CN117559207B - A high-precision narrow-linewidth wavelength-tunable pulse laser output method - Google Patents
A high-precision narrow-linewidth wavelength-tunable pulse laser output method Download PDFInfo
- Publication number
- CN117559207B CN117559207B CN202410034383.8A CN202410034383A CN117559207B CN 117559207 B CN117559207 B CN 117559207B CN 202410034383 A CN202410034383 A CN 202410034383A CN 117559207 B CN117559207 B CN 117559207B
- Authority
- CN
- China
- Prior art keywords
- etalon
- laser
- output
- wavelength
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims abstract description 166
- 239000013078 crystal Substances 0.000 claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 10
- 238000005086 pumping Methods 0.000 claims abstract 4
- 238000002834 transmittance Methods 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08086—Multiple-wavelength emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1123—Q-switching
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种高精度窄线宽波长可调脉冲激光输出方法,属于激光器技术领域。The invention relates to a high-precision narrow-linewidth wavelength-adjustable pulse laser output method, belonging to the technical field of lasers.
背景技术Background technique
常见的固体激光器只能发射单一或少数几个固定波长,这难以满足不同应用的多样化需求。随着激光器和激光技术的不断发展以及激光应用领域的要求逐渐提升,在工业,激光探测,激光通信等领域,窄线宽波长可调激光器具有很广泛的应用前景。Common solid-state lasers can only emit a single or a few fixed wavelengths, which makes it difficult to meet the diverse needs of different applications. With the continuous development of lasers and laser technology and the increasing requirements of laser application fields, narrow-linewidth wavelength-tunable lasers have a wide range of application prospects in the fields of industry, laser detection, laser communication, etc.
现有技术中,可通过在谐振腔内插入F-P标准具,利用多光束干涉原理,对特定频率的激光模式高透过率,对其他模式高反射损耗,实现窄线宽单纵模激光输出。通过改变标准具的插入角度,改变透射中心波长的频率,或者调整增益介质的工作温度,改变谐振腔的光学长度,在输出端使用扫描干涉仪检测波长,从而对输出纵模进行调谐。In the prior art, by inserting an F-P etalon into the resonant cavity and utilizing the principle of multi-beam interference, a narrow linewidth single longitudinal mode laser output can be achieved with high transmittance for a laser mode of a specific frequency and high reflection loss for other modes. The output longitudinal mode can be tuned by changing the insertion angle of the etalon, changing the frequency of the transmission center wavelength, or adjusting the operating temperature of the gain medium, changing the optical length of the resonant cavity, and using a scanning interferometer at the output end to detect the wavelength.
在腔内插入F-P标准具会使激光器结构复杂,且会带入插入损耗。随着F-P标准具调谐精细度的增加,谐振腔内插入损耗也会增大,输出功率下降,不利于激光高功率输出。同时,在输出端使用扫描干涉仪检测波长,从而对输出纵模进行调谐的方法精度较低。Inserting an F-P etalon into the cavity will complicate the laser structure and introduce insertion loss. As the tuning fineness of the F-P etalon increases, the insertion loss in the resonant cavity will also increase, and the output power will decrease, which is not conducive to high-power laser output. At the same time, the method of using a scanning interferometer at the output end to detect the wavelength and tune the output longitudinal mode has low accuracy.
发明内容Summary of the invention
为了克服上述问题,本发明提供一种高精度窄线宽波长可调脉冲激光输出方法,采用的激光器谐振腔结构简单,输入输出腔镜由可调节间距的F-P标准具替代,谐振腔内没有插入多余元件,减小了插入损耗,有利于激光高功率输出。且该方法通过宽带激光器、光栅光谱仪的实时监控,工控机的主动反馈控制调节F-P标准具厚度,能实现高精度窄线宽可调波长脉冲激光输出。In order to overcome the above problems, the present invention provides a high-precision narrow linewidth wavelength adjustable pulse laser output method, the laser resonant cavity structure used is simple, the input and output cavity mirrors are replaced by F-P standard tools with adjustable spacing, no redundant components are inserted into the resonant cavity, the insertion loss is reduced, and it is conducive to high-power laser output. In addition, the method can achieve high-precision narrow linewidth adjustable wavelength pulse laser output through real-time monitoring of broadband lasers and grating spectrometers, and active feedback control of industrial computers to adjust the thickness of F-P standard tools.
本发明的技术方案如下:The technical solution of the present invention is as follows:
一种高精度窄线宽波长可调脉冲激光输出方法,激光器包括半导体激光器泵浦源、激光增益晶体和调Q器件;所述半导体激光器泵浦源和所述激光增益晶体之间设置有第一F-P标准具;所述激光增益晶体和所述调Q器件之间设置有第二F-P标准具;所述激光增益晶体能够产生多纵模光束;所述第一F-P标准具和所述第二F-P标准具的厚度可调;A high-precision narrow linewidth wavelength-adjustable pulse laser output method, the laser comprises a semiconductor laser pump source, a laser gain crystal and a Q-switching device; a first F-P etalon is arranged between the semiconductor laser pump source and the laser gain crystal; a second F-P etalon is arranged between the laser gain crystal and the Q-switching device; the laser gain crystal can generate a multi-longitudinal mode beam; the thickness of the first F-P etalon and the second F-P etalon are adjustable;
所述第一F-P标准具和所述第二F-P标准具包括可动反射镜和固定反射镜;所述可动反射镜和所述固定反射镜垂直于激光器的光轴,相互平行间隔放置;The first F-P etalon and the second F-P etalon include a movable reflector and a fixed reflector; the movable reflector and the fixed reflector are perpendicular to the optical axis of the laser and are placed parallel to each other and spaced apart;
所述可动反射镜的材质为PZT,还包括与所述第一F-P标准具的可动反射镜连接的第一PZT促动器,与所述第二F-P标准具的可动反射镜连接的第二PZT促动器;The movable reflector is made of PZT, and further comprises a first PZT actuator connected to the movable reflector of the first F-P etalon, and a second PZT actuator connected to the movable reflector of the second F-P etalon;
还包括控制单元、第一宽带激光器、第二宽带激光器、第一光栅光谱仪和第二光栅光谱仪;所述第一宽带激光器和所述第一光栅光谱仪实时检测所述第一F-P标准具的中心波长,并传输给所述控制单元;所述第二宽带激光器和所述二光栅光谱仪实时检测所述第二F-P标准具的中心波长,并传输给所述控制单元;It also includes a control unit, a first broadband laser, a second broadband laser, a first grating spectrometer, and a second grating spectrometer; the first broadband laser and the first grating spectrometer detect the central wavelength of the first F-P etalon in real time and transmit it to the control unit; the second broadband laser and the second grating spectrometer detect the central wavelength of the second F-P etalon in real time and transmit it to the control unit;
所述控制单元为工控机;所述第一PZT促动器和所述第二PZT促动器与所述控制单元连接;The control unit is an industrial computer; the first PZT actuator and the second PZT actuator are connected to the control unit;
激光输出包括以下步骤:Laser output includes the following steps:
所述第一F-P标准具或所述第二F-P标准具的透射率T为:The transmittance T of the first F-P etalon or the second F-P etalon is:
; ;
; ;
其中,R为所述第一F-P标准具或所述第二F-P标准具的基础透射率,n为所述第一F-P标准具或所述第二F-P标准具的折射率,θ为光束进入所述第一F-P标准具或所述第二F-P标准具的后的折射角,λ为入射波波长,d为所述第一F-P标准具或所述第二F-P标准具的厚度;Wherein, R is the basic transmittance of the first FP etalon or the second FP etalon, n is the refractive index of the first FP etalon or the second FP etalon, θ is the refraction angle of the light beam after entering the first FP etalon or the second FP etalon, λ is the wavelength of the incident wave, and d is the thickness of the first FP etalon or the second FP etalon;
得到所述第一F-P标准具或所述第二F-P标准具透射峰值对应的频率v:The frequency v corresponding to the transmission peak of the first FP etalon or the second FP etalon is obtained:
; ;
其中,j为整数系数,c为光速;Where, j is an integer coefficient, c is the speed of light;
确认待输出激光的波长λ 1;Confirm the wavelength λ 1 of the laser to be output;
调整所述第一F-P标准具厚度d,使得所述第一F-P标准具对待输出激光具有高反射,即:The thickness d of the first FP etalon is adjusted so that the first FP etalon has high reflection to the output laser, that is:
; ;
其中,k为系数,且k为自然数;Wherein, k is a coefficient, and k is a natural number;
调整所述第二F-P标准具的厚度d,使得所述第二F-P标准具对待输出激光部分透射。The thickness d of the second FP etalon is adjusted so that the second FP etalon partially transmits the laser light to be output.
进一步的,调整所述第二F-P标准具的厚度d至满足最佳透射率。Furthermore, the thickness d of the second FP etalon is adjusted to satisfy the optimal transmittance.
进一步的,还包括以下步骤:Furthermore, the method further comprises the following steps:
获取待输出激光的波长λ 1;Obtaining the wavelength λ 1 of the laser to be output;
通过所述第一宽带激光器和所述第一光栅光谱仪实时检测所述第一F-P标准具的中心波长;通过所述第二宽带激光器和所述第二光栅光谱仪实时检测所述第二F-P标准具的中心波长;The central wavelength of the first F-P etalon is detected in real time by the first broadband laser and the first grating spectrometer; the central wavelength of the second F-P etalon is detected in real time by the second broadband laser and the second grating spectrometer;
通过控制所述第一PZT促动器和所述第二PZT促动器调整所述第一F-P标准具和所述第二F-P标准具的厚度,从而改变所述第一F-P标准具和所述第二F-P标准具对待输出激光的透射率,使得所述第一F-P标准具对待输出激光具有高反射,所述第二F-P标准具对待输出激光部分透射。The thicknesses of the first F-P etalon and the second F-P etalon are adjusted by controlling the first PZT actuator and the second PZT actuator, thereby changing the transmittance of the first F-P etalon and the second F-P etalon to the laser light to be output, so that the first F-P etalon has high reflectivity to the laser light to be output and the second F-P etalon partially transmits the laser light to be output.
本发明具有如下有益效果:该激光器谐振腔结构简单,腔内损耗小,利于激光高功率输出。现有技术中,腔内插入F-P标准具进行波长调谐的方法,结构较为复杂,同时会带入腔内的插入损耗,且随着标准具调谐精细度的增加,腔内的插入损耗也会增大,输出功率下降。本发明未在谐振腔内插入多余器件,而是采用F-P标准具代替腔镜的方法,使用腔内损耗较低,更有利于高功率激光的输出。The present invention has the following beneficial effects: the laser resonant cavity has a simple structure, low intracavity loss, and is conducive to high-power laser output. In the prior art, the method of inserting an F-P standard tool into the cavity for wavelength tuning has a relatively complex structure and will introduce insertion loss into the cavity. As the tuning fineness of the standard tool increases, the insertion loss in the cavity will also increase, and the output power will decrease. The present invention does not insert redundant devices into the resonant cavity, but adopts the method of replacing the cavity mirror with an F-P standard tool, which has a lower intracavity loss and is more conducive to the output of high-power lasers.
该激光器波长调谐精度高,响应速度快。现有技术中,通过改变F-P标准具的角度,通过扫描干涉仪检测模式变化进行波长调谐的方法无法进行精细的调谐,只能进行一定范围的粗调谐。本发明中,使用宽带激光器和光谱仪实时检测F-P标准具的中心波长,通过工控机主动反馈控制PZT促动器带动可动反射镜移动,从而实现高响应速度,高精度的波长调谐。The laser has high wavelength tuning accuracy and fast response speed. In the prior art, the method of tuning the wavelength by changing the angle of the F-P standard and detecting the mode change through a scanning interferometer cannot perform fine tuning, and can only perform coarse tuning within a certain range. In the present invention, a broadband laser and a spectrometer are used to detect the central wavelength of the F-P standard in real time, and the PZT actuator is actively feedback-controlled by an industrial computer to drive the movable reflector to move, thereby achieving high response speed and high-precision wavelength tuning.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的整体结构示意图。FIG1 is a schematic diagram of the overall structure of the present invention.
图中附图标记表示为:The reference numerals in the figure are as follows:
1、半导体激光器泵浦源;2、第一F-P标准具;3、激光增益晶体;4、调Q器件;5、第二F-P标准具;6、第一PZT促动器;7、第一宽带激光器;8、第一光栅光谱仪;9、控制单元;10、第二光栅光谱仪;11、第二宽带激光器;12、第二PZT促动器。1. Semiconductor laser pump source; 2. First F-P etalon; 3. Laser gain crystal; 4. Q-switching device; 5. Second F-P etalon; 6. First PZT actuator; 7. First broadband laser; 8. First grating spectrometer; 9. Control unit; 10. Second grating spectrometer; 11. Second broadband laser; 12. Second PZT actuator.
具体实施方式Detailed ways
下面结合附图和具体实施例来对本发明进行详细的说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
参考图1,一种高精度窄线宽波长可调脉冲激光输出方法,激光器包括半导体激光器泵浦源1、激光增益晶体3和调Q器件4;所述半导体激光器泵浦源1和所述激光增益晶体3之间设置有第一F-P标准具2;所述激光增益晶体3和所述调Q器件4之间设置有第二F-P标准具5;所述激光增益晶体3能够产生多纵模光束;所述第一F-P标准具2和所述第二F-P标准具5的厚度可调;Referring to FIG1 , a method for outputting a high-precision narrow linewidth wavelength-adjustable pulsed laser is provided, wherein the laser comprises a semiconductor laser pump source 1, a laser gain crystal 3 and a Q-switching device 4; a first F-P etalon 2 is provided between the semiconductor laser pump source 1 and the laser gain crystal 3; a second F-P etalon 5 is provided between the laser gain crystal 3 and the Q-switching device 4; the laser gain crystal 3 is capable of generating a multi-longitudinal mode beam; the thickness of the first F-P etalon 2 and the second F-P etalon 5 are adjustable;
所述第一F-P标准具2和所述第二F-P标准具5包括可动反射镜和固定反射镜;所述可动反射镜和所述固定反射镜垂直于激光器的光轴,相互平行间隔放置;The first F-P etalon 2 and the second F-P etalon 5 include a movable reflector and a fixed reflector; the movable reflector and the fixed reflector are perpendicular to the optical axis of the laser and are placed parallel to each other and spaced apart;
所述可动反射镜的材质为PZT,还包括与所述第一F-P标准具2的可动反射镜连接的第一PZT促动器6,与所述第二F-P标准具5的可动反射镜连接的第二PZT促动器12;The movable reflector is made of PZT, and further comprises a first PZT actuator 6 connected to the movable reflector of the first F-P etalon 2, and a second PZT actuator 12 connected to the movable reflector of the second F-P etalon 5;
还包括控制单元9、第一宽带激光器7、第二宽带激光器11、第一光栅光谱仪8和第二光栅光谱仪10;所述第一宽带激光器7和所述第一光栅光谱仪8实时检测所述第一F-P标准具2的中心波长,并传输给所述控制单元9;所述第二宽带激光器11和所述第二光栅光谱仪10实时检测所述第二F-P标准具5的中心波长,并传输给所述控制单元9;It also includes a control unit 9, a first broadband laser 7, a second broadband laser 11, a first grating spectrometer 8 and a second grating spectrometer 10; the first broadband laser 7 and the first grating spectrometer 8 detect the central wavelength of the first F-P etalon 2 in real time, and transmit it to the control unit 9; the second broadband laser 11 and the second grating spectrometer 10 detect the central wavelength of the second F-P etalon 5 in real time, and transmit it to the control unit 9;
所述控制单元9为工控机;所述第一PZT促动器6和所述第二PZT促动器12与所述控制单元9连接;The control unit 9 is an industrial computer; the first PZT actuator 6 and the second PZT actuator 12 are connected to the control unit 9;
如图1所示,所述半导体激光器泵浦源1发出的光通过所述第一F-P标准具2进入激光器的谐振腔(由第一F-P标准具2和第二F-P标准具5组成),激发所述激光增益晶体3;所述激光增益晶体3受激产生的光在所述谐振腔中内振荡,放大,并通过所述第二F-P标准具5输出。As shown in FIG1 , the light emitted by the semiconductor laser pump source 1 enters the laser resonant cavity (composed of the first F-P etalon 2 and the second F-P etalon 5) through the first F-P etalon 2, and excites the laser gain crystal 3; the light generated by the laser gain crystal 3 oscillates in the resonant cavity, is amplified, and is output through the second F-P etalon 5.
所述第一宽带激光器7和所述第二宽带激光器11发出的光分别通过所述第一F-P标准具2和所述第二F-P标准具5进入所述第一光栅光谱仪8和述第二光栅光谱仪10。The light emitted by the first broadband laser 7 and the second broadband laser 11 enters the first grating spectrometer 8 and the second grating spectrometer 10 through the first F-P etalon 2 and the second F-P etalon 5 respectively.
激光输出包括以下步骤:Laser output includes the following steps:
所述第一F-P标准具2或所述第二F-P标准具5的透射率T为:The transmittance T of the first F-P etalon 2 or the second F-P etalon 5 is:
; ;
; ;
其中,R为所述第一F-P标准具2或所述第二F-P标准具5的基础透射率,n为所述第一F-P标准具2或所述第二F-P标准具5的折射率,θ为光束进入所述第一F-P标准具2或所述第二F-P标准具5的后的折射角,λ为入射波波长,d为所述第一F-P标准具2或所述第二F-P标准具5的厚度;Wherein, R is the basic transmittance of the first FP etalon 2 or the second FP etalon 5, n is the refractive index of the first FP etalon 2 or the second FP etalon 5, θ is the refraction angle of the light beam after entering the first FP etalon 2 or the second FP etalon 5, λ is the wavelength of the incident wave, and d is the thickness of the first FP etalon 2 or the second FP etalon 5;
得到所述第一F-P标准具2或所述第二F-P标准具5透射峰值对应的频率v:The frequency v corresponding to the transmission peak of the first FP etalon 2 or the second FP etalon 5 is obtained:
; ;
其中,j为整数系数,c为光速;Where, j is an integer coefficient, c is the speed of light;
确认待输出激光的波长λ 1;Confirm the wavelength λ 1 of the laser to be output;
调整所述第一F-P标准具2厚度d,使得所述第一F-P标准具2对待输出激光具有高反射,即:The thickness d of the first FP etalon 2 is adjusted so that the first FP etalon 2 has high reflection to the output laser, that is:
; ;
其中,k为系数,且k为自然数;Wherein, k is a coefficient, and k is a natural number;
调整所述第二F-P标准具5的厚度d,使得所述第二F-P标准具5对待输出激光部分透射;所述对待输出激光部分透射即,将令所述第二F-P标准具5对带输出激光的透射率在最小值和最大值之间,具体数值根据实际需要设置。The thickness d of the second FP etalon 5 is adjusted to make the second FP etalon 5 partially transmit the laser light to be output; the partially transmittance of the laser light to be output means that the transmittance of the second FP etalon 5 to the output laser light is between a minimum value and a maximum value, and the specific value is set according to actual needs.
待输出激光在谐振腔内增益大于损耗,获得振荡,其他波长损耗大于增益,无法起振,当待输出激光达到激光光束产生的阈值条件,获得目标激光光束输出。通过调Q器件4,使谐振腔的Q值突变,从而获得目标波长的脉冲激光输出。The gain of the laser to be output is greater than the loss in the resonant cavity, and oscillation is obtained. The loss of other wavelengths is greater than the gain, and they cannot oscillate. When the laser to be output reaches the threshold condition for the generation of the laser beam, the target laser beam output is obtained. The Q value of the resonant cavity is suddenly changed by the Q-switching device 4, so as to obtain a pulsed laser output of the target wavelength.
通过改变所述第一F-P标准具2和所述第二F-P标准具5的厚度,可以改变腔内振荡模式的频率,达到输出波长可调的目的。By changing the thickness of the first F-P etalon 2 and the second F-P etalon 5, the frequency of the oscillation mode in the cavity can be changed to achieve the purpose of adjustable output wavelength.
在本发明的一种实施方式中,调整所述第二F-P标准具5的厚度d至满足最佳透射率。最佳透过率根据增益和损耗确定。In one embodiment of the present invention, the thickness d of the second FP etalon 5 is adjusted to meet the optimum transmittance. The optimum transmittance is determined according to the gain and loss.
在本发明的一种实施方式中,还包括以下步骤:In one embodiment of the present invention, the following steps are also included:
获取待输出激光的波长λ 1;Obtaining the wavelength λ 1 of the laser to be output;
通过所述第一宽带激光器7和所述第一光栅光谱仪8实时检测所述第一F-P标准具2的中心波长;通过所述第二宽带激光器11和所述第二光栅光谱仪10实时检测所述第二F-P标准具5的中心波长;The central wavelength of the first F-P etalon 2 is detected in real time by the first broadband laser 7 and the first grating spectrometer 8; the central wavelength of the second F-P etalon 5 is detected in real time by the second broadband laser 11 and the second grating spectrometer 10;
通过控制所述第一PZT促动器6和所述第二PZT促动器12调整所述第一F-P标准具2和所述第二F-P标准具5的厚度,从而改变所述第一F-P标准具2和所述第二F-P标准具5对待输出激光的透射率,使得所述第一F-P标准具2对待输出激光具有高反射,所述第二F-P标准具5对待输出激光部分透射。The thickness of the first F-P etalon 2 and the second F-P etalon 5 are adjusted by controlling the first PZT actuator 6 and the second PZT actuator 12, thereby changing the transmittance of the first F-P etalon 2 and the second F-P etalon 5 to the laser to be output, so that the first F-P etalon 2 has high reflectivity to the laser to be output and the second F-P etalon 5 partially transmits the laser to be output.
该实施方式通过对所述第一F-P标准具2和所述第二F-P标准具5的中心波长进行实时检测,并调整至目标需求实现激光器输出波长的调整。如图1所示,当所述第一F-P标准具2和所述第二F-P标准具5的可动反射镜均设置在远离所述激光增益晶体3一侧时,调整所述第一F-P标准具2和所述第二F-P标准具5的厚度不影响谐振腔内的结构。将所述第一F-P标准具2和所述第二F-P标准具5的一部分设置在谐振腔外部,使得对所述第一F-P标准具2和所述第二F-P标准具5的中心波长进行检测的同时不影响谐振腔内部光路,不增加更多的损耗。This embodiment adjusts the laser output wavelength by real-time detection of the center wavelengths of the first F-P etalon 2 and the second F-P etalon 5, and adjusting them to the target requirements. As shown in FIG1 , when the movable reflectors of the first F-P etalon 2 and the second F-P etalon 5 are both arranged on the side away from the laser gain crystal 3, adjusting the thickness of the first F-P etalon 2 and the second F-P etalon 5 does not affect the structure in the resonant cavity. A portion of the first F-P etalon 2 and the second F-P etalon 5 is arranged outside the resonant cavity, so that the center wavelengths of the first F-P etalon 2 and the second F-P etalon 5 are detected without affecting the optical path inside the resonant cavity and without increasing more losses.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above descriptions are merely embodiments of the present invention and are not intended to limit the patent scope of the present invention. Any equivalent structure made using the contents of the present invention's specification and drawings, or directly or indirectly applied in other related technical fields, are also included in the patent protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410034383.8A CN117559207B (en) | 2024-01-10 | 2024-01-10 | A high-precision narrow-linewidth wavelength-tunable pulse laser output method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410034383.8A CN117559207B (en) | 2024-01-10 | 2024-01-10 | A high-precision narrow-linewidth wavelength-tunable pulse laser output method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117559207A CN117559207A (en) | 2024-02-13 |
CN117559207B true CN117559207B (en) | 2024-04-26 |
Family
ID=89815035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410034383.8A Active CN117559207B (en) | 2024-01-10 | 2024-01-10 | A high-precision narrow-linewidth wavelength-tunable pulse laser output method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117559207B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1248405A (en) * | 1968-11-04 | 1971-10-06 | Sec Dep For Defence Formerly M | Q-switched lasers |
JP2004087782A (en) * | 2002-08-27 | 2004-03-18 | Sun Tec Kk | Variable wavelength semiconductor laser light source |
CN103515840A (en) * | 2013-08-07 | 2014-01-15 | 苏州旭创科技有限公司 | External-cavity laser device with tunable wave length |
CN105092027A (en) * | 2015-05-21 | 2015-11-25 | 北京华泰诺安科技有限公司 | Light source apparatus for generation of comb-like spectrum for spectrometer spectrum calibration |
CN107482425A (en) * | 2017-10-16 | 2017-12-15 | 中国科学院合肥物质科学研究院 | A laser pump source with high repetition rate, single longitudinal mode, and narrow pulse width of 2.79um |
CN112615254A (en) * | 2020-12-18 | 2021-04-06 | 中国科学院半导体研究所 | Tunable external cavity laser |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6940879B2 (en) * | 2002-12-06 | 2005-09-06 | New Focus, Inc. | External cavity laser with dispersion compensation for mode-hop-free tuning |
-
2024
- 2024-01-10 CN CN202410034383.8A patent/CN117559207B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1248405A (en) * | 1968-11-04 | 1971-10-06 | Sec Dep For Defence Formerly M | Q-switched lasers |
JP2004087782A (en) * | 2002-08-27 | 2004-03-18 | Sun Tec Kk | Variable wavelength semiconductor laser light source |
CN103515840A (en) * | 2013-08-07 | 2014-01-15 | 苏州旭创科技有限公司 | External-cavity laser device with tunable wave length |
CN105092027A (en) * | 2015-05-21 | 2015-11-25 | 北京华泰诺安科技有限公司 | Light source apparatus for generation of comb-like spectrum for spectrometer spectrum calibration |
CN107482425A (en) * | 2017-10-16 | 2017-12-15 | 中国科学院合肥物质科学研究院 | A laser pump source with high repetition rate, single longitudinal mode, and narrow pulse width of 2.79um |
CN112615254A (en) * | 2020-12-18 | 2021-04-06 | 中国科学院半导体研究所 | Tunable external cavity laser |
Also Published As
Publication number | Publication date |
---|---|
CN117559207A (en) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6208679B1 (en) | High-power multi-wavelength external cavity laser | |
US6192062B1 (en) | Beam combining of diode laser array elements for high brightness and power | |
CN100407519C (en) | LD-pumped co-gain dual-cavity dual-frequency Nd:YAG laser | |
EP1074075A1 (en) | Fiber grating feedback stabilization of broad area laser diode | |
US7760775B2 (en) | Apparatus and method of generating laser beam | |
JP2002141588A (en) | Solid state laser device and solid state laser system | |
CN111262124A (en) | Brillouin laser | |
US5671240A (en) | Solid state laser | |
CN1741328B (en) | diode pumped laser | |
JP2000133863A (en) | Solid-state laser | |
US10270224B2 (en) | Angled DBR-grating laser/amplifier with one or more mode-hopping regions | |
JP2015056469A (en) | Diode laser module wavelength controlled by external resonator | |
CN117559207B (en) | A high-precision narrow-linewidth wavelength-tunable pulse laser output method | |
US6628692B2 (en) | Solid-state laser device and solid-state laser amplifier provided therewith | |
CN212725948U (en) | All-solid-state V-cavity Brillouin laser | |
TWI423545B (en) | Intracavity upconversion laser | |
US7068700B2 (en) | Optical bench for diode-pumped solid state lasers in field applications | |
US7280577B2 (en) | Pumping method for laser equipment | |
CN103762488B (en) | High power narrow line width regulatable laser | |
CN111193169A (en) | Ultraviolet laser based on bicrystal structure | |
KR950002068B1 (en) | Second harmonic generation method and apparatus | |
CN114336252B (en) | A narrow linewidth solid-state laser | |
JP7381404B2 (en) | Laser module and fiber laser equipment | |
JP4799911B2 (en) | Semiconductor laser device and semiconductor amplification device | |
CN111313231B (en) | Vertical cavity surface emitting laser and control method and control device thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250116 Address after: 350100 Building 3, Block D, No. 32 Gaoxin Avenue, Shangjie Town, Minhou County, Fuzhou City, Fujian Province, China Patentee after: Fujian Bu Rui Laser Technology Co.,Ltd. Country or region after: China Address before: Building 9, Building 1146, Haixi Research Institute, Chinese Academy of Sciences, Haixi High tech Zone, Shangjie Town, Minhou County, Fuzhou City, Fujian Province, 350108 Patentee before: Mindu Innovation Laboratory Country or region before: China |