CN117567142A - 一种利用碳化硼发泡的泡沫陶瓷及其制备方法 - Google Patents

一种利用碳化硼发泡的泡沫陶瓷及其制备方法 Download PDF

Info

Publication number
CN117567142A
CN117567142A CN202311374325.1A CN202311374325A CN117567142A CN 117567142 A CN117567142 A CN 117567142A CN 202311374325 A CN202311374325 A CN 202311374325A CN 117567142 A CN117567142 A CN 117567142A
Authority
CN
China
Prior art keywords
mixture
boron carbide
weight ratio
sintering temperature
foamed ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311374325.1A
Other languages
English (en)
Inventor
李向明
郁万军
吕翠翠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai University
Original Assignee
Yantai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai University filed Critical Yantai University
Priority to CN202311374325.1A priority Critical patent/CN117567142A/zh
Publication of CN117567142A publication Critical patent/CN117567142A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于陶瓷材料领域,具体涉及一种利用碳化硼发泡的泡沫陶瓷及其制备方法,所述泡沫陶瓷以石英砂作为主体材料,以碳酸钠作为助熔剂,以方镁石和钠长石或钾长石作为粘度调节剂,以氧化铁作为氧化剂,以碳化硼作为发泡剂,烧结温度为810~890℃,烧结时间为35~65min。本发明还公开了上述泡沫陶瓷的制备方法,该方法具有烧结温度低的显著优点,制造成本远低于现有技术。本发明所制备的泡沫陶瓷同时具有较高的总孔率、闭孔率和抗压强度,由于其内部各孔彼此独立不连通,故具有优异的保温、隔音、防水、防潮性能。

Description

一种利用碳化硼发泡的泡沫陶瓷及其制备方法
技术领域
本发明属于陶瓷材料领域,具体涉及一种利用碳化硼发泡的泡沫陶瓷及其制备方法。
背景技术
泡沫陶瓷是一种优异的环保型建筑材料。相较于建筑业大量使用的开孔型泡沫陶瓷,闭孔型泡沫陶瓷因其封闭且独立的孔结构,具有更为优异的防水、防潮、保温、隔热性能,在国防军工、航空航天、能源化工、消防安全、船舶制造、超深井钻探等高端领域具有广阔的市场空间。泡沫陶瓷的制备方法很多,但闭孔率高、力学性能好、微观结构均匀的泡沫陶瓷制备难度很大。目前,多数方法制备的泡沫陶瓷为开孔型。
现有的制备方法中,以烧结法制备的泡沫陶瓷综合性能最优。烧结法常用的发泡剂分为分解型和氧化型2种。分解型发泡剂主要有硫酸钙和碳酸钙,氧化型发泡剂有碳化硅和氮化硅。各种发泡剂均有优缺点,以硫酸钙作为发泡剂会产生大量的二氧化硫有害气体,对环境污染严重;采用碳酸钙作为发泡剂,烧结温度仅需800~900℃,但泡沫陶瓷的强度较低;采用碳化硅和氮化硅作为发泡剂,泡沫陶瓷的综合性能较好,但烧结温度普遍在1000℃以上,导致制造成本较高。
根据烧结法制备泡沫陶瓷的两个必要条件:(1)坯体在高温形成连续且具有合适粘度的熔融态,(2)发泡剂以适当的速率产生发泡气体。在空气中,碳化硅和氮化硅在900℃以上才开始氧化。理论上,只要在碳化硅和氮化硅发生氧化反应时基体处于熔融态,即可满足烧结法制备泡沫陶瓷的两个必要条件。然而,当烧结温度较低时,由于碳化硅和氮化硅的氧化速率很低,加之熔融基体的封闭作用,使得碳化硅和氮化硅的氧化速率更低,从而导致基体的发泡时间很长,严重影响生产效率。为了加速发泡,常规的做法是提高烧结温度以加快碳化硅和氮化硅氧化。这就是现有技术在利用碳化硅和氮化硅发泡制备泡沫陶瓷时烧结温度普遍在1000℃以上的原因。
发明内容
本发明针对上述现有技术以碳化硅和氮化硅发泡制备泡沫陶瓷时烧结温度高的不足,提供一种利用碳化硼发泡的泡沫陶瓷及其制备方法。
本发明的第一个目的在于提供一种利用碳化硼发泡的泡沫陶瓷,其原料包括:石英砂、碳酸钠、方镁石、长石、氧化铁、碳化硼;
所述方镁石和长石组成混合料I,所述混合料I中,方镁石和长石的重量比为1:0.7~1.1;所述长石为钠长石或钾长石;
所述氧化铁与碳化硼组成混合料II,所述混合料II中,氧化铁与碳化硼的重量比为1:1.4~2.2;
所述石英砂、碳酸钠、混合料I和混合料II组成混合料III,所述混合料III中,石英砂、碳酸钠、混合料I和混合料II的重量比为100:6~10:12~14:3~5。
本发明的原料中,石英砂是主体材料,碳酸钠是助熔剂,方镁石和钠长石或钾长石是粘度调节剂,氧化铁是氧化剂,碳化硼是发泡剂。其中,加入碳酸钠是为了降低坯体的熔融温度;调节方镁石和钠长石或钾长石的含量,可使坯体在熔融时具有合适的粘度和连续性;调节氧化铁和碳化硼的含量可以调节熔融基体的发泡速率,以改变泡沫陶瓷的发泡体积。
在上述技术方案的基础上,本发明还可以做出如下的改进:
进一步,其烧结温度为810~890℃。
进一步,所述混合料II中各原料的重量比与烧结温度具有如下对应关系:
(1)当烧结温度为890℃时,混合料II中氧化铁与碳化硼的重量比范围为1:2.0~2.2;
(2)当850℃<烧结温度<890℃时,混合料II中氧化铁与碳化硼的重量比范围为1:1.7~2.2;
(3)当烧结温度为850℃时,混合料II中氧化铁与碳化硼的重量比范围为1:1.7~1.9;
(4)当810℃<烧结温度<850℃时,混合料II中氧化铁与碳化硼的重量比范围为1:1.4~1.9;
(5)当烧结温度为810℃时,混合料II中氧化铁与碳化硼的重量比范围为1:1.4~1.6。
更进一步,所述混合料II中各原料的重量比与烧结温度具有如下对应关系:
(1)当烧结温度为890℃时,混合料II中氧化铁与碳化硼的最佳重量比为1:2.2;
(2)当850℃<烧结温度<890℃时,混合料II中氧化铁与碳化硼的重量比范围为1:1.8~2.2;
(3)当烧结温度为850℃时,混合料II中氧化铁与碳化硼的最佳重量比为1:1.8;
(4)当810℃<烧结温度<850℃时,混合料II中氧化铁与碳化硼的重量比范围为1:1.4~1.8;
(5)当烧结温度为810℃时,混合料II中氧化铁与碳化硼的最佳重量比为1:1.4。
进一步,所述混合料III中各原料的重量比与烧结温度具有如下对应关系:
(1)当烧结温度为890℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:6~7:12~13:3~4;
(2)当850℃<烧结温度<890℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:6~8.5:12~13.5:3~4.5;
(3)当烧结温度为850℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:7.5~8.5:12.5~13.5:3.5~4.5;
(4)当810℃<烧结温度<850℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:7.5~10:12.5~14:3.5~5;
(5)当烧结温度为810℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:9~10:13~14:4~5。
更进一步,所述混合料III中各原料的重量比与烧结温度具有如下对应关系:
(1)当烧结温度为890℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的最佳重量比为100:6:12:3;
(2)当850℃<烧结温度<890℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:6~8:12~13:3~4;
(3)当烧结温度为850℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的最佳重量比为100:8:13:4;
(4)当810℃<烧结温度<850℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:8~10:13~14:4~5;
(5)当烧结温度为810℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的最佳重量比为100:10:14:5。
本发明的第二个目的在于提供一种上述利用碳化硼发泡的泡沫陶瓷的制备方法,包括如下步骤:
(1)混合粉料制备:将各原料依次混合,并磨制成混合粉料;
(2)混合粉料模压:将步骤(1)获得的混合粉料模压成坯体;
(3)坯体烧结:将步骤(2)获得的坯体进行升温,并在810~890℃保温,然后随炉冷却至室温,得到泡沫陶瓷。
进一步,所述步骤(1)中,将配制好的原料倒入球磨机中进行球磨,得到的混合粉料的平均粒径为3~5微米。
进一步,所述步骤(2)中,模压压力为6~8MPa,保压时间为15~25s。
进一步,所述步骤(3)中,所述坯体以10~30℃/min的速率升温,保温35~65min。
与现有技术相比,本发明的有益效果如下:
(1)本发明制备的泡沫陶瓷内部各孔彼此独立不连通,使得泡沫陶瓷具有优异的保温、隔音、防水、防潮性能;
(2)本发明制备的泡沫陶瓷同时具有较高的总孔率、闭孔率和抗压强度,综合性能优异;
(3)本发明的制备方法具有工艺简单和烧结温度低的显著优点,烧结温度显著低于现有的制备工艺,制造成本远低于现有技术。
附图说明
图1是碳化硼在空气中的热重曲线图;
图2是本发明利用碳化硼发泡的泡沫陶瓷的制备流程图;
图3是本发明实施例1制得的泡沫陶瓷的宏观光学照片;
图4是本发明实施例1制得的泡沫陶瓷的显微结构照片。
具体实施方式
以下结合实例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
具体实施方式中,使用的原料均为常见市售化学试剂,具体选用情况如下:
石英砂:选自山东烟台鑫山石英砂厂,粒径1mm,二氧化硅含量大于98%,杂质主要为钙、钾、钠、铝的氧化物。
碳酸钠:选自潍坊共创化工有限公司,粒径50μm,工业纯。
方镁石:选自寿光市春辉化工有限公司,粒径30μm,工业纯。
钠长石:选自横山县兴东钾钠矿石粉厂,粒径30μm,工业纯。
钾长石:选自浙江富华纳米新材料科技有限公司,粒径50μm,工业纯。
氧化铁粉:选自天津市科密欧化学试剂有限公司,粒径20μm,分析纯。
碳化硼粉:选自山东华屹科创纳米材料有限公司,粒径10μm,分析纯。
实施例1
1、制备利用碳化硼发泡的泡沫陶瓷:
本实施例利用碳化硼发泡的泡沫陶瓷制备流程如图2所示,制备方法包括如下步骤:
(1)将方镁石和钠长石按照1:0.9的重量比混合,得到混合料I;
(2)将氧化铁和碳化硼按照1:1.8的重量比混合,得到混合料II;
(3)将石英砂、碳酸钠、混合料I和混合料II的按照100:8:13:4的重量比混合,得到混合料III;
(4)将混合料III倒入球磨机中球磨,得到平均粒径为4微米的混合粉料;
(5)将步骤(4)球磨好的混合粉料压制成尺寸为310mm×140mm×70mm的坯体,模压压力为7MPa,保压时间为20s;
(6)将步骤(5)压制的坯体以20℃/min的速率升温至850℃,保温50min,然后随炉冷却至室温,得到泡沫陶瓷。
2、对上述制得的泡沫陶瓷进行性能测试:
本发明制备的泡沫陶瓷闭孔率高,不能沉入水中,无法直接采用阿基米德排水法测试密度和孔隙率,故本发明采用改进的阿基米德排水法测试密度和孔隙率。具体地,采用论文“Xiangming Li,Mengyao Zheng,Rui Li,Guojian Yuan,Guangyou Zhou,XiaotaoZhu,Guina Ren,Preparation,microstructure,properties and foaming mechanism ofa foamed ceramics with high closed porosity,Ceramics International.2019,45(5):11982-11988.”中的间接法进行测试。测试步骤如下:
首先,用一根铜线缠绕样品,使样品可以沉入水中,根据公式(1)计算样品和铜线的整体体积密度。
式中,w1和w2分别为样品的重量和铜丝的重量,可直接测得;w1'和w2'分别为浸饱水的样品和铜线在空气中的重量,可直接测得;w1"是浸饱水的样品在水中的浮重,可直接测得;w2"是铜线在水中的浮重,可直接测得;v1为样品的体积,未知;v2是铜线的体积,可直接测得;根据公式(1)计算得到v1的值,再根据公式(2)计算得到样品的密度。
样品和铜线的整体开孔率可根据公式(3)计算测得:
由于铜线的开孔率为0%,在公式(3)的基础上,进一步根据公式(4)计算得到样品的开孔率。
最后,将样品研磨成粉末,利用量筒测得粉末的体积v3后,样品的总孔率根据公式(5)计算得出。
样品的闭孔率根据公式(6)计算得出。
Pc=Pt-Po (6)
上述密度和孔隙率测试过程中,将被测样品放入盛满水的烧杯中煮沸20分钟得到浸饱水的样品。
在进行抗压强度测试时,将试样加工成高度为30mm、直径为15mm的圆柱形试样,采用单轴压缩法进行抗压强度测试。
在室温环境下测试,本实施例制备的泡沫陶瓷的总孔率为82%,闭孔率为81%,密度为0.45g/cm3,抗压强度为7.7MPa。
实施例2
1、制备利用碳化硼发泡的泡沫陶瓷:
本实施例利用碳化硼发泡的泡沫陶瓷的制备流程如图2所示,制备方法包括如下步骤:
(1)将方镁石和钾长石按照1:1.1的重量比混合,得到混合料I;
(2)将氧化铁和碳化硼按照1:1.4的重量比混合,得到混合料II;
(3)将石英砂、碳酸钠、混合料I和混合料II的按照100:10:14:5的重量比混合,得到混合料III;
(4)将混合料III倒入球磨机中球磨,得到平均粒径为5微米的混合粉料;
(5)将步骤(4)球磨好的混合粉料压制成为310mm×140mm×70mm的坯体,模压压力为8MPa,保压时间为15s;
(6)将步骤(5)压制的坯体以10℃/min的速率升温至810℃,保温65min,然后随炉冷却至室温,得到泡沫陶瓷。
2、对上述制得的泡沫陶瓷进行性能测试:
测试方法同实施例1。
在室温环境下测试,本实施例制备的泡沫陶瓷的总孔率为81%,闭孔率为80%,密度为0.48g/cm3,抗压强度为8.1MPa。
实施例3
1、制备利用碳化硼低温发泡的泡沫陶瓷:
本实施例利用碳化硼发泡的泡沫陶瓷的制备流程如图2所示,制备方法包括如下步骤:
(1)将方镁石和钠长石按照1:0.7的重量比混合,得到混合料I;
(2)将氧化铁和碳化硼按照1:2.2的重量比混合,得到混合料II;
(3)将石英砂、碳酸钠、混合料I和混合料II的按照100:6:12:3的重量比混合,得到混合料III;
(4)将混合料III倒入球磨机中球磨,得到平均粒径为3微米的混合粉料;
(5)将步骤(4)球磨好的混合粉料压制成为310mm×140mm×70mm的坯体,模压压力为6MPa,保压时间为25s;
(6)将步骤(5)压制的坯体以30℃/min的速率升温至890℃,保温35min,然后随炉冷却至室温,得到泡沫陶瓷。
2、对上述制得的泡沫陶瓷进行性能测试:
测试方法同实施例1。
在室温环境下测试,本实施例制备的泡沫陶瓷的总孔率为83%,闭孔率为81%,密度为0.43g/cm3,抗压强度为6.8MPa。
实施例4
1、制备利用碳化硼低温发泡的泡沫陶瓷:
本实施例利用碳化硼发泡的泡沫陶瓷的制备流程如图2所示,制备方法包括如下步骤:
(1)将方镁石和钾长石按照1:1.0的重量比混合,得到混合料I;
(2)将氧化铁和碳化硼按照1:1.6的重量比混合,得到混合料II;
(3)将石英砂、碳酸钠、混合料I和混合料II的按照100:9:14:5的重量比混合,得到混合料III;
(4)将混合料III倒入球磨机中球磨,得到平均粒径为4微米的混合粉料;
(5)将步骤(4)球磨好的混合粉料压制成为310mm×140mm×70mm的坯体,模压压力为8MPa,保压时间为20s;
(6)将步骤(5)压制的坯体以15℃/min的速率升温至830℃,保温55min,然后随炉冷却至室温,得到泡沫陶瓷。
2、对上述制得的泡沫陶瓷进行性能测试:
测试方法同实施例1。
在室温环境下测试,本实施例制备的泡沫陶瓷的总孔率为82%,闭孔率为80%,密度为0.46g/cm3,抗压强度为7.3MPa。
实施例5
1、制备利用碳化硼低温发泡的泡沫陶瓷:
本实施例利用碳化硼发泡的泡沫陶瓷的制备流程如图2所示,制备方法包括如下步骤:
(1)将方镁石和钠长石按照1:0.8的重量比混合,得到混合料I;
(2)将氧化铁和碳化硼按照1:2.0的重量比混合,得到混合料II;
(3)将石英砂、碳酸钠、混合料I和混合料II的按照100:7:12:3的重量比混合,得到混合料III;
(4)将混合料III倒入球磨机中球磨,得到平均粒径为3微米的混合粉料;
(5)将步骤(4)球磨好的混合粉料压制成为310mm×140mm×70mm的坯体,模压压力为6MPa,保压时间为25s;
(6)将步骤(5)压制的坯体以25℃/min的速率升温至870℃,保温45min,然后随炉冷却至室温,得到泡沫陶瓷。
2、对上述制得的泡沫陶瓷进行性能测试:
测试方法同实施例1。
在室温环境下测试,本实施例制备的泡沫陶瓷的总孔率为83%,闭孔率为82%,密度为0.42g/cm3,抗压强度为7.2MPa。
图3是实施例1制得的泡沫陶瓷的宏观光学照片。如图3所示,实施例1所制得的泡沫陶瓷为泡沫多孔结构,孔结构均匀无缺陷。
图4是实施例1制得的泡沫陶瓷的显微结构照片。如图4所示,实施例1所制得的泡沫陶瓷的孔径具有很好的一致性,大孔的孔壁中存在小孔,但各孔封闭且彼此独立不连通。
表1对比了实施例1~5和文献1~4所制备的泡沫陶瓷的烧结温度和性能。
表1实施例1~5和文献1~4所制备的泡沫陶瓷的烧结温度和性能
文献1:Formation of closed-pore foam ceramic from granitescraps.Ceramics International,2018,44:3469-3471.
文献2:Synthesis and characterization of porous ceramics fromspodumene tailings and waste glass wool.Ceramics International,2021,47:33286-33297.
文献3:Preparation of high strength foam ceramics from sand shale andsteel slag.Ceramics International,2020,46:9256-9262.
文献4:Fabrication and performance of SiO2-based electromagnetic wavepenetrating foamed ceramics with dense surface.Ceramics International,2020,46:14278-14283.
与文献1所述的泡沫陶瓷相比,本发明所制备的泡沫陶瓷具有与其相当的总孔率和闭孔率,但抗压强度更高、烧结温度更低。
与文献2所述的泡沫陶瓷相比,本发明所制备的泡沫陶瓷的烧结温度低60~140℃,且总孔率和闭孔率高很多。
与文献3所述的泡沫陶瓷相比,本发明所制备的泡沫陶瓷除抗压强度低之外,其总孔率和闭孔率高得多,且烧结温度低得多。
与文献4所述的泡沫陶瓷相比,本发明所制备的泡沫陶瓷的总孔率和闭孔率略低,但抗压强度更高,且烧结温度低得多。
综合上述对比,并结合图3的宏观光学照片和图4的显微结构照片可知,本发明所制备的泡沫陶瓷具有优异的综合性能,闭孔率仅比总孔率低1~2%,尤其在总孔率和闭孔率较高的情况下,仍具有相对较高的抗压强度。在制备方法方面,本发明所述制备方法具有烧结温度低的显著优点,烧结温度可低至810℃。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种利用碳化硼发泡的泡沫陶瓷,其特征在于,其原料包括:石英砂、碳酸钠、方镁石、长石、氧化铁、碳化硼;
所述方镁石和长石组成混合料I,所述混合料I中,方镁石和长石的重量比为1:0.7~1.1;所述长石为钠长石或钾长石;
所述氧化铁与碳化硼组成混合料II,所述混合料II中,氧化铁与碳化硼的重量比为1:1.4~2.2;
所述石英砂、碳酸钠、混合料I和混合料II组成混合料III,所述混合料III中,石英砂、碳酸钠、混合料I和混合料II的重量比为100:6~10:12~14:3~5。
2.根据权利要求1所述的利用碳化硼发泡的泡沫陶瓷,其特征在于,其烧结温度为810~890℃。
3.根据权利要求2所述的利用碳化硼发泡的泡沫陶瓷,其特征在于,所述混合料II中各原料的重量比与烧结温度具有如下对应关系:
(1)当烧结温度为890℃时,混合料II中氧化铁与碳化硼的重量比范围为1:2.0~2.2;
(2)当850℃<烧结温度<890℃时,混合料II中氧化铁与碳化硼的重量比范围为1:1.7~2.2;
(3)当烧结温度为850℃时,混合料II中氧化铁与碳化硼的重量比范围为1:1.7~1.9;
(4)当810℃<烧结温度<850℃时,混合料II中氧化铁与碳化硼的重量比范围为1:1.4~1.9;
(5)当烧结温度为810℃时,混合料II中氧化铁与碳化硼的重量比范围为1:1.4~1.6。
4.根据权利要求2所述的利用碳化硼发泡的泡沫陶瓷,其特征在于,所述混合料III中各原料的重量比与烧结温度具有如下对应关系:
(1)当烧结温度为890℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:6~7:12~13:3~4;
(2)当850℃<烧结温度<890℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:6~8.5:12~13.5:3~4.5;
(3)当烧结温度为850℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:7.5~8.5:12.5~13.5:3.5~4.5;
(4)当810℃<烧结温度<850℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:7.5~10:12.5~14:3.5~5;
(5)当烧结温度为810℃时,混合料III中石英砂、碳酸钠、混合料I和混合料II的重量比范围为100:9~10:13~14:4~5。
5.一种如权利要求1~4任一项所述的利用碳化硼发泡的泡沫陶瓷的制备方法,其特征在于,包括如下步骤:
(1)混合粉料制备:将各原料依次混合,并磨制成混合粉料;
(2)混合粉料模压:将步骤(1)获得的混合粉料模压成坯体;
(3)坯体烧结:将步骤(2)获得的坯体进行升温,并在810~890℃保温,然后随炉冷却至室温,得到泡沫陶瓷。
6.根据权利要求5所述的利用碳化硼发泡的泡沫陶瓷的制备方法,其特征在于,所述步骤(1)中,将配制好的原料倒入球磨机中进行球磨。
7.根据权利要求5或6所述的利用碳化硼发泡的泡沫陶瓷的制备方法,其特征在于,所述步骤(1)中,得到的混合粉料的平均粒径为3~5微米。
8.根据权利要求5所述的利用碳化硼发泡的泡沫陶瓷的制备方法,其特征在于,所述步骤(2)中,模压压力为6~8MPa,保压时间为15~25s。
9.根据权利要求5所述的利用碳化硼发泡的泡沫陶瓷的制备方法,其特征在于,所述步骤(3)中,所述坯体以10~30℃/min的速率升温,保温35~65min。
CN202311374325.1A 2023-10-23 2023-10-23 一种利用碳化硼发泡的泡沫陶瓷及其制备方法 Pending CN117567142A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311374325.1A CN117567142A (zh) 2023-10-23 2023-10-23 一种利用碳化硼发泡的泡沫陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311374325.1A CN117567142A (zh) 2023-10-23 2023-10-23 一种利用碳化硼发泡的泡沫陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN117567142A true CN117567142A (zh) 2024-02-20

Family

ID=89888900

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311374325.1A Pending CN117567142A (zh) 2023-10-23 2023-10-23 一种利用碳化硼发泡的泡沫陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN117567142A (zh)

Similar Documents

Publication Publication Date Title
CN113121257B (zh) 一种表面致密的超轻全闭孔泡沫陶瓷及其低温烧制方法
CN101445326B (zh) 高耐腐蚀泡沫玻璃及其低温制备方法
CN112811923B (zh) 一种利用固体废弃物制备高强度发泡陶瓷的方法
CN103130523B (zh) 冒口材料及其生产方法
CN102417368A (zh) 利用高硅铁尾矿制造的泡沫陶瓷及其制作方法
CN102617180B (zh) 一种多孔泡沫陶瓷及其制备方法
CN110950631A (zh) 一种利用尾矿制备的轻质发泡陶瓷保温板及其制备方法
CN107673696A (zh) 一种泡沫混凝土自保温墙材及其制备方法
CN112062515B (zh) 一种利用碳化硅制备的高强地聚合物闭孔发泡材料及其制备方法
CN111995411A (zh) 一种高铝碳化硅耐火砖及其制备工艺
CN113999024A (zh) 一种轻量红外辐射节能焦炉炉门预制件的制备方法
CN108911715B (zh) 一种具有坚硬致密外壳的闭孔泡沫陶瓷及其制备方法
CN117567142A (zh) 一种利用碳化硼发泡的泡沫陶瓷及其制备方法
CN112250423A (zh) 一种防渗高强镁橄榄石轻质隔热砖及其制备方法
CN112521058A (zh) 蜂巢结构陶瓷保温绝热复合材料及其制造方法
CN111548189A (zh) 一种用陶瓷抛磨废料和高炉矿渣制备发泡陶瓷材料的方法
CN103880362A (zh) 一种氮化硅陶瓷微珠制备低密度油井固井水泥试块的方法
CN103467017A (zh) 一种玻璃微珠制备低密度油井固井水泥试块的制备方法
CN116283341B (zh) 一种利用SiC低温发泡的闭孔泡沫陶瓷及其制备方法
CN105541371A (zh) 一种利用油井土和废玻璃制备的泡沫陶瓷及其方法
CN115819109B (zh) 一种全闭孔泡沫陶瓷及其低温烧制方法
CN104150847A (zh) 轻质微孔蒸压加气混凝土浮体材料
CN103408225A (zh) 一种应用于人工浮岛的硼硅酸盐泡沫玻璃
CN108975791B (zh) 一种抗冻性能优异的再生型加气混凝土及其制备方法
CN107827424B (zh) 防水型自保温蒸压加气混凝土砌块及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination