CN117567147A - 一种锌镁氧材料及其制备方法 - Google Patents

一种锌镁氧材料及其制备方法 Download PDF

Info

Publication number
CN117567147A
CN117567147A CN202311327411.7A CN202311327411A CN117567147A CN 117567147 A CN117567147 A CN 117567147A CN 202311327411 A CN202311327411 A CN 202311327411A CN 117567147 A CN117567147 A CN 117567147A
Authority
CN
China
Prior art keywords
zinc
magnesium oxide
powder
oxide material
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311327411.7A
Other languages
English (en)
Inventor
余芳
文崇斌
童培云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vital Thin Film Materials Guangdong Co Ltd
Original Assignee
Vital Thin Film Materials Guangdong Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vital Thin Film Materials Guangdong Co Ltd filed Critical Vital Thin Film Materials Guangdong Co Ltd
Priority to CN202311327411.7A priority Critical patent/CN117567147A/zh
Publication of CN117567147A publication Critical patent/CN117567147A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本申请属于靶材生产技术领域,公开了一种锌镁氧材料的制备方法,该方法先将氧化镁粉末和氧化锌粉末在混料机中混合,得到粉体,且氧化镁粉末与氧化锌粉末的质量比为1~15:85~99,再将PVA、纯水和粉体混合,得到混合料,其中PVA、纯水和粉体的质量比为1~3:3~5:92~96;随后将混合料球磨、烘干,得到烘干料;再将烘干料装入管式气氛炉中,以3~5℃/min的升温速率,升温到200℃,再以0.5~1℃/min,升温到500~600℃,保温3.5~5h,然后以3~5℃/min,升温到900~1000℃,保温1.5~2.5h;得到粗烧体;最后将粗烧体放入真空热压炉中热压烧结、降温、脱模、加工,得到具有高致密度、低碳含量的锌镁氧材料,此外,本申请还公开了一种锌镁氧材料。

Description

一种锌镁氧材料及其制备方法
技术领域
本申请涉及靶材制备技术领域,尤其涉及一种锌镁氧材料及其制备方法。
背景技术
氧化锌作为一种环境友好、储量丰富的多功能宽禁带氧化物光电材料,在经过一定数量的三价元素(如Al、Ga、B等)的简并掺杂后,可以变成较高光电性能的透明导电氧化物材料(transparentconductiveoxide,TCO),具有紫外光吸收、可见光透明、红外光反射以及电学特性可调等优点,在平板显示、薄膜太阳能电池、建筑节能用Low-E玻璃、智能玻璃等光电信息领域得到越来越多的应用。
此外,采用更宽禁带的MgO材料掺杂氧化锌之后,赋予氧化锌材料一些新的特点和应用。由于Mg2+的离子半径(0.072nm)与Zn2+的离子半径(0.074nm)接近,因此Mg2+置换Zn2+时不会引起较大的晶格畸变,进而容易形成MgxZn1-xO三元合金,相关研究表明,这种MgxZn1-xO薄膜的带隙和结构特性依赖于合金薄膜中Mg的含量。ZnO的带隙为3.37eV,MgO的带隙为7.8eV,理论上,随Mg含量的变化,所制备MgxZn1-xO薄膜的禁带宽度在3.37~7.8eV变化。这种更宽禁带的MgZnO薄膜在高性能薄膜晶体管器件(TFT)、紫外探测器以及新结构CIGS薄膜太阳能电池的无Cd高阻层都有着重要的应用。
目前沉积MgZnO薄膜的技术多种多样,其中以磁控溅射成膜最为成熟,它具有薄膜致密度高、均匀性与重复性好且易于大面积高速沉积等优点而被业界接受并广泛应用。在磁控溅射过程中,陶瓷靶材起到至关重要的作用,它的性能与溅射稳定性以及最终膜层的光电特性密切相关。对高性能陶瓷靶材的基本要求是:高致密度、细小均匀的晶粒以及成分的均匀一致。
中国专利申请202011549209.5公开了一种镁掺杂氧化锌磁控溅射靶材及其制备方法,包括步骤:(1)向氧化锌粉体中掺杂氧化镁粉体和第三氧化物粉体,混合后与乙醇溶液混合形成浆料;
(2)将浆料球磨后干燥,过筛,得到成型用粉体;
(3)将粉体冷等静压形成坯体;
(4)将坯体慢速升温至900~1150℃,保温30~90min,再快速升温至烧结温度1300~1450℃,保温120~480min,慢速降温形成半成品;经切割、打磨,得到所述镁掺杂氧化锌磁控溅射靶材;
该方案制备的镁掺杂氧化锌磁控溅射靶材的致密度高,相对密度大于95%以上,同时电阻率较低可达4×10-2,远低于现有技术中的靶材电阻,导电效果好,能够满足镀膜产线中频快速溅射的需求,进一步提升生产效率、降低成本;与此同时,观察该方案说明书可见,该方案分别通过球磨工艺和烧结工艺提升了靶材的致密度,其中球磨工艺使粉体高密度分散,并使高密度单颗粒紧密排列,得到高致密坯体;烧结工艺采用两步烧结手段,进一步提升了粉体分散密度及高密度单颗粒的紧密排列,得到高致密坯体;
可以看到,尽管该方案与本申请均使用了两步烧结的手段,但是本申请中两步烧结的目的与该方案两步烧结的目的有着本质上的区别,上述方案中,进行两步烧结是为了进行常压低温烧结,以获得晶粒细小、致密度高的靶材,而在本申请中,两步烧结中的第一步更多的是为了在促进晶粒生长的同时,除去步骤2中添加的PVA,以得到一种低杂质、高致密度的锌镁氧材料;
中国专利申请202310248397.5公开了一种氧化铟锡靶材的烧结工艺,该方案将氧化铟和氧化锡原料制备成坯体后,采用靶材烧结系统进行预脱脂、脱脂和烧结,最终制备出氧化铟锡靶材;坯体首先在氩气的氛围下预脱脂,氩气为惰性气体,不会与坯体中的成分发生反应,使坯体完全固化成型,然后升高温度继续脱脂,使坯体中聚乙烯醇等成分在高温下分解,通过分步脱除水分和有机粘结性物质的方式,能够减少坯体单位时间内气体逸散的量,从而避免坯体出现裂纹;气氛的转换通过靶材烧结系统进行控制,防止炉膛内的压力、温度浮动过大;通过精确的升温和降温调节,有助于控制氧化铟锡靶材晶粒和致密程度达到最佳状态,有助于提高产品质量;
通过进一步观察该方案的说明书可以看到,该方案也在步骤一中使用聚乙烯醇、聚丙烯酰胺、聚醚型消泡剂等多种聚合物作为添加剂与氧化铟锌共同混合并制得胚体,随后在制备成胚体后在步骤2中通过在稀有气体的环境下进行预脱脂、脱脂处理,同时,需要注意的是,在该方案中,预脱脂和脱脂过程的最高温度为600℃。
本方案需要解决的问题:如何提供一种锌镁氧材料的制备方法,以制备一种具有高致密度、低含碳量的锌镁氧材料。
发明内容
本申请的目的是提供一种锌镁氧材料的制备方法,该制备方法制得的锌镁氧材料在具有较高的致密度的同时,其含碳量得到了进一步的抑制。
为实现上述目的,本申请公开了一种锌镁氧材料的制备方法,包括以下步骤:
步骤1:将氧化镁粉末和氧化锌粉末在混料机中混合,得到粉体,且氧化镁粉末与氧化锌粉末的质量比为1~15:85~99;
步骤2:将PVA、纯水和步骤1制得的粉体混合,得到混合料,其中PVA、纯水和粉体的质量比为1~3:3~5:92~96;
步骤3:将混合料球磨、烘干,得到烘干料;
步骤4:将烘干料装入空气气氛的管式气氛炉中,以3~5℃/min的升温速率,升温到200℃,再以0.5~1℃/min的升温速率,升温到500~600℃,保温3.5~5h,然后以3~5℃/min的升温速率,升温到900~1000℃,保温1.5~2.5h;得到粗烧体;
步骤5:将粗烧体放入真空热压炉中热压烧结、降温、脱模、加工,得到锌镁氧材料。
优选地,步骤1中,氧化镁的纯度大于或等于4N,氧化锌的纯度大于或等于4N。
优选地,步骤1中,氧化镁粉末与氧化锌粉末的质量比为7~9:91~93。
优选地,步骤3具体为:将步骤2制得的混合料放入球磨机球磨,球磨时间为8~10h,球磨完成后,在70~100℃的温度下烘干1~2h,得到烘干料。
优选地,步骤5的热压烧结过程具体为:将步骤4制得的粗烧体放入真空热压炉中进行热压烧结,热压烧结的升温速率为8~12℃/min,升温至1200~1400℃后,将真空热压炉内的压力提升至30~50MPa,保温保压1.5~2h。
此外,本申请还公开了一种锌镁氧材料,通过上述的锌镁氧材料的制备方法制得。
优选地,锌镁氧材料中碳元素的含量小于100ppm。
优选地,锌镁氧材料的相对致密度大于97%。
本申请的有益效果是:本申请通过在混料过程中向氧化锌粉末与氧化镁粉末混合制得的粉末中加入聚乙烯醇,提升了氧化锌粉末与氧化镁粉末之间的粘结力,进而提升了后续制备的锌镁氧材料的致密度,同时,更为重要的是,本申请通过步骤4中在管式气氛炉中对烘干料进行的多温度梯度保温处理,降低了烘干料中聚合物的含量,进而降低了后续制备的锌镁氧材料的碳含量。
具体实施方式
下面将结合本发明的实施例,对本发明进行清楚、完整地描述,在本发明的描述中,需要说明的是,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
实施例1
步骤1:将氧化镁粉末和氧化锌粉末在混料机中混合,得到粉体,且氧化镁粉末与氧化锌粉末的质量比为15:85;
步骤2:将PVA、纯水和步骤1制得的粉体混合,得到混合料,其中PVA、纯水和粉体的质量比为3:5:92;
步骤3:将步骤2制得的混合料放入球磨机球磨,球磨时间为9h,球磨完成后,在80℃的温度下烘干2h,得到烘干料;
步骤4:将烘干料装入空气气氛的管式气氛炉中,以3℃/min的升温速率,升温到200℃,再以0.5℃/min,升温到550℃,保温4h,然后以5℃/min,升温到1000℃,保温2h;得到粗烧体;
步骤5:将步骤4制得的粗烧体放入真空热压炉中进行热压烧结,热压烧结的升温速率为12℃/min,升温至1200℃后,将真空热压炉内的压力提升至40MPa,保温保压2h;保温保压结束后,随炉降温,降到室温后,脱模,进行机加工,得到锌镁氧材料。
实施例2
步骤1:将氧化镁粉末和氧化锌粉末在混料机中混合,得到粉体,且氧化镁粉末与氧化锌粉末的质量比为1:99;
步骤2:将PVA、纯水和步骤1制得的粉体混合,得到混合料,其中PVA、纯水和粉体的质量比为1:4:95;
步骤3:将步骤2制得的混合料放入球磨机球磨,球磨时间为8h,球磨完成后,在70℃的温度下烘干1h,得到烘干料;
步骤4:将烘干料装入空气气氛的管式气氛炉中,以5℃/min的升温速率,升温到200℃,再以1℃/min,升温到600℃,保温3.5h,然后以3℃/min,升温到900℃,保温2.5h;得到粗烧体;
步骤5:将步骤4制得的粗烧体放入真空热压炉中进行热压烧结,热压烧结的升温速率为8℃/min,升温至1400℃后,将真空热压炉内的压力提升至30MPa,保温保压2.5h;保温保压结束后,随炉降温,降到室温后,脱模,进行机加工,得到锌镁氧材料。
实施例3
步骤1:将氧化镁粉末和氧化锌粉末在混料机中混合,得到粉体,且氧化镁粉末与氧化锌粉末的质量比为8:92;
步骤2:将PVA、纯水和步骤1制得的粉体混合,得到混合料,其中PVA、纯水和粉体的质量比为2:3:95;
步骤3:将步骤2制得的混合料放入球磨机球磨,球磨时间为10h,球磨完成后,在100℃的温度下烘干1.5h,得到烘干料;
步骤4:将烘干料装入空气气氛的管式气氛炉中,以4℃/min的升温速率,升温到200℃,再以0.7℃/min,升温到500℃,保温5h,然后以4℃/min,升温到950℃,保温1.5h;得到粗烧体;
步骤5:将步骤4制得的粗烧体放入真空热压炉中进行热压烧结,热压烧结的升温速率为10℃/min,升温至1300℃后,将真空热压炉内的压力提升至50MPa,保温保压1.5h;保温保压结束后,随炉降温,降到室温后,脱模,进行机加工,得到锌镁氧材料。
实施例4
与实施例1基本相同,区别在于,步骤1中,氧化镁粉末与氧化锌粉末的质量比为7:93。
实施例5
与实施例1基本相同,区别在于,步骤1中,氧化镁粉末与氧化锌粉末的质量比为9:91。
对比例1
与实施例1基本相同,区别在于,步骤4中,将烘干料装入空气气氛的管式气氛炉中,以3℃/min的升温速率,升温到200℃,保温2h,再以0.5℃/min,升温到550℃,保温4h,得到粗烧体。
对比例2
与实施例1基本相同,区别在于,步骤1中,氧化镁粉末与氧化锌粉末的质量比为30:70。
对比例3
与实施例1基本相同,区别在于,步骤2中,PVA、纯水和粉体的质量比为5:5:90。
对比例4
与实施例1基本相同,区别在于,步骤2中,PVA、纯水和粉体的质量比为0.5:5:94.5。
对比例5
与实施例1基本相同,区别在于,使用氧化铟粉末代替氧化锌粉末。
对比例6
与实施例1基本相同,区别在于,使用氧化锡粉末代替氧化镁粉末。
性能测试:
需要说明的是,关于镁含量的测试过程中,分别区个点的锌镁氧材料表面的3个点的镁含量进行测试,一方面能够有效的减小误差,同时,能够分辨出镁元素在锌镁氧材料中分布的均匀程度。
结果分析:
1.通过实施例1-3可见,当改变氧化锌粉末、氧化镁粉末的质量比后,实施例3制得的锌镁氧材料的致密度更高,我们认为,造成此现象的原因一方面是氧化锌粉末和氧化镁粉末的质量比优化后的结果,另一方面,也可能是由于聚乙烯醇的添加量,脱脂温度等参数的变化引起;
但与此观察实施例1与实施例4-5可见,当实施例4-5相对实施例1仅改变氧化锌和氧化镁的质量比后,实施例4、实施例5的致密度仍有一定程度的提升,因此,我们可以认为,通过对氧化锌粉末与氧化镁粉末的质量比的优化,能够在一定程度上提升锌镁氧材料的致密度;
2.通过实施例1和对比例1可见,当降低脱脂过程中的最高温度至550℃时,锌镁氧材料中的碳含量显著升高,我们认为,在锌镁氧材料的制作过程中,550℃不足以完全脱去烘干料中的聚乙烯醇;
3.通过实施例1和对比例2-4可见,当改变氧化镁粉末与氧化锌粉末的质量比,或改变PVA、纯水和粉体的质量比后,对锌镁氧材料的碳含量、致密度等参数造成不同程度的不利影响;
4.通过实施例1和对比例5-6可见,当使用氧化铟粉末代替氧化锌粉末或使用氧化锡粉末代替氧化镁粉末后,制得的材料中碳含量出现一定程度的升高现象同时致密度呈现一定程度的下降趋势,可见,本申请所公开的制备方法更加适用于制备锌镁氧材料。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种锌镁氧材料的制备方法,其特征在于,包括以下步骤:
步骤1:将氧化镁粉末和氧化锌粉末在混料机中混合,得到粉体,且氧化镁粉末与氧化锌粉末的质量比为1~15:85~99;
步骤2:将PVA、纯水和步骤1制得的粉体混合,得到混合料,其中PVA、纯水和粉体的质量比为1~3:3~5:92~96;
步骤3:将混合料球磨、烘干,得到烘干料;
步骤4:将烘干料装入空气气氛的管式气氛炉中,以3~5℃/min的升温速率,升温到200℃,再以0.5~1℃/min的升温速率,升温到500~600℃,保温3.5~5h,然后以3~5℃/min的升温速率,升温到900~1000℃,保温1.5~2.5h;得到粗烧体;
步骤5:将粗烧体放入真空热压炉中热压烧结、降温、脱模、加工,得到锌镁氧材料。
2.根据权利要求1所述的锌镁氧材料的制备方法,其特征在于,步骤1中,氧化镁的纯度大于或等于4N,氧化锌的纯度大于或等于4N。
3.根据权利要求1所述的锌镁氧材料的制备方法,其特征在于,步骤1中,氧化镁粉末与氧化锌粉末的质量比为7~9:91~93。
4.根据权利要求1所述的锌镁氧材料的制备方法,其特征在于,所述步骤3具体为:将步骤2制得的混合料放入球磨机球磨,球磨时间为8~10h,球磨完成后,在70~100℃的温度下烘干1~2h,得到烘干料。
5.根据权利要求1所述的锌镁氧材料的制备方法,其特征在于,所述步骤5的热压烧结过程具体为:将步骤4制得的粗烧体放入真空热压炉中进行热压烧结,热压烧结的升温速率为8~12℃/min,升温至1200~1400℃后,将真空热压炉内的压力提升至30~50MPa,保温保压1.5~2h。
6.一种锌镁氧材料,其特征在于,通过权利要求1-5中任一所述的锌镁氧材料的制备方法制得。
7.根据权利要求6所述的锌镁氧材料,其特征在于,所述锌镁氧材料中碳元素的含量小于100ppm。
8.根据权利要求6所述的锌镁氧材料,其特征在于,所述锌镁氧材料的相对致密度大于97%。
CN202311327411.7A 2023-10-13 2023-10-13 一种锌镁氧材料及其制备方法 Pending CN117567147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311327411.7A CN117567147A (zh) 2023-10-13 2023-10-13 一种锌镁氧材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311327411.7A CN117567147A (zh) 2023-10-13 2023-10-13 一种锌镁氧材料及其制备方法

Publications (1)

Publication Number Publication Date
CN117567147A true CN117567147A (zh) 2024-02-20

Family

ID=89892467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311327411.7A Pending CN117567147A (zh) 2023-10-13 2023-10-13 一种锌镁氧材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117567147A (zh)

Similar Documents

Publication Publication Date Title
KR101841314B1 (ko) 산화물 소결체 및 그 제조방법, 스퍼터링 타겟, 산화물 투명 도전막 및 그 제조방법, 그리고 태양 전지
CN108218419B (zh) 一种铟锡氧化物陶瓷靶材的制备方法
CN102747334B (zh) 一种氧化锌基透明导电薄膜及其制备方法
CN114524664B (zh) 一种太阳能电池用陶瓷靶材及其制备方法
CN114620996A (zh) 一种高效太阳能电池用旋转陶瓷靶材
CN113233870B (zh) 一种掺杂氧化镉靶材及其制备方法与应用
CN101037795A (zh) Sb掺杂的p型ZnO晶体薄膜的制备方法
CN101660120A (zh) 多元素掺杂的n型氧化锌基透明导电薄膜及其制备方法
CN101985740A (zh) 一种铝掺氧化锌透明导电薄膜的退火方法
CN105063559A (zh) 增强光电性能Zr元素掺杂AZO靶材
CN108002428B (zh) 一种蒸镀用ito颗粒的制备方法及由该方法制备的ito颗粒
CN114736013B (zh) 一种氧化锌镁靶材及制备方法
CN108546109B (zh) 氧空位可控的大尺寸azo磁控溅射靶材制备方法
CN113336549A (zh) 一种碲硒镉靶材及其制备方法
CN109879667B (zh) 致密失氧氧化锌陶瓷体的制备方法
CN117107193A (zh) 锡酸锌单晶薄膜及其制备方法
CN112725752A (zh) 一种镁掺杂氧化锌磁控溅射靶材及其制备方法
CN116751032B (zh) 一种zto靶材及其制备方法
CN111910158B (zh) 一种超宽禁带p型SnO2薄膜及其制备方法
CN117567147A (zh) 一种锌镁氧材料及其制备方法
CN110172733B (zh) 一种高质量锡酸锌单晶薄膜及其制备方法
CN102453865A (zh) 一种MgZnO薄膜的制备方法及其应用
TWI535875B (zh) Preparation method of magnesia - zinc sputtering target doped with group ⅢA elements
CN114107917B (zh) 一种铜掺氧化锌透明导电薄膜及其制备方法
CN115196964B (zh) 一种含钠的氧化钼陶瓷溅射靶材制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination