CN117563640A - 一种适用于催化二氧化碳加氢反应的铁钴催化剂及其制备方法与应用 - Google Patents

一种适用于催化二氧化碳加氢反应的铁钴催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN117563640A
CN117563640A CN202311437003.7A CN202311437003A CN117563640A CN 117563640 A CN117563640 A CN 117563640A CN 202311437003 A CN202311437003 A CN 202311437003A CN 117563640 A CN117563640 A CN 117563640A
Authority
CN
China
Prior art keywords
iron
cobalt
carbon dioxide
catalyst
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311437003.7A
Other languages
English (en)
Inventor
霍超
吴炳顺
杨霞珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202311437003.7A priority Critical patent/CN117563640A/zh
Publication of CN117563640A publication Critical patent/CN117563640A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/50Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种适用于催化二氧化碳加氢反应的铁钴催化剂及其制备方法与应用,催化剂制备为:以铁盐和钴盐为原料,采用共沉淀法得到催化剂前驱体,将其干燥、焙烧后使用活化气氛活化,得到金属比例可控的铁钴双金属催化剂。金属钴的加入能增加催化剂表面的碱性位而显著地改善二氧化碳吸附,促进铁的碳化。改变活化气氛和引入碱金属能够使铁钴氧体形成铁钴均匀分布的独特的铁钴合金碳化物(Fe1‑ xCox)5C2,有利于改善铁钴之间的“亲密度”,以获得更高的二氧化碳转化率和高碳烃选择性。本发明的催化剂用于二氧化碳加氢制备高碳烃时,二氧化碳转化率大于50%,高碳烃选择性大于68%,生成的一氧化碳和甲烷选择性低,催化活性好,到达最高反应活性所需时间明显缩短。

Description

一种适用于催化二氧化碳加氢反应的铁钴催化剂及其制备方 法与应用
技术领域
本发明属于催化剂技术领域,具体涉及一种适用于催化二氧化碳加氢制高碳烃的铁钴双金属催化剂及其制备方法与应用。
背景技术
利用化学催化的方式将二氧化碳转化为高价值的烃类产物、燃料和聚合物,是解决温室效应问题的有效途径之一。
铁基催化剂因价格低廉,可操作温度较宽,二氧化碳加氢产物丰富等特点而被广泛应用于二氧化碳加氢制烃反应。二氧化碳是一种热力学稳定、完全氧化的化学惰性的分子,在催化剂表面的吸附相对较弱,传统的铁基催化剂很难获得较高催化活性和对高碳烃类产物的高选择性。目前二氧化碳加氢制低碳烯烃的研究较多(专利CN111111760B、CN111111763B、CN112174764B),而对开发生成高碳烃类产物的催化剂研究报道较少。高碳烃(碳原子数≥5)由于附加值高,芳烃含量少,是替代汽油作为液体燃料的优选之一。
专利CN114870886A提供了一种金属氧化物和分子筛复合的多功能催化剂(Na-Fe3O4/ZSM-5)。该催化剂具有较高的高碳烃选择性(68.5%)和较低的甲烷选择性(2.1%),但二氧化碳转化率不高(22.4%)。专利CN114405537B提拱了一种铯修饰铁酸钴的多功能型催化剂,在320℃下具有较高二氧化碳转化率,低碳烃的选择性较高(~40%),链增长能力较差,且助剂为铯成本较高。专利CN115155590A提供了一种氮掺杂碳的铁基催化剂,在300℃反应温度下具有较高的二氧化碳转化率和高碳烃类选择性,但该催化剂通过水热合成法制备,流程复杂,制备时间长,且到达加氢反应最高活性所需时间长。因此,在应用于二氧化碳加氢制高碳烃类过程中开发一种制备过程简单、高活性、高选择性和高稳定性的催化剂至关重要。
发明内容
针对现有技术存在的上述技术问题,本发明的目的在于提供一种适用于催化二氧化碳加氢制高碳烃类的铁钴双金属催化剂及其制备方法与应用,该催化剂可以形成独特的铁钴合金碳化物,组分含量可控,制备工艺简单,在300℃反应温度下二氧化碳转化率大于50%和高碳烃类选择性大于68%。
本发明采用的技术方案如下:
所述的一种用于催化二氧化碳加氢制高碳烃类的铁钴双金属催化剂的制备方法,包括如下步骤:
1)将铁盐和钴盐溶解于去离子水中,加入沉淀剂至pH达到8~10,悬浮液室温陈化过夜;
2)将步骤1)得到的悬浮液过滤,用去离子水洗涤至中性后干燥,然后在空气气氛中焙烧得到铁钴氧体材料;
3)将金属M的可溶性金属盐溶于去离子水,采用等体积浸渍法滴加到步骤2)得到的铁钴氧体材料中,充分浸渍后干燥,在空气气氛下焙烧后得到掺杂金属元素M的铁钴氧体材料;
4)将步骤3)得到的掺杂金属元素M的铁钴氧体材料在活化气氛中升温到300~500℃,然后恒温保持1~4h进行活化,活化完成降至室温后在钝化气氛中钝化1~4h得到金属元素M改性的铁钴双金属催化剂。
进一步地,步骤1)所述铁盐和钴盐在去离子水中的总金属离子浓度是0.1~1.0mol·L-1,优选为0.3-0.6mol·L-1,铁盐和钴盐的摩尔比是1:0.1~0.7,优选为1:0.4~0.6;所述沉淀剂为浓度0.1~1.0mol·L-1的氨水溶液,铁盐和钴盐分别为其硫酸盐、硝酸盐或氯化物盐。
进一步地,步骤2)或步骤3)所述焙烧温度为300~600℃,焙烧时间为4~6h,优选焙烧条件为400~500℃。
进一步地,步骤3)所述的金属元素M为碱金属、过渡金属、稀土金属中的一种或多种元素混合搭配,金属M的可溶性盐为其硝酸盐或碳酸盐;金属元素M的质量是铁钴氧体材料质量的1%~10%,优选为2~6%;所述金属M优选为Na、K中的一种或两种。
进一步地,步骤4)所述的活化气氛为H2、CO、H2/CO混合气或H2/CH4混合气;H2/CO混合气体积分数比例为H2/CO=1:0.4~1.5,优选1:0.7~1;H2/CH4混合气体积分数比例为H2/CH4=1:0.3~1.0,优选1:0.3~0.5。
进一步地,步骤4)钝化气氛为O2体积分数0.5~2%的O2/N2混合气。
本发明提供上述任一项所述的催化剂在催化二氧化碳加氢反应中的应用。
进一步地,在固定床反应器进行催化反应,二氧化碳加氢的目标产物为高碳烃类,反应温度为250~500℃,反应压力为1~5MPa,反应体积空速为1500~6000h-1,混合气H2/CO2/N2中H2的体积分数是65~75%、CO2体积分数是20~25%、N2体积分数是5~10%。
进一步地,所述高碳烃类为碳原子数≥5的烃类物质。
与现有技术相比,本发明取得的有益效果是:
1)本发明是一种用于二氧化碳加氢制高碳烃类的铁钴双金属催化剂,本发明的铁钴氧体材料利用共沉淀法制备,制备工艺条件简单,原料易获得,有利于规模化生产。同时,可以通过调控前驱体的金属比例优化催化剂组分含量,有助于双金属的协同作用及活性相的形成和稳定。另外催化剂中助剂金属掺杂,是采取等体积浸渍的方式对铁钴氧体材料加入助剂,助剂金属的负载量能够很好地调控,催化剂性能稳定。
2)本发明的铁钴双金属催化剂为尖晶石结构,金属钴的加入能够增加催化剂表面的碱性位,从而显著地改善二氧化碳吸附,促进铁的碳化。钴的引入促进了铁的还原,形成了富Fe0的铁钴合金,有利于一氧化碳的吸附和活性物质碳化铁的原位生成。加入碱金属(钠和钾)作为电子促进剂,增加了催化剂表面碱度,促进了对二氧化碳的吸附,减弱了对氢气的吸附,有利于二氧化碳的转化和碳链的增长。
3)与现有的二氧化碳加氢催化剂相比,本发明的催化剂通过改变活化气氛和引入碱金属能够使铁钴氧体形成铁钴均匀分布的独特的铁钴合金碳化物(Fe1-xCox)5C2,有利于改善金属间的亲密度和串联活性位,以获得更高的二氧化碳转化率和高碳烃类选择性。同时,明显缩短催化剂到达加氢反应最高活性所需时间。
附图说明
图1为未经活化气氛活化的氧化铁和四氧化三钴材料机械混合物、铁钴氧体材料的XRD图。
图2为经活化气氛活化的铁钴双金属催化剂XRD图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,但本发明的保护范围并不限于此。
实施例1
称取5.25g九水硝酸铁(Fe(NO3)3·9H2O)溶于去离子水中室温搅拌15min得到混合溶液(金属离子总浓度为0.5mol·L-1)。然后将其与0.5mol·L-1的氨水溶液以2ml/min的速度并流滴加入烧杯,直至悬浮液pH=8.5。沉淀完成后,悬浮液陈化过夜,过滤后用蒸馏水洗涤至pH=7.0,得到的滤饼在110℃下干燥12h,然后在空气气氛下以5℃/min升温速率升温至500℃焙烧5h得到氧化铁材料。称取2.04g六水硝酸钴(Co(NO3)2·6H2O)重复上述步骤,得到四氧化三钴材料。
再将得到的氧化铁和四氧化三钴材料一同研磨成粉末后放入管式加热炉中,在H2气氛下(H2流速为40ml/min)以5℃/min的升温速率加热至400℃活化8h,加热结束降至室温后通入1%O2~99%N2钝化3h,得到催化剂65Fe+35Co(H2-400)。
实施例1得到的氧化铁和四氧化三钴材料一同研磨的混合物的XRD图见图1(a)。
实施例2
称取5.25g九水硝酸铁(Fe(NO3)3·9H2O)和2.04g六水硝酸钴(Co(NO3)2·6H2O)溶于40ml去离子水中室温搅拌15min得到混合溶液(金属离子总浓度为0.5mol·L-1)。然后将其与0.5mol·L-1的氨水溶液以2ml/min的速度并流滴加入烧杯,直至悬浮液pH=8.5。沉淀完成后,悬浮液陈化过夜,过滤后用蒸馏水洗涤至pH=7.0,得到的滤饼在110℃下干燥12h,然后在空气气氛下以5℃/min升温速率升温至500℃焙烧5h得到铁钴氧体材料。
再将得到的铁钴氧体材料放入管式加热炉中,在H2气氛下(H2流速为40ml/min)以5℃/min的升温速率加热至400℃活化8h,加热结束降至室温后通入1%O2~99%N2钝化3h,得到催化剂65Fe35Co(H2-400)。
实施例2得到的铁钴氧体材料的XRD图见图1(b)。
实施例3
将实施例2得到的铁钴氧体材料放入管式加热炉中,在混合气(体积分数比例为H2/CO=1.5)气氛下(混合气流速为40ml/min)以5℃/min的升温速率加热至400℃活化2h,加热结束降至室温后通入1%O2~99%N2钝化3h,得到催化剂65Fe35Co(HC-400)。
对比例1
称取5.25g九水硝酸铁(Fe(NO3)3·9H2O)溶于去离子水中室温搅拌15min得到混合溶液(金属离子总浓度为0.5mol·L-1)。然后将其与0.5mol·L-1的氨水溶液以2ml/min的速度并流滴加入烧杯,直至悬浮液pH=8.5。沉淀完成后,悬浮液陈化过夜,过滤后用蒸馏水洗涤至pH=7.0,得到的滤饼在110℃下干燥12h,然后在空气气氛下以5℃/min升温速率升温至500℃焙烧5h得到氧化铁材料。
再将得到的氧化铁放入管式加热炉中,在混合气(体积分数比例为H2/CO=1.5)气氛下(混合气流速为40ml/min)以5℃/min的升温速率加热至400℃活化8h,加热结束降至室温后通入1%O2~99%N2钝化3h,得到催化剂Fe(HC-400)。
对比例2
将实施例2得到的铁钴氧体材料放入管式加热炉中,在CO气氛下(CO流速为40ml/min)以5℃/min的升温速率加热至400℃活化2h,加热结束降至室温后通入1%O2~99%N2钝化3h,得到催化剂65Fe35Co(CO-400)。
对比例3
将实施例2得到的铁钴氧体材料放入管式加热炉中,在混合气(体积分数比例为H2/CO=1.5)气氛下(混合气流速为40ml/min)以5℃/min的升温速率加热至400℃活化2h,加热结束降至室温后未使用1%O2~99%N2钝化,得到催化剂65Fe35Co(HC-400-N)。
实施例4
称取0.23g三水硝酸铜(Cu(NO3)2·6H2O)溶于1.5ml的去离子水中。称取3.0g实施例2得到的铁钴氧体材料,向其均匀滴加1.5ml硝酸铜溶液,超声处理1h。样品浸渍12h,在110℃下干燥12h,然后在空气气氛下以5℃/min升温速率升温至500℃焙烧5h得到铜改性的铁钴氧体材料。
再将得到的铜改性铁钴氧体材料放入管式加热炉中,在混合气(体积分数比例为H2/CO=1.5)气氛下(混合气流速为40ml/min)以5℃/min的升温速率加热至400℃活化2h,加热结束降至室温后通入1%O2~99%N2钝化3h,得到催化剂2Cu-65Fe35Co(HC-400)。
实施例5
称取0.19g六水硝酸铈(Ce(NO3)2·6H2O)溶于1.5ml的去离子水中。称取3.0g实施例2得到的铁钴氧体材料,向其均匀滴加1.5ml硝酸铈溶液,超声处理1h。样品浸渍12h,在110℃下干燥12h,然后在空气气氛下以5℃/min升温速率升温至500℃焙烧5h得到铈改性的铁钴氧体材料。
再将得到的铈改性铁钴氧体材料放入管式加热炉中,在混合气(体积分数比例为H2/CO=1.5)气氛下(混合气流速为40ml/min)以5℃/min的升温速率加热至400℃活化2h,加热结束降至室温后通入1%O2~99%N2钝化3h,得到催化剂2Ce-65Fe35Co(HC-400)。
实施例6
称取0.16g无水硝酸钾(KNO3)溶于1.5ml的去离子水中。称取3.0g实施例2得到的铁钴氧体材料,向其均匀滴加1.5ml硝酸钾溶液,超声处理1h。样品浸渍12h,在110℃下干燥12h,然后在空气气氛下以5℃/min升温速率升温至500℃焙烧5h得到钾改性的铁钴氧体材料。
再将得到的钾改性铁钴氧体材料放入管式加热炉中,在混合气(体积分数比例为H2/CO=1.5)气氛下(混合气流速为40ml/min)以5℃/min的升温速率加热至400℃活化2h,加热结束降至室温后通入1%O2~99%N2钝化3h,得到催化剂2K-65Fe35Co(HC-400)。
实施例7
称取0.22g无水硝酸钠(NaNO3)溶于1.5ml的去离子水中。称取3.0g实施例2得到的铁钴氧体材料,向其均匀滴加1.5ml硝酸钠溶液,超声处理1h。样品浸渍12h,在110℃下干燥12h,然后在空气气氛下以5℃/min升温速率升温至500℃焙烧5h得到钠改性的铁钴氧体材料。
再将得到的钠改性铁钴氧体材料放入管式加热炉中,在混合气(体积分数比例为H2/CO=1.5)气氛下(混合气流速为40ml/min)以5℃/min的升温速率加热至400℃活化2h,加热结束降至室温后通入1%O2~99%N2钝化3h,得到催化剂2Na-65Fe35Co(HC-400)。
实施例8
称取0.44g无水硝酸钠(NaNO3)和0.16g无水硝酸钾(KNO3)溶于1.5ml的去离子水中。称取3.0g实施例2得到的铁钴氧体材料,向其均匀滴加1.5ml混合盐溶液,超声处理1h。样品浸渍12h,在110℃下干燥12h,然后在空气气氛下以5℃/min升温速率升温至500℃焙烧5h得到钾钠改性的铁钴氧体材料。
再将得到的钾钠改性铁钴氧体材料放入管式加热炉中,在混合气(体积分数比例为H2/CO=1.5)气氛下(混合气流速为40ml/min)以5℃/min的升温速率加热至400℃活化2h,加热结束降至室温后通入1%O2~99%N2钝化3h,得到催化剂4Na-2K-65Fe35Co(HC-400)。
性能测试
在固定床反应器中进行催化剂性能测试。量取0.5ml大小为60~100目催化剂和5.5mL相同目数的石英砂,均匀混合后装入固定床反应器的等温区内。催化反应条件温度300℃,反应压力为1MPa,反应体积空速为3000h-1,混合反应气H2/CO2/N2体积分数比例为69%/23%/8%,其中N2为气相色谱分析的内标气。气相产物中的二氧化碳、一氧化碳、甲烷由装有TCD检测器的在线气相色谱定量分析组成,气体产物中的碳烃化合物由装有FID检测器的在线气相色谱定量分析组成,最后计算得到二氧化碳转化率和各产物选择性。二氧化碳加氢性能测试结果列于表1。
表1不同催化剂上的二氧化碳加氢性能表
由表1可以看出,本发明的实施例8铁钴双金属催化剂二氧化碳转化率达到51.35%,甲烷选择性较低为14.16%,一氧化碳选择性仅为3.43%,同时对目标产物C5+烃类选择性达到68.76%。
将实施例1和实施例2进行对比可以看出,将催化剂颗粒混合金属亲密度较差时二氧化碳转化有所降低,从19.84%降低至17.75%,甲烷选择性迅速升高至57.43%,C5+烃类选择性降低至16.74%。图1曲线a为Fe2O3和Co3O4的机械混合后的XRD图,曲线b为铁钴氧体材料XRD图。结合图1和表1实施例1和2可知,铁相和钴相密切接触形成的铁钴氧体材料有利于提高C5+烃类选择性,这是由于一氧化碳中间体容易从四氧化三铁溢出到钴位点,使得钴位点上产生更高的一氧化碳浓度,有利于提高催化剂碳链增长能力。铁相和钴相之间的距离增加导致对甲烷的选择性显著提高,这由于钴位点上一氧化碳浓度较低,从而增强了二氧化碳的甲烷化反应,降低了费托反应的链生长可能性。
从表1对比例2及实施例2~8可以看出,改变活化气氛和加入助催化剂后,催化剂的二氧化碳转化率明显提高,从19.84%大幅提高至51.35%,目标产物C5+烃类选择性最高提升至68.76%。结合图2可以得出,使用活化气氛活化催化剂可以使其形成独特的双金属碳化物,有利于改善铁相和钴相亲密度和串联活性位以获得更高的二氧化碳转化率和C5+烃类选择性。相较于Cu、Ce等其他助剂,碱金属(钠和钾)的引入对于催化剂活性有着明显的提高。加入碱金属(钠和钾)作为电子促进剂,增加催化剂表面碱度,促进对二氧化碳的吸附,减弱对氢气的吸附,进而抑制二氧化碳的甲烷化,有利于二氧化碳的转化和碳链的增长。同时,碱金属的引入增强了铁的渗碳能力,有利于双金属碳化物的形成。
此外,混合气的活化效果要好于CO,这是由于在CO气氛下,催化剂表面更易堆积无定形碳,使得催化剂活性位点被覆盖,催化活性下降,这可以从图2中65Fe35Co(CO-400)曲线20°~30°的无定形碳衍射峰得到。结合表1实施例3、对比例3和图2可以得到,钝化气体可以通过形成最外层氧化层来消除空气的影响,从而阻止空气敏感材料(过渡金属、金属碳化物等)进一步氧化,进而提高催化活性。
本说明书所述的内容仅仅是对发明构思实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式。

Claims (10)

1.一种适用于催化二氧化碳加氢反应的铁钴双金属催化剂的制备方法,其特征在于包括以下步骤:
1)将铁盐和钴盐溶解于去离子水中,加入沉淀剂至pH达到8~10,悬浮液室温陈化过夜;
2)将步骤1)得到的悬浮液过滤,用去离子水洗涤至中性后干燥,然后在空气气氛中焙烧得到铁钴氧体材料;
3)将金属M的可溶性金属盐溶于去离子水,采用等体积浸渍法滴加到步骤2)得到的铁钴氧体材料中,充分浸渍后干燥,在空气气氛下焙烧后得到掺杂金属元素M的铁钴氧体材料;
4)将步骤3)得到的掺杂金属元素M的铁钴氧体材料在活化气氛中升温到300~500℃,然后恒温保持1~4h进行活化,活化完成降至室温后在钝化气氛中钝化1~4h得到金属元素M改性的铁钴双金属催化剂。
2.如权利要求1所述的一种适用于催化二氧化碳加氢反应的铁钴双金属催化剂的制备方法,其特征在于步骤1)中,铁盐和钴盐在去离子水中的总金属离子浓度是0.1~1.0mol·L-1,优选为0.3~0.6mol·L-1,铁盐和钴盐的摩尔比是1:0.1~0.7,优选为1:0.4~0.6;所述沉淀剂为浓度0.1~1.0mol·L-1的氨水溶液,铁盐和钴盐分别为其硫酸盐、硝酸盐或氯化物盐。
3.如权利要求1所述的一种适用于催化二氧化碳加氢反应的铁钴双金属催化剂的制备方法,其特征在于步骤2)或步骤3)中,焙烧温度为300~600℃,焙烧时间为4~6h,优选焙烧条件为400~500℃。
4.如权利要求1所述的一种适用于催化二氧化碳加氢反应的铁钴双金属催化剂的制备方法,其特征在于步骤3)中,所述的金属元素M为碱金属、过渡金属、稀土金属中的一种或多种元素混合搭配,金属M的可溶性盐为其硝酸盐或碳酸盐;金属元素M的质量是铁钴氧体材料质量的1%~10%,优选为2~6%;所述金属M优选为Na、K中的一种或两种。
5.如权利要求1所述的一种适用于催化二氧化碳加氢反应的铁钴双金属催化剂的制备方法,其特征在于步骤4)所述的活化气氛为H2、CO、H2/CO混合气或H2/CH4混合气;H2/CO混合气体积分数比例为H2/CO=1:0.4~1.5,优选1:0.7~1;H2/CH4混合气体积分数比例为H2/CH4=1:0.3~1.0,优选1:0.3~0.5。
6.如权利要求1所述的一种适用于催化二氧化碳加氢反应的铁钴双金属催化剂的制备方法,其特征在于步骤4)钝化气氛为O2体积分数0.5~2%的O2/N2混合气。
7.如权利要求1-6任一所述方法制备的一种适用于催化二氧化碳加氢反应的铁钴双金属催化剂。
8.如权利要求7所述的铁钴双金属催化剂在催化二氧化碳加氢反应中的应用。
9.如权利要求8所述的应用,其特征在于在固定床反应器进行催化反应,催化剂装填在固定床反应器中,通入混合气H2/CO2/N2进行催化反应,二氧化碳加氢的目标产物为高碳烃类,反应温度为250~500℃,反应压力为1~5MPa,反应体积空速为1500~6000h-1,混合气H2/CO2/N2中H2的体积分数是65~75%、CO2体积分数是20~25%、N2体积分数是5~10%。
10.如权利要求9所述的应用,其特征在于所述高碳烃类为碳原子数≥5的烃类物质。
CN202311437003.7A 2023-11-01 2023-11-01 一种适用于催化二氧化碳加氢反应的铁钴催化剂及其制备方法与应用 Pending CN117563640A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311437003.7A CN117563640A (zh) 2023-11-01 2023-11-01 一种适用于催化二氧化碳加氢反应的铁钴催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311437003.7A CN117563640A (zh) 2023-11-01 2023-11-01 一种适用于催化二氧化碳加氢反应的铁钴催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN117563640A true CN117563640A (zh) 2024-02-20

Family

ID=89885269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311437003.7A Pending CN117563640A (zh) 2023-11-01 2023-11-01 一种适用于催化二氧化碳加氢反应的铁钴催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN117563640A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118553936A (zh) * 2024-07-29 2024-08-27 扬州氢能研发电机有限公司 一种双功能氧催化剂钴铁/碳复合纳米材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118553936A (zh) * 2024-07-29 2024-08-27 扬州氢能研发电机有限公司 一种双功能氧催化剂钴铁/碳复合纳米材料及其制备方法

Similar Documents

Publication Publication Date Title
Shi et al. Mn-modified CuO, CuFe2O4, and γ-Fe2O3 three-phase strong synergistic coexistence catalyst system for NO reduction by CO with a wider active window
Panahi et al. Ultrasound-assistant preparation of Cu-SAPO-34 nanocatalyst for selective catalytic reduction of NO by NH3
KR102182916B1 (ko) 부타디엔으로의 부텐의 산화성 탈수소용 촉매 및 그것의 제조 방법
CN115254100B (zh) 一种用于co2加氢制乙醇的金属氧化物掺杂型单原子催化剂的制备与应用
CN107921427A (zh) 甲烷干重整反应、用于甲烷干重整反应的含镍和铈的核壳结构的催化剂及其制备
Kudo et al. High porous carbon with Cu/ZnO nanoparticles made by the pyrolysis of carbon material as a catalyst for steam reforming of methanol and dimethyl ether
AU2013203123B2 (en) Treating of catalyst support
CN117563640A (zh) 一种适用于催化二氧化碳加氢反应的铁钴催化剂及其制备方法与应用
US20040106517A1 (en) Chemicals from synthesis gas
JPH0336571B2 (zh)
Pérez-Alonso et al. Relevance in the Fischer− Tropsch synthesis of the formation of Fe− O− Ce interactions on iron− cerium mixed oxide systems
CN108043406B (zh) 一种乙酸自热重整制氢的助剂促进水滑石衍生钴基催化剂
KR102035714B1 (ko) 탄화수소 개질용 니켈 촉매
Liu et al. Development of novel low temperature and low pressure ammonia synthesis catalyst
CN102773108B (zh) 一种硫化氢制氢气催化剂的制备方法
Hu et al. Three-dimensionally ordered macroporous (3DOM) structure promoted the activity and H2O poisoning resistance of CeMn/3DOM-TiO2 catalyst in NH3-SCR
KR102296609B1 (ko) 탄화수소 제조용 촉매 및 이의 제조 방법
JP6529375B2 (ja) 金属触媒、その製造方法およびその再生方法
Bhavani et al. Synthesis of single phase LaMn1− XNiXO3 perovskite material
CN112844390A (zh) 制备低碳烯烃的铁镍双金属费托催化剂及制备方法与应用
WO2001089686A2 (en) Chemicals from synthesis gas
EP3959010A1 (en) A catalyst composition and method of making thereof for pure hydrogen production
CN111790454A (zh) 一种仿生铁基催化剂、制备方法及应用
CN114797902B (zh) 合成气制低碳醇催化剂及其制备方法和应用
CN114192157B (zh) 一种纳米铁基费托合成催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination