菌从发酵食品中分离得到。研究发现具有作为发酵剂的良好特性,具有较高的安全特性以及对硝酸钠具有较强的还原能力。因此可用于发酵肉制品的生产中,对于减少发酵肉制品中硝酸盐的使用具有一定意义。
本发明所涉及的鱼发酵葡萄球菌发酵得到的肉制品残留的亚硝酸盐浓度更低为27.21±3.63mg/kg,颜色更加红润色差值中的a值为17.56±0.33;发酵时间更短为24 h。
本发明的第一个目的是提供一株鱼发酵葡萄球菌(staphylococcus piscifermentans)FSUJL109,所述鱼发酵葡萄球菌FSUJL109保藏于广东省微生物菌种保藏中心,保藏编号为GDMCC No:63899,保藏日期为2023年10月23日。
本发明的第二个目的是提供含所述鱼发酵葡萄球菌FSUJL109的微生物制剂。
在一种实施方式中,所述微生物制剂为含有鱼发酵葡萄球菌FSUJL109的液体或固体制剂。
在一种实施方式中,所述微生物制剂中鱼发酵葡萄球菌FSUJL109活菌数≥1.9×107CFU/g肉。
本发明的第三个目的是提供制备所述微生物制剂的方法,将所述鱼发酵葡萄球菌FSUJL109在培养基中发酵。
本发明的第四个目的是提供将肉制品中的硝酸盐还原为亚硝酸盐的方法,将所述鱼发酵葡萄球菌FSUJL109,或所述微生物制剂加入肉制品中进行发酵。
在一种实施方式中,所述肉制品包括发酵火腿或发酵香肠。
在一种实施方式中,所述鱼发酵葡萄球菌FSUJL109或微生物制剂的添加量为1.9×107CFU/g肉。
在一种实施方式中,于37℃发酵至少24h。
本发明还提供所述鱼发酵葡萄球菌FSUJL109,或所述微生物制剂在制备腌制肉制品中的应用。
有益效果:
本发明提供了一株鱼发酵葡萄球菌FSUJL109,所述菌株不表达毒力基因,且不荚膜的物质组成及相关的酶系与耐热核酸酶,是一株安全性的菌株。
本发明所述鱼发酵葡萄球菌FSUJL109抗逆性强,能够耐受0~12%的盐浓度、0~400mg/kg的亚硝酸钠、耐受pH范围为5~9。
本发明所述鱼发酵葡萄球菌FSUJL109具有将硝酸盐还原为亚硝酸盐的能力,发酵12h,即可产生2332 μg/mL亚硝酸盐。并且在中性条件下,可以维持亚硝酸盐含量基本不变;在酸性条件下,可以降解环境中的亚硝酸盐,实现亚硝酸盐含量的可调控性。
将本发明所述鱼发酵葡萄球菌FSUJL109用于发酵肉制品中,可以降低肉制品的硬度和咀嚼性,效果优于肉葡萄球菌ATCC 51365,能使发酵后的肉制品更容易被消化吸收。并且发酵后的肉制品颜色更加鲜红,鱼发酵葡萄球菌FSUJL109发酵肉制品的a值相对于空白组,提高了153.76%,相对于肉葡萄球菌ATCC 51365组提高了16.37%。
附图说明
图1为菌株FSUJL109的菌落形态图。
图2为菌株FSUJL109的镜检观察形态图。
图3为菌株FSUJL109的全基因组系统发育树图。
图4为菌株FSUJL109的毒力因子分类图。
图5为菌株FSUJL109的荚膜染色试验图。
图6为菌株FSUJL109的产耐热核酸酶实验图。
图7为菌株FSUJL109的耐盐结果图。
图8为菌株FSUJL109的耐亚硝酸盐结果图。
图9为菌株FSUJL109的抗逆性结果图。
图10为亚硝酸盐含量标准曲线。
图11为菌株FSUJL109的降解硝酸盐结果图。
图12为菌株FSUJL109在酸性环境中降解亚硝酸盐结果图。
生物材料保藏
本发明所提供的鱼发酵葡萄球菌(staphylococcus piscifermentans)FSUJL109,于2023年10月23日保藏于广东省微生物菌种保藏中心,分类学名称为staphylococcus piscifermentans,保藏编号为GDMCC No:63899,保藏地址为广东省广州市先烈中路100号大院59号楼。
具体实施方式
以下实施例中所用的菌种培养基如下:
牛肉膏蛋白胨培养基:蛋白胨10.0 g、牛肉膏5.0 g、氯化钠10.0 g、琼脂15.0 g、蒸馏水1000 mL,最终pH为7.2~7.6,121℃灭菌20 min。
活化培养基:牛肉膏蛋白胨液体培养基:蛋白胨10.0 g、牛肉膏5.0 g、氯化钠10.0g,蒸馏水950 mL,121℃灭菌20 min。
甲苯胺蓝-DNA琼脂平板:脱氧核糖核酸(DNA)0.3 g、氯化钙0.0011 g、氯化钠10.0g、甲苯胺蓝0.083 g、二甲基氨基甲烷6.1 g、琼脂10.0 g、蒸馏水1000 mL,115℃高压灭菌15 min。
以下实施例涉及的实验方法如下:
菌株活化方法:将牛肉膏蛋白胨液体培养基按照配方配制,121℃灭菌20 min后,自然冷却至室温,将菌株按照2%的接种量接种到培养基中,置于37℃,160 r/min恒温摇床中,培养12 h,重复活化2~3次。
实施例1:菌株的分离纯化及鉴定
1、菌株的分离:
菌株筛选的样品取自广州某品牌调味品企业发酵酱醪。在无菌条件下,称取酱油酱醪10 g溶解于90 mL的无菌水中,涡旋仪上振荡1 min,静置30 min,取少量0.5 mL稀释液用无菌水制成10-2,10-3,10-4,10-5共4个浓度稀释液。吸取稀释液0.1mL均匀涂布在牛肉膏蛋白胨固体培养基上,每个浓度做两个平行,放置5~10 min,37℃倒置培养12~24 h。挑取菌株进行三区划线纯化,分离得到的菌株进行编号,培养。
菌株FSUJL109菌落形态见图1。
2、菌株的鉴定:
对纯化后的菌株进行形态特征、生理生化以及分子生物学等方面的鉴定。
革兰氏染色鉴定:取纯化后的菌株进行革兰氏染色试验,洁净载玻片中央滴一滴纯净水,无菌牙签挑取菌落,混匀风干。于酒精灯火焰上方灼烧3~5次,固定涂片。结晶紫染色液浸泡60~120 s,水洗至无色。碘液染色60 s,水洗至无色。脱色酒精脱色30 s,水洗。沙黄复染液复染60 s,水洗至无色。干燥后镜检观察形态。
菌株FSUJL109镜检结果见图2。
对待鉴定菌株进行生化实验,参照《伯杰氏细菌鉴定手册》(第8版)和《常见细菌系统鉴定手册》(东秀珠等,1999),结果如表1所示。
表1菌株FSUJL109生理生化结果
注:+代表阳性,-代表阴性。
3、全基因组构建系统发育树分析:
对鱼发酵葡萄球菌进行活化,在LB固体培养基上进行划线纯化,纯化两次以后将得到的鱼发酵葡萄球菌进行扩培。扩培至生长对数期末期,稳定期前期。取培养液于4℃下8000 r/min离心10 min,弃上清收集菌体,然后加入磷酸缓冲液进行洗涤,洗涤3次后再次收集菌体。收集完成后迅速将离心管放入液氮处理3 min,之处理结束后放入干冰环境中送至广东美格基因科技有限公司。
根据返回的结果得知该菌株的全基因组序列长为2632669 bp,从 NCBI 数据库(http://www.ncbi.nlm.nih.gov/)中下载葡萄球菌属菌株全基因组序列,使用 Bakta-v1.7.0 (Schwengers, Jelonek et al. 2021) 软件对获取的各菌株及本研究分离菌株基因组中的蛋白编码基因进行预测。在此基础上,利用 OrthoFinder-v2.2.1 (Emms andKelly 2015) 软件分析鉴定各菌株间的同源基因,并进一步从中筛选直系同源基因以用于葡萄球菌属菌株的系统发育分析。采用 MAFFT-v7.505 (Nakamura, Tomii et al. 2018)对各直系同源基因进行多重序列比对,并使用 TrimAl-v1.4.rev15 (Capella-Gutiérrez,Silla-Martínez et al. 2009) 对各直系同源基因的多序列比对结果进行质控以去除低质量比对区域。随后,将各直系同源基因的比对结果进行串联,并使用 PartitionFinder-v2.1.1 (Lanfear, Senfeld et al. 2016) 对串联序列中各基因的氨基酸替换模型进行筛选。最后,采用 IQ-TREE-v1.6 (Nguyen, Schmidt et al. 2015) 进行系统发育建树,参数为" -bb 1000 -bnni -alrt 1000 -spp mL_models.txt -bspec GENESITE -pre mL -nt 10 -st AA"。将比对结果用Interaction Tree Of Life网站(https://itol.embl.de/)对构建的系统发育树进行可视化。
菌株FSUJL109系统发育树结果见图3。
根据菌落外观、发育树分析、革兰氏染色及生理生化实验结果可鉴定菌株为鱼发酵葡萄球菌(staphylococcus piscifermentans)。
实施例2:菌株的安全性评价
1、样品制备:
将纯化后鱼发酵葡萄球菌进行活化两代以后,取培养液于4℃离心10 min,收集菌体,再用磷酸缓冲液进行洗涤,洗涤3次后。迅速将菌体放入液氮速冻处理3 min,之后送至广东美格基因科技有限公司基因组进行测序。
2、实验流程:
实验流程按照Oxford Nanopore Technologies(ONT)公司提供的protocol标准执行,包含样品质量检测、文库构建、文库质量检测和文库测序等流程,文库构建包括如下步骤:1.提取高质量基因组DNA,利用Nanodrop、Qubit和0.35%琼脂糖凝胶电泳进行纯度、浓度和完整性质检;2.BluePippin全自动核酸回收系统回收大片段DNA;3.文库构建(SQK-LSK109连接试剂盒):(1)样本质检合格后,使用磁珠富集、纯化大片段DNA;(2)对DNA片段进行损伤修复;(3)对DNA 片段两端进行末端修复并进行加A;4.使用LSK109连接试剂盒中接头进行连接反应;5.最后用Qubit对建好的DNA文库进行定量检测;6.上机测序(通过Illumina平台和Nanopore平台进行测序)。
3、安全性分析:
将基因组数据与在VFDB和CARD数据库中进行blast比对,查找FSUJL109潜在的毒力因子,以此来判断该鱼发酵葡萄球菌的安全性。
3.1、VFDB数据库结果分析
将得到的全基因组数据通过在与VFDB数据库中的数据进行对比,得到FSUJL109基因组中可能含有459个疑似毒力因子基因,参考Sun Z等人的《Determining the geneticcharacteristics of resistance and virulence of the “epidermidis clustergroup” through pan-genome analysis》筛选标准,e-value<1e-10、identity>40%和coverage>70%,对其进行筛选。符合筛选后条件的共有132个疑似毒力因子基因。对其中的基因进行注释归属类别如下图4所示,其中包含41个Immune modulation相关基因、33个Nutritional/Metabolic factor相关基因、17个Adherence相关基因、13个Stresssurvival相关基因、9个Regulation相关基因、5个Exoenzyme相关基因、Biofilm与Exotoxin相关基因均为4个、3个Post-translational modification相关基因以及Effectordelivery system、Invasion、Motility相关基因各一个。对其进行逐一分析、发现其中大部分基因所编码的物质均与荚膜的形成有关,包括荚膜的物质组成及相关的酶系。根据基因组数据推测编码的荚膜多糖类型为Cap8E。除此以外具有较大潜在威胁的基因还有Biofilm、Exotoxin和Invasion方面的相关基因。Biofilm相关基因主要参与多糖细胞间粘附素(PIA)的合成;Exotoxin方面的相关基因潜在安全性较大的为细胞溶解素操纵子cylR2基因,该基因编码的CylR2蛋白可以与DNA上特定的位点结合,从而抑制溶细胞素操纵子的结合从而抑制细胞溶解素的表达;Invasion方面的相关基因编码lpeA,首次鉴定出lpeA基因是在李斯特菌中鉴定出,对其进行研究发现,lpeA基因所编码的蛋白作用是帮助李斯特菌侵入细胞,减小吞噬细胞对李斯特菌的杀伤作用,但该蛋白本身不具有毒性。除此以外还发现该鱼发酵葡萄球菌含有nuc基因,nuc基因所编码的耐热核酸酶家族蛋白被认为是一种重要的毒力因子。菌株FSUJL109含有影响最大的毒力因子为荚膜与耐热核酸酶基因。
3.2、荚膜染色实验
荚膜是细菌重要的保护性抗原与毒力因子,主要致病机制荚膜能保护细菌免受抑菌或杀菌物质的作用以及吞噬细胞的吞噬作用,还能增强细菌的黏附能力使细菌能更好的黏附在细胞表面诱发感染发生。因此是否具有荚膜结构对判断菌种的安全性有着较大的参考价值。参考樊佳等人《固氮菌分离及其荚膜染色综合性实验》报道的方法并做出一定修改,对鱼发酵葡萄球菌进行染色。由于荚膜与染料间的亲和力弱,不易着色,通常采用负染色法染荚膜,即使菌体和背景着色而荚膜不着色,从而使荚膜在菌体周围呈一透明圈。
取一片干净载玻片,滴加一滴纯水于载片中央,将活化后的菌液滴加一滴到载玻片的纯水中,充分分散菌体。放在室温自然干燥,干燥后滴加适量齐氏石炭酸复红染液,使其覆盖在固菌涂片表面,染色10 min后,用纯水小心冲洗,用吸水纸把多余的水吸掉,使载玻片表面留有少量水分从载玻片一端滴加黑色碳素墨水溶液轻轻晃动破片,使黑色碳索水溶液均匀分布于载坡片上,将载坡片上的多余黑色碳索墨水洛液用吸水纸吸掉,然后对准日光灯观察,让光线能够透过即可。最后再室温自然干燥后,在油镜下观察其形态。
观察结果如图5所示,黑色背景较为均匀,菌体未着色,菌体与黑色背景之间分界线明显,且菌体与菌体之间紧密相邻。若存在荚膜结构,由于荚膜的存在会使得菌体与菌体之间会出现空隙,并且由于菌体与荚膜的折光系数不同,若存在荚膜结构,菌体与背景的黑色之间会出现一较亮的圈,但观察结果与存在荚膜结构的推论相反。综上所述,得出鱼发酵葡萄球菌菌株FSUJL109不具有荚膜结构。
3.3、耐热核酸酶实验
耐热核酸酶(Thermonuclease,TNase),又名葡萄球菌核酸酶(Staphylococcalnuclease),是一种重要的毒力因子。对DNA有着较强的降解能力,是测定葡萄球菌是否具有致病性的重要指标之一。将金黄色葡萄球菌(阳性对照)与鱼发酵葡萄球菌分别用LB培养基进行活化,活化二代以后,用牛津杯法接种50μl菌液到甲苯胺蓝-DNA琼脂平板上,37℃培养48 h后观察,培养结束后在培养基表面滴加15滴左右1 mol/L的盐酸溶液,观察蓝色是否褪去,褪去则为阳性,不褪去则为阴性。实验结果如图6所示。由此得出鱼发酵葡萄球菌菌株FSUJL109不产核酸酶。
3.4、CARD数据库结果分析
通过数据库比对得出鱼发酵葡萄球菌FSUJL109能产生β-内酰胺酶,该酶可以将β-内酰胺进行水解使其失去活性。β-内酰胺是指一类含有四元内酰胺环的有机结构,根据四元环所连接的侧链种类不同,可以将其分为青霉素类抗生素、头孢菌素类抗生素、和头霉素类抗生素等。β-内酰胺类抗生素的作用机制为:由于β-内酰胺类抗生素的结构与肽聚糖前体D-丙酰胺-D-丙氨酸末端的结构相似,因此能与D-丙酰胺-D-丙氨酸产生竞争性结合,从而使本应和D-丙酰胺-D-丙氨酸结合的青霉素结合蛋白(Penicillin-binding proteins,PBPs)的酶活受到抑制。PBPs是一类存在于细胞膜上的具有转糖酶、转肽酶和羧肽酶活性的膜蛋白,并且在肽聚糖的合成过程中也具有决定性作用。因此当PBPs的活性受到抑制后,对微生物最大的影在于影响肽聚糖的生物合成,导致微生物的细胞壁形成受到抑制。
除此以外,Flores-Kim J等人的研究《A switch in surface polymerbiogenesis triggers growth-phase-dependent and antibiotic-inducedbacteriolysis》表明青霉素还能对肽聚糖水解酶的调控因子TacL产生影响,肽聚糖水解酶是在微生物分裂过程中使细胞壁破裂,顺利完成增殖。但当细菌用青霉素处理后,细菌中的TacL含量降低,肽聚糖被水解,使细胞壁破碎。细胞壁破碎后,除外界因子更容易影响细菌外还会因为失去细胞壁的限制作用最终导致细菌涨破死亡。
3.5、耐药实验
参考何宇星等人《潜在益生作用乳酸菌的筛选鉴定及其生物学特性》报道的方法进行实验。使用K-B纸片琼脂扩散法进行药敏实验,将活化后的葡萄球菌菌液均匀涂布在水解酪蛋白培养基(MH琼脂培养基)上,静置待平板表面稍干,将药敏纸片均匀间隔贴于表面,同一种抗生素设置3个平行,37℃培养24 h后测量抑菌圈直径(mm)。测定结果如表2所示,与CARD数据库分析结果一致。参照表3显示的抗生素耐受性判断标准,鱼发酵葡萄球菌菌株FSUJL109的耐药性表现在对青霉素和氨苄西林药物具有一定程度的耐受性,对其他药物均表现为敏感。
表2菌株FSUJL109耐药结果
表3 耐药实验标准判断图,依据《抗微生物药物敏感性试验执行标准》
实施例3:鱼发酵葡萄球菌FSUJL109的功能特性
(1)耐盐特性
取活化后处于生长对数期的菌株,调整OD600 nm=0.6~0.8,以2%的接种量将鱼发酵葡萄球菌(接种菌液浓度为4×108CFU/mL)分别接种于含3 g/100mL、6 g/100mL、12 g/100mL、18 g/100mL、NaCl的LB培养基中,以不额外添加NaCl的LB培养基为对照,每隔3 h取样一次,以空白培养基为对照,600nm测定吸光值,结果见图7。由图可知,该菌株对于3 g/100mL、6 g/100mL盐浓度的胁迫具有良好的耐受能力,即使在12 g/100mL盐浓度的胁迫下,生长出现延滞,但依旧能够耐受,表现出良好的盐耐受能力。
(2)耐亚硝酸盐特性
取活化后处于生长对数期的菌株,调整OD600 nm=0.6~0.8,以2%的接种量将鱼发酵葡萄球菌(接种菌液浓度为4×108CFU/mL)分别接种于含50 mg/kg、100 mg/kg、150 mg/kg、200 mg/kg、400 mg/kg亚硝酸钠的LB培养基中,以不额外添加亚硝酸钠的LB培养基为对照,每隔3 h取样一次,以空白培养基为对照,600nm测定吸光值,结果见图8。由图可知,该菌株对于高浓度的亚硝酸盐胁迫下,其生长趋势没有明显变化。该菌株对亚硝酸盐表现出良好的耐受能力。
(3)耐酸碱特性
取活化后处于生长对数期的菌株,调整OD600 nm=0.6~0.8,以2%的接种量将鱼发酵葡萄球菌(接种菌液浓度为4×108CFU/mL)分别接种于pH值为1、2、3、4、5、6、7、8、9、10、11、12的LB培养基中,以不调整pH的LB培养基为对照,每隔3 h取样一次,以空白培养基为对照,600nm测定吸光值,结果见图9。由图可知,该菌能够耐受的pH范围为5-9。从生物量的角度分析,其中pH为5时,相较于pH为9时,同一时间时,pH为9时的生物量相对于pH为5的生物量更多,因此酸性环境对该菌的抑制能力更强。
(4)产酸能力
取活化后处于生长对数期的菌株,调整OD600 nm=0.6~0.8,以2%的接种量将鱼发酵葡萄球菌(接种菌液浓度为4×108CFU/mL)接种于含150 mg/kg的NaNO2的LB培养基中,培养24h,以空白培养基为对照,用酸度计测定菌液的pH值。经过测定,在培养24 h后的发酵液pH值为5.53±0.02,结果表明该菌株即使在150 mg/kg的亚硝酸钠胁迫下依然具有一定的产酸能力。
(5)硝酸盐还原能力测定
取活化后处于生长对数期的菌株,调整OD600 nm=0.6~0.8,以2%的接种量将鱼发酵葡萄球菌(接种菌液浓度为4×108CFU/mL)接种于含500 mg/kg的NaNO3的LB培养基中,以空白培养基为对照,检测培养基中亚硝酸盐的含量,亚硝酸盐含量的测定采用格里斯比色法,检测标准曲线如图10所示。结果见图11。经过测定,在培养12 h后发酵液中的亚硝酸盐含量达到峰值2332 μg/mL。而董竞等人报道的《侗族酸肉中硝酸盐还原菌的分离筛选及其特性研究》,在培养24 h后培养基中的亚硝酸盐含量也仅达到400 μg/mL。即该菌株对硝酸盐的还原能力较强。
X=((A540nm-0.0687)/0.0215)*T*N
X:待测样品的亚硝酸浓度μg/mL;
A540nm:样品在540nm处的吸光度;
T:检测总体体积5 mL;
N:稀释倍数。
(6)酸性条件下降解亚硝酸盐能力
取活化后处于生长对数期的菌株,调整OD600 nm=0.6~0.8,以2%的接种量将鱼发酵葡萄球菌(接种菌液浓度为4×108CFU/mL)接种于含500 mg/kg的NaNO3的LB培养基中。在0h、24 h、48 h、72 h、96 h、120 h、144 h取样检测培养基中的亚硝酸盐含量,并在取样后用盐酸将培养基的pH调整至5.5。以空白培养基为对照,结果见图12。
同时按照Hartmann S等人报道的《Reduction of Nitrite by Staphylococcuscarnosus and Staphylococcus piscifermen tans》硝酸盐还原能力测定方法进行测定。将活化后的菌体浓度调整至109cfu/mL,添加1mL菌体悬浮液的菌量至25 mL磷酸盐缓冲溶液中,其中磷酸盐缓冲液中还包含0.2 mol/L的乳酸和500μmol/L的亚硝酸钠,在厌氧条件下进行孵育。在孵育时间为第40 min时添加1 mmol/L硝酸钠,反应20 min后,也就是孵育时间为60 min时,测定缓冲液中的亚硝酸钠的含量。
通过测定,发现在20 min,该菌能够将1mmol/L硝酸钠全部转化为亚硝酸钠,而Hartmann S等人报道的菌株,能够转化大部分的硝酸盐,不能完全转化,因此本发明所述鱼发酵葡萄球菌FSUJL109的硝酸盐转化能力高于Hartmann S等人报道菌株的转化能力。
实施例4:鱼发酵葡萄球菌FSUJL109在发酵肉制品中的应用
1、腌制液配方:食盐6%,葡萄糖、蔗糖、酱油各1%,硝酸盐0.015%(上述添加物按照肉的重量百分比计算)
2、原料肉的准备:猪后腿肉洗去浮油、污物;
3、切块:剔除原料肉上的筋膜等,沿肌肉纤维方向切成2×2×4 cm长方体肉块;
4、腌制:将配方按照比例溶解,喷洒到肉块表面,4℃腌制12 h;
5、发酵:实验组设置:肉葡萄球菌ATCC 51365组和鱼发酵葡萄球菌FSUJL109组:将肉葡萄球菌ATCC 51365和鱼发酵葡萄球菌FSUJL109分别培养至对数期,用无菌生理盐水洗涤三次后,将菌体分别均匀喷洒至肉块表面,菌体添加量为1.2×1010CUF/g,置于37℃恒温培养箱中发酵24 h;
空白组:步骤5中不添加菌株,只添加一定量亚硝酸盐(亚硝酸盐的添加量与鱼发酵葡萄球菌株FSUJL109所能产生的量相同),将亚硝酸盐溶液均匀喷洒至肉块表面,亚硝酸盐溶液的体积与所喷洒的鱼发酵葡萄球菌株FSUJL109菌液的体积相同;CK组:省略步骤5。
6、成熟:发酵完成后于100℃加热30 min杀菌熟化,冷却后储藏。
7、对杀菌熟化后的肉制品进行各项指标的检测:
(1)色差比较;
(2)质构检测:TA/36探头测前速率1 mm/s,测后速率1 mm/s,压缩率50%,触发力5g,间隔时间2 s,测定硬度、弹性、黏聚性、咀嚼性。
8、杀菌熟化后的肉制品残留的亚硝酸盐含量,提取方式和计算公式均参考《GB5009.33-2016》。
9、对杀菌熟化后的肉制品进行感官评价,评分标准组织具有食品专业背景的10人为评价小组,评分标准如表4。
表4 感官评价标准
表5 发酵肉制品质构结果
由表5可知,经过发酵后,鱼发酵葡萄球菌FUSJL109组的发酵肉制品的硬度值相对于空白组硬度值,下降了约33.67%,相对于肉葡萄球菌ATCC 51365组下降了约17%,相对于CK组下降了约61.83%;而鱼发酵葡萄球菌FUSJL109组的咀嚼性相对于空白组,下降了约21%,相对于肉葡萄球菌ATCC 51365组下降了约11.17%,相对于CK组下降了约58.43%。硬度值和咀嚼性值的降低有利于消化系统对于食品的消化吸收。
表6 发酵肉制品颜色结果及亚硝酸盐残留量
注:----表示未检出。
通过表6可知,接种不同菌株肉制品经过发酵后,其颜色具有一定差异。其中L值表示物体的亮度,a值表示红绿色值,b值表示黄蓝值。其中a值越大表示物体的颜色越红。发酵成熟后的鱼发酵葡萄球菌FUSJL109组的a值相对于空白组,提高了153.76%;相对于CK组,提高了147.67%;相对于肉葡萄球菌ATCC 51365组提高了16.37%。由此可得在护色效果方面,本发明实验菌株要优于肉葡萄球菌ATCC 51365、CK组和空白组。
表7 感官评价结果
由表7可知,虽然实验组的感官评价得分略低于肉葡萄球菌组的感官评价得分,但相较于空白组的感官评价,几乎提升了一倍的得分。说明该发酵肉制品能够被广泛接受,具有工业化应用于发酵肉制品的潜力。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一株鱼发酵葡萄球菌(staphylococcus piscifermentans)FSUJL109,其特征在于,所述鱼发酵葡萄球菌FSUJL109保藏于广东省微生物菌种保藏中心,保藏编号为GDMCC No:63899,保藏日期为2023年10月23日。
2.含权利要求1所述鱼发酵葡萄球菌FSUJL109的微生物制剂。
3.如权利要求2所述的微生物制剂,其特征在于,所述微生物制剂为含有鱼发酵葡萄球菌FSUJL109的液体或固体制剂。
4.如权利要求3所述的微生物制剂,其特征在于,所述微生物制剂中鱼发酵葡萄球菌FSUJL109活菌数≥8.5×107CFU/mL。
5.制备权利要求2~4任一所述微生物制剂的方法,其特征在于,将权利要求1所述鱼发酵葡萄球菌FSUJL109在培养基中发酵。
6.将肉制品中的硝酸盐还原为亚硝酸盐的方法,其特征在于,将权利要求1所述鱼发酵葡萄球菌FSUJL109,或权利要求2~4任一所述微生物制剂加入肉制品中进行发酵。
7.如权利要求6所述的方法,其特征在于,所述肉制品包括发酵火腿或发酵香肠。
8.如权利要求7所述的方法,其特征在于,所述鱼发酵葡萄球菌FSUJL109或微生物制剂的添加量为1.9×107CFU/g肉。
9. 如权利要求8所述的方法,其特征在于,于37℃发酵至少24 h。
10.权利要求1所述鱼发酵葡萄球菌FSUJL109,或权利要求2~4任一所述微生物制剂在制备腌制肉制品中的应用。
CN202410050762.6A 2024-01-15 2024-01-15 一株具有对硝酸盐较高还原力的鱼发酵葡萄球菌 Active CN117568241B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410050762.6A CN117568241B (zh) 2024-01-15 2024-01-15 一株具有对硝酸盐较高还原力的鱼发酵葡萄球菌

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410050762.6A CN117568241B (zh) 2024-01-15 2024-01-15 一株具有对硝酸盐较高还原力的鱼发酵葡萄球菌

Publications (2)

Publication Number Publication Date
CN117568241A true CN117568241A (zh) 2024-02-20
CN117568241B CN117568241B (zh) 2024-05-14

Family

ID=89864581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410050762.6A Active CN117568241B (zh) 2024-01-15 2024-01-15 一株具有对硝酸盐较高还原力的鱼发酵葡萄球菌

Country Status (1)

Country Link
CN (1) CN117568241B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788299A (zh) * 2018-01-05 2020-10-16 阿兹特拉公司 葡萄球菌属细菌的营养缺陷型菌株
US11648248B1 (en) * 2022-01-12 2023-05-16 King Abdulaziz University Potent antimicrobial compounds with a pyridazine nucleus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788299A (zh) * 2018-01-05 2020-10-16 阿兹特拉公司 葡萄球菌属细菌的营养缺陷型菌株
US11648248B1 (en) * 2022-01-12 2023-05-16 King Abdulaziz University Potent antimicrobial compounds with a pyridazine nucleus

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
R.K. MAJUMDAR 等: "Isolation, identification and characterization of Staphylococcus sp. from Indian ethnic fermented fish product", 《LETTERS IN APPLIED MICROBIOLOGY》, vol. 71, 26 July 2020 (2020-07-26), pages 359 *
SOJEONG HEO 等: "Food-derived coagulase-negative Staphylococcus as starter cultures for fermented foods", 《FOOD SCIENCE AND BIOTECHNOLOGY》, vol. 29, 4 July 2020 (2020-07-04), pages 1023 *
SUSANNE HARTMANN 等: "Reduction of Nitrite by Staphylococcus carnosus and Staphylococcus piscifermentans", 《SYSTEMATIC AND APPLIED MICROBIOLOGY》, vol. 18, no. 3, 1 November 2011 (2011-11-01), pages 323 - 328, XP001030929 *
于小青 等: "一种中度嗜盐细菌的筛选", 《食品与发酵科技》, vol. 54, no. 4, 31 December 2018 (2018-12-31), pages 55 - 58 *
邢巍 等: "微生物对肉制品发酵的影响研究进展", 《肉类研究》, vol. 37, no. 4, 31 December 2023 (2023-12-31), pages 61 - 68 *

Also Published As

Publication number Publication date
CN117568241B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
Li et al. Formation of red myoglobin derivatives and inhibition of spoilage bacteria in raw meat batters by lactic acid bacteria and Staphylococcus xylosus
Giello et al. Impact of Lactobacillus curvatus 54M16 on microbiota composition and growth of Listeria monocytogenes in fermented sausages
Rieu et al. Interactions in dual species biofilms between Listeria monocytogenes EGD-e and several strains of Staphylococcus aureus
Tremonte et al. Detection of different microenvironments and Lactobacillus sakei biotypes in Ventricina, a traditional fermented sausage from central Italy
CN113999793A (zh) 一株发酵特性良好且具有产香功能的植物乳杆菌及其筛选方法
Foster et al. Cetobacterium ceti gen. nov., sp. nov., a new Gram‐negative obligate anaerobe from sea mammals
Nakamura et al. Microbiological safety and microbiota of Kapi, Thai traditional fermented shrimp paste, from different sources
Zheng et al. Detection of tet (X6) variant–producing Proteus terrae subsp. cibarius from animal cecum in Zhejiang, China
CN102286606A (zh) 克罗诺杆菌肉汤培养基及检测方法
Zhou et al. Combined effects of cold and acid on dual-species biofilms of Pseudomonas fluorescens and Listeria monocytogenes under simulated chilled beef processing conditions
CN116640700B (zh) 一株抑制黄曲霉生长和毒素产生的副干酪乳杆菌f50及其应用
Bovill et al. Comparison of selective media for the recovery and enumeration of probiotic yeasts from animal feed
CN117568241B (zh) 一株具有对硝酸盐较高还原力的鱼发酵葡萄球菌
Hammuel et al. Antibiotic resistance of Bacillus species isolated from hawked ‘suya’meat sold in Kaduna metropolis, North-Western Nigeria
CN114395511B (zh) 一株地衣芽孢杆菌fy1及其应用
Hayati et al. Antimicrobial activity of bacteriocin like inhibitory substance (BLIS) and lactic acid bacteria (LAB) isolated from traditional fermented buffalo milk from West Sumatra, Indonesia
Thongruck et al. Monitoring of changes in lactic acid bacteria during production of Thai traditional fermented shrimp (Kung-Som) by culturing method and PCR-DGGE technique.
CN114621884A (zh) 一株枯草芽孢杆菌及其在水质净化中的应用
CN112877448A (zh) 含有特异性分子靶标的蜡样芽胞杆菌标准菌株及其检测和应用
Rezapour et al. Analysis of antibiotic resistance and antimicrobial effects of Enterococcus faecium and Lactococcus lactis isolated from Khorramabad traditional cheeses
CN114480204B (zh) 一株烟酸芽孢杆菌fy2及其应用
CN112899378B (zh) 含有特异性分子靶标的克罗诺杆菌标准菌株及其检测和应用
Olodu et al. Isolation and characterization of bacteria contaminants of commercial suya meat along Sakponba Road, Benin City
CN112646906B (zh) 含有特异性分子靶标的致泻大肠埃希氏菌标准参考菌株及其检测和应用
CN116333925B (zh) 一株枯草芽孢杆菌xd1及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 528000 No. 18, Jiangwan Road, Chancheng District, Guangdong, Foshan

Patentee after: Foshan University

Country or region after: China

Address before: 528000 No. 18, Jiangwan Road, Chancheng District, Guangdong, Foshan

Patentee before: FOSHAN University

Country or region before: China

CP03 Change of name, title or address