CN117535315A - 一种脂肪酸去饱和酶基因及其在检测和培育高亚麻酸油茶的应用 - Google Patents
一种脂肪酸去饱和酶基因及其在检测和培育高亚麻酸油茶的应用 Download PDFInfo
- Publication number
- CN117535315A CN117535315A CN202311303104.5A CN202311303104A CN117535315A CN 117535315 A CN117535315 A CN 117535315A CN 202311303104 A CN202311303104 A CN 202311303104A CN 117535315 A CN117535315 A CN 117535315A
- Authority
- CN
- China
- Prior art keywords
- camellia oleifera
- linolenic acid
- acid content
- seq
- cofad7
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0071—Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y114/00—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
- C12Y114/19—Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with oxidation of a pair of donors resulting in the reduction of molecular oxygen to two molecules of water (1.14.19)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/13—Plant traits
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Botany (AREA)
- Mycology (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开一种脂肪酸去饱和酶基因及其在检测和培育高亚麻酸油茶的应用。所述基因的CDS序列如SEQ ID No:3‑5任一所示。其表达水平与油茶种仁亚麻酸含量的高低呈正相关关系。本发明中两种等位变异在CoFAD7的CDS序列830位置对应的碱基分别是G和G/A。首先以油茶cDNA为模板,利用引物对SEQ ID No:8和SEQ ID No:9进行PCR扩增,经Sanger测序检测,可方便有效地实现CoFAD7基因不同等位变异在油茶种质资源以及育种后代中的鉴定。本发明通过常规的PCR和Sanger测序就可以完成,操作方便,且稳定可行。
Description
技术领域
本发明属于分子标记技术领域,具体是关于一种脂肪酸去饱和酶基因(CoFAD7)及其在检测和培育种仁高亚麻酸含量油茶品种中的应用。
背景技术
油茶(Camellia oleifera Abel.)是我国重要的木本食用油料树种。油茶种子中提取的油脂为茶油,茶油是国际粮农组织重点推荐的健康型食用油之一,被誉为“东方橄榄油”。茶油中的脂肪酸-亚油酸(Linoleic acid,LA)和亚麻酸(alpha-linolenic acid,ALA)是人体必需的多不饱和脂肪酸(Baker et al.,2016),其在茶油中含量的高低直接决定了油茶的品质。传统的育种手段极大地限制了油茶产业的发展,而分子标记辅助选择(MAS)育种可大幅度缩短育种年限,因此,采用分子标记手段选育高LA和ALA含量的油茶材料,对油茶品质的改良具有重要意义。
脂肪酸去饱和酶基因家族(Fatty acid desaturases,FADs)是植物LA和ALA合成的关键基因,FADs基因对于改变不饱和脂肪酸的成分含量具有重要作用。ω-6FAD(Omega-6fatty acid desaturase)和ω-3FAD(Omega-3fatty acid desaturase)分别是植物LA和ALA合成的关键酶,油酸去饱和酶(ω-6FAD)在油酸中引入第二个双键形成LA,亚油酸去饱和酶(ω-3FAD)催化LA形成ALA,已有的研究表明,高等植物中ω-6FAD和ω-3FAD分别具有2个(FAD2,FAD6)和3个(FAD3,FAD7,FAD8)编码基因(Peng et al.,2020)。FADs基因对于改变不饱和脂肪酸组分比例及其含量有重要作用(林萍等,2016;Jo et al.,2021)。在大豆中沉默FAD2基因使种子中油酸含量从20.00%上升到80.00%(Pham et al.,2011)。在拟南芥种子中过表达麻风树JcFAD3基因,其种子中ALA含量较野生型种子中显著提高了10.50%-24.94%,且种子中亚油酸LA含量降低了11.4%-23.5%(Wu et al.,2013)。
CoFADs是油茶LA和ALA合成的关键基因,前人关于油茶CoFADs基因的研究主要集中在CoFADs基因的克隆,以及在转录组分析的基础上开展了LA和ALA合成相关基因的鉴定。目前在油茶中已克隆获得了2个CoFAD2基因(王仲伟等,2017)。通过油茶不同发育时期的种仁转录组学分析鉴定出4个CoFAD2基因和4个CoFAD7基因,其表达分别与LA和ALA含量密切相关(Gong et al.,2020)。但目前为止,在油茶中对于FADs基因的优良等位变异筛选及其分子标记鲜有报道,这极大阻碍了油茶FADs在油茶品质性状改良中的应用。
参考文献:
Baker,E.J.,Miles,E.A.,Burdge,G.C.,Yaqoob,P.,and Calder,P.C.(2016).Metabolism and functional effects of plant-derived omega-3fatty acids inhumans.Progress in Lipid Research 64,30-56.
Gong,W.,Song,Q.,Ji,K.,Gong,S.,Wang,L.,Chen,L.,Zhang,J.,and Yuan,D.(2020).Full-length transcriptome from Camellia oleifera seed provides insightinto the transcript variants involved in oil biosynthesis.Journal ofAgricultural and Food Chemistry 68,14670-14683.Jo,H.,Kim,M.,Cho,H.,Ha,B.K.,Kang,S.,Song,J.T.,and Lee,J.D.(2021).Identification of a potential gene forelevatingω-3concentration and its efficiency for improving theω-6/ω-3ratioin soybean.Journal of Agricultural and Food Chemistry69,3836-3847.
Pham,A.T.,Lee,J.D.,Shannon,J.G.,and Bilyeu,K.D.(2011).Anovel FAD2-1Aallele in a soybean plant introduction offers an alternate means to producesoybean seed oil with 85%oleic acid content.Theoretical and AppliedGenetics123,793-802.
Peng,Z.Y.,Ruan,J.,Tian,H.Y.,Shan,L.,Meng,J.J.,Guo,F.,Zhang,Z.M.,Ding,H.,Wan,S.B.,Li,X.G.(2020).The family of peanut fatty acid desaturase genesand a functional analysis of fourω-3AhFAD3members.Plant Molecular BiologyReporter 38,209-221.
Wu,P.,Zhang,S.,Zhang,L.,Chen,Y.,Li,M.,Jiang,H.,and Wu,G.(2013).Functional characterization of two microsomal fatty acid desaturases fromJatropha curcas L.Journal of Plant Physiology170,1360-1366.
林萍,周长富,姚小华,曹永庆(2016).普通油茶两个Δ-12脂肪酸脱氢酶基因序列特征及表达模式研究.林业科学研究29,743-751.
王仲伟,温强,汤诗杰,徐立安(2017).一个油茶FAD2基因家族新成员的克隆及分析.分子植物育种15,1-7。
发明内容
本发明的目的是提供一种与油茶亚麻酸含量关联的基因CoFAD7,以及提供一种与油茶亚麻酸含量关联的SNP分子标记,所述的SNP分子标记能有效早期鉴定油茶的亚麻酸含量,检测方法简单方便快速准确,目标性强,成本低,对高品质油茶的早期筛选具有重要意义。
为实现上述目的,本发明提供了一种与油茶亚麻酸含量关联的基因CoFAD7,CDS序列如SEQ ID NO:3、SEQ ID No:4或SEQ ID No:5所示。
本发明提供了一种与油茶亚麻酸含量关联的SNP分子标记,该分子标记是所述CoFAD7基因的位点存在多态性位点,具体是所述CoFAD7基因的830位置存在的多态性位点分别为G和G/A。
优选地,所述SNP分子标记是由引物对扩增得到,具体由SEQ ID NO:8和SEQ IDNO:9扩增得到。
本发明还提供所述的SNP分子标记在早期预测油茶树种仁亚麻酸含量表型,或油茶种质资源鉴定或改良,或筛选高亚麻酸含量油茶品种,或培育高亚麻酸含量油茶品种中的应用。
优选地,所述油茶种质资源鉴定或改良是筛选高亚麻酸含量油茶品种。
同时,本发明还提供一种早期预测油茶树种仁亚麻酸含量表型或筛选高亚麻酸含量油茶品种的方法,该方法包括以下步骤:
1)提取待培育的油茶cDNA;
2)以步骤1)所述cDNA为模板,用引物对进行PCR扩增,得到PCR产物;
3)对步骤2)得到的PCR产物进行测序,从而根据SNP分子标记的基因型预测油茶树种仁亚麻酸含量表型或选择高亚麻酸含量的油茶品种;
所述预测油茶树种仁亚麻酸含量表型或选择高亚麻酸含量的油茶品种的判断方法为:当SNP分子标记中830位置为纯合G时,油茶为高亚麻酸含量的油茶品种;当SNP分子标记中830位置为杂合G/A时,油茶植株不属于高亚麻酸含量的油茶品种。
优选地,所述测序方法是Sanger测序。
所述的方法,优选地,所述引物对的核苷酸序列分别如SEQ ID NO:8和SEQ ID NO:9所示。
所述的方法,优选地,对于早期预测油茶树种仁亚麻酸含量表型,在油茶的苗期实施所述方法。
本发明具有以下有益效果:本发明人通过从油茶种仁转录组数据库中筛选到可能参与调控油茶亚麻酸合成的CoFAD7,进一步筛选到2个与油茶亚麻酸含量关联的SNP分子标记,并确定SNP分子标记中亚麻酸含量的基因型,与亚麻酸含量显著相关。因而,本发明提供了一种与油茶亚麻酸含量关联的SNP分子标记,该分子标记是CoFAD7基因CDS的830位置处存在。本发明中两种等位变异在CoFAD7的CDS序列830位置对应的碱基分别是G和G/A。本发明提供的一种早期预测油茶树种仁亚麻酸含量表型或筛选高亚麻酸含量油茶品种的方法首先以油茶cDNA为模板,利用引物对SEQ ID No:8和SEQ ID No:9进行PCR扩增,经Sanger测序检测,可方便有效地实现CoFAD7基因不同等位变异在油茶种质资源以及育种后代中的鉴定。本发明通过常规的PCR和Sanger测序就可以完成,操作方便,且稳定可行。可见本发明提供的SNP分子标记位点清晰明了,检测方法简单方便快速准确,目标性强,成本低,只需要以cDNA作为模板。通过检测本发明的SNP位点,可预测油茶亚麻酸含量,从而实现高品质油茶的早期鉴定和筛选,节约油茶生产成本。
附图说明
图1为油茶CoFAD7基因在不同发育时期种仁中的相对表达水平。
图2为油茶‘优杂2’和‘华硕’CoFAD7基因蛋白质序列比较分析,其中:CoFAD7pro为‘华硕’FAD7蛋白质序列,YZ-FAD7为‘优杂2’FAD7蛋白质序列。
图3为油茶‘优杂2’和‘华硕’CoFAD7基因编码序列比较分析,其中:HS-FAD7-1/2/3为‘华硕’CoFAD7基因序列,YZ-FAD7-1/2/3为‘优杂2’CoFAD7基因序列。
图4为不同油茶材料CoFAD7基因PCR产物电泳检测结果,其中:1为‘优杂2’CoFAD7基因片段,2为‘华硕’CoFAD7基因片段,3为YH3CoFAD7基因片段,4为YH4CoFAD7基因片段。
图5为油茶‘优杂2’和‘华硕’CoFAD7基因测序结果分析,其中:A为‘优杂2’CoFAD7基因片段测序,B为‘华硕’CoFAD7基因片段测序。
具体实施方式
下述结合具体优选实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、油茶‘华硕’中脂肪酸去饱和酶基因(CoFAD7)的序列及表达分析
一、‘华硕’中CoFAD7基因的不同基因组序列比较分析
利用CTAB法从‘华硕’叶片中提取基因组DNA,另外在油茶种仁中提取RNA,并反转录成cDNA,设计通用引物对FAD7-SacI-F:CCAGAGCTCATGGCGAGTTGGGTTTTA(SEQ ID No:1),FAD7-SmaI-R:GTGCCCGGGTTCTGCTTCCGGGGAGC(SEQ ID No:2)(下划线部分为酶切位点的序列),分别对CoFAD7基因的DNA和cDNA序列进行PCR扩增,反应体系为:ApexHF HS DNA聚合酶预混液(10μL),FAD7-SacI-F(0.5μL),FAD7-SmaI-R(0.5μL),DNA模板/cDNA模板(1μL),ddH2O(8μL);PCR反应程序为:95℃预变性5分钟;35个循环(95℃变性30秒;55℃退火30秒;72℃延伸3分钟/1分钟),72℃延伸5分钟。将获得的CoFAD7基因的DNA和cDNA序列分别用SacI/SmaI双酶切之后,再连接到同样经SacI/SmaI双酶切的p1300载体中,测序后,获得CoFAD7基因的三类同源基因序列CoFAD7-1、CoFAD7-2和CoFAD7-3均含有8个外显子和7个内含子,他们的基因全长分别为3081、3080和3094bp(表1),三类编码序列(CDS)全长均为1359bp,且均编码452个氨基酸(表1),且均含有Membrane-FADS-like super family保守结构域,都属于ω-3脂肪酸去饱和酶。
表1、CoFAD7基因的信息
油茶脂肪酸去饱和酶基因CoFAD7的三类CDS序列,它们的核苷酸序列分别如SEQID NO:3,SEQ ID NO:4,SEQ ID NO:5所示,有下划线位置的碱基为830位点的碱基,分别为:
CoFAD7-CDS-1(SEQ ID NO.3):
ATGGCGAGTTGGGTTTTATCAGAATGTGGCCTAAGACCCCTCCAACGAATCTACCCTAAACCCAGAACAGGTCTAACCTCTCTCAATGCCAACCCTTCAAAGATCAAACTAATTCAATCCGACCCAGTTTGTTCTTCTTCGTTCTGGGTATCATCATCTGGGTCTAGAGAGAGAAACTGGAAAATCAAGGTCAGTACCCCCCTAAAAGTCCAATCTATTGAAGAAGAAGAAGAGAGAGAAACAAAGAAAATCAATGGCGTCAATGGGGTCCAAGAAGAAGCCGAATTCAACCCAGGCGCGGCGCCTCCGTTCCGGCTAGCCGATATTCGAGCTGCGATTCCGAAACATTGCTGGGTTAAGAATACATGGAGATCAATGAGCTATGTTCTGAGAGATGTTGTGGTGGTTTTTGGATTGGCTGCTATGGCGGCTCATTTCAACAACTGGCCTGTTTGGCCTCTGTATTGGTTTGCTCAGGGGACCATGTTCTGGGCTCTGTTTGTTCTTGGTCATGATTGTGGTCATGGAAGTTTTTCTAATAATCATAAGTTGAATAGTGTGGTGGGTCATCTTCTTCATTCATCAATACTTGTCCCTTACCATGGATGGAGGATTAGCCATAGAACTCATCATCAGAACCATGGACATGTTGAGAATGATGAATCATGGCACCCATTATCTGAAAAGATTTACAGAAGTTTGGACGACGTTACCAAAATCTTGAGGTTCACTTTGCCTTTCCCTCTCCTCGCATATCCCATCTACCTGTGGAGTCGAAGCCCTGGAAAGACTGGCTCTCATTACAACCCGAGCAGCGATCTGTTTGTGCGGAGTGAGAGGAAAGATGTGATCACCTCCACCGCGTGCTGGACTGCCATGGCTACACTGCTCGTTGGCCTGTCCTTTGTCATGGGTCCAATTCAATTGCTTAAACTCTATGGCGTTCCCTACGCGATCTTTGTCATGTGGCTGGACTTGGTGACTTACTTGCATCACCATGGCCATGAGGAGAAACTTCCTTGGTATCGTGGCGAGGAATGGAGTTATCTGCGGGGAGGGTTAACGACGCTTGATCGGGACTATGGTTGGATAAACAACATTCACCATGATATTGGAACTCATGTGATACATCACCTCTTCCCTCAAATCCCACACTACCACTTAGTAGAAGCAACGGAGGCTGCTAGGCCTGTGCTTGGGAAGTACTATCGTGAGCCTAAGAAATCTGGTCCTCTTCCATTTCACTTATTGGGAAGCCTTGTAAGAAGCATGAAACAGGATCACTATGTGAGTGACACTGGGGATATTGTATACTATCAAACAGATCCTCAGCTCTCTGGCTCCCCGGAAGCAGAATGA
CoFAD7-CDS-2(SEQ ID NO.4):
ATGGCGAGTTGGGTTTTATCAGAATGTGGCCTAAGACCCCTCCAACGAATCTACCCTAAACCCAGAACAGGTCTAACCTCTCTCAATGCCAACCCTTCAAAGATCAAACTAATTCAATCCGACCCAGTTTGTTCTTCTTCGTTCTGGGTATCATCATCTGGGTCTAGAGAGAGAAACTGGAAAATCAAGGTCAGTACCCCCCTAAAAGTCCAATCTATTGAAGAAGAAGAAGAGAGAGAAACAAAGAAAATCATTGGCGTCAACGGGGTCCAAGAAGAAGCCGAATTCAACCCAGGCGCGGCGCCTACGTTCCGGCTAGCCGATATTCGAGCTGCGATTCCGAAACATTGCTGGGTTAAGAATACATGGAGATCAATGAGCTATGTTCTGAGAGATGTTGTGGTGGTTTTTGGATTGGCTGCTATGGCGGCTCATTTCAACAACTGGGCTGTTTGGCCTCTGTATTGGTTTGCTCAGGGGACCATGTTCTGGGCTCTGTTTGTTCTTGGTCATGATTGTGGTCATGGAAGTTTTTCTAATAATCATAAGTTGAATAGTGTGGTGGGTCATCTTCTTCATTCATCAATACTTGTCCCTTACCATGGATGGAGGATTAGCCATAGAACTCATCATCAGAACCATGGACATGTTGAGAATGATGAATCATGGCACCCATTATCTGAAAAGATTTACAGAAGTTTGGACGACGTTACCAAAATCTTGAGGTTCACTTTGCCTTTCCCTCTCCTCGCATATCCCATCTACCTGTGGAGTCGAAGCCCTGGAAAGACTGGCTCTCATTACAACCCGAGCAGCGATCTGTTTGTGCAGAGTGAGAGGAAAGATGTGATCACCTCCACCGCGTGCTGGACTGCCATGGCTACACTGCTCGTTGGCCTGTCCTTTGTCATGGGTCCAATTCAATTGCTTAAACTCTATGGCGTTCCCTACGCGATCTTTGTCATGTGGCTGGACTTGGTGACTTACTTGCATCACCATGGCCATGAGGAGAAACTTCCTTGGTATCGTGGCGAGGAATGGAGTTATCTGCGGGGAGGGTTAACGACGCTTGATCGGGACTATGGTTGGATAAACAACATTCACCATGATATTGGAACTCATGTGATACATCACCTCTTCCCTCAAATCCCACACTACCACTTAGTAGAAGCAACGGAGGCTGCTAGGCCTGTGCTTGGGAAGTACTATCGTGAGCCTAAGAAATCTGGTCCTCTTCCATTTCACTTATTGGGAAGCCTTGTAAGAAGCATGAAACAGGATCACTATGTGAGTGACACTGGGGATATTGTATACTATCAAACAGATCCTCAGCTCTCTGGCTCCCCGGAAGCAGAATGA
CoFAD7-CDS-3(SEQ ID NO.5):
ATGGCGAGTTGGGTTTTATCAGAATGTGGCCTAAGACCCCTCCAACGAATCTACCCTAAACCCAGAACAGGTCTAACCTCTCTCAATGCCAACCCTTCAAAGATCAAACTAATTCAATCCGACCCAGTTTGTTCTTCTTCGTTCTGGGTATCATCATCTGGGTCTAGAGAGAGAAACTGGAAAATCAAGGTCAGTACCCCCCTAAAAGTCCAATCTATTGAAGAAGAAGAAGAGAGAGAAACAAAGAAAATCATTGGCGTCAACGGGGTCCAAGAAGAAGCCGAATTCAACCCAGGCGCGGCGCCTACGTTCCGGCTAGCCGATATTCGAGCTGCGATTCCGAAACATTGCTGGGTTAAGAATACATGGAGATCAATGAGCTATGTTCTGAGAGATGTTGTGGTGGTTTTTGGATTGGCTGCTATGGCGGCTCATTTCAACAACTGGGCTGTTTGGCCTCTGTATTGGTTTGCTCAGGGGACCATGTTCTGGGCTCTGTTTGTTCTTGGTCATGATTGTGGTCATGGAAGTTTTTCTAATAATCATAAGTTGAATAGTGTGGTGGGTCATCTTCTTCATTCATCAATACTTGTCCCTTACCATGGATGGAGGATTAGCCATAGAACTCATCATCAGAACCATGGACATGTTGAGAATGATGAATCATGGCACCCATTATCTGAAAAGATTTACAGAAGTTTGGACGACGTTACCAAAATCTTGAGGTTCACTTTGCCTTTCCCTCTCCTCGCATATCCCATCTACCTGTGGAGTCGAAGCCCTGGAAAGACTGGCTCTCATTACAACCCGAGCAGCGATCTGTTTGTGCGGAGTGAGAGGAAAGATGTGATCACCTCCACCGCGTGCTGGACTGCCATGGCTACACTGCTCGTTGGCCTGTCCTTTGTCATGGGTCCAATTCAATTGCTTAAACTCTATGGCGTTCCCTACGCGATCTTTGTCATGTGGCTGGACTTGGTGACTTACTTGCATCACCATGGCCATGAGGAGAAACTTCCTTGGTATCGTGGCGAGGAATGGAGTTATCTGCGGGGAGGGTTAACGACGCTTGATCGGGACTATGGTTGGATAAACAACATTCACCATGATATTGGAACTCATGTGATACATCACCTCTTCCCTCAAATCCCACACTACCACTTAGTAGAAGCAACGGAGGCTGCTAGGCCTGTGCTTGGGAAGTACTATCGTGAGCCTAAGAAATCTGGTCCTCTTCCATTTCACTTATTGGGAAGCCTTGTAAGAAGCATGAAACAGGATCACTATGTGAGTGACACTGGGGATATTGTATACTATCAAACAGATCCTCAGCTCTCTGGCTCCCCGGAAGCAGAATGA
二、对‘华硕’中CoFAD7基因的表达分析
为了明确CoFAD7基因在油茶种子发育过程中种仁的表达情况,设计定量引物对FAD7-F1:CTCGTTGGCCTGTCCTTTG(SEQ ID No:6),FAD7-R1:CCCGCAGATAACTCCATTCC(SEQ IDNo:7),通过qRT-PCR分析了CoFAD7在花后不同时间的油茶种仁中的表达情况。结果表明:CoFAD7基因在花后不同时间的油茶种仁中的表达呈不断上升的趋势(图1),具体表现为,CoFAD7在花后333和307DAP相对表达量较高,显著高于花后229、255和281DAP,表明CoFAD7基因的表达与油脂合成正相关,暗示其与油茶种仁亚麻酸含量密切相关。
实施例2、油茶‘优杂2’与‘华硕’脂肪酸成分含量比较及CoFAD7基因序列差异性分析
以攸县油茶‘优杂2’和普通油茶‘华硕’为材料,对其脂肪酸成分含量进行比较分析,发现‘优杂2’的棕榈酸、硬脂酸、油酸、亚油酸和亚麻酸含量分别为11.50%、1.76%、75.69%、10.24%和0.40%,而‘华硕’的分别为8.10%、2.22%、82.84%、5.99%和0.20%,表明‘优杂2’的亚麻酸含量高于‘华硕’(表2)。
通过克隆获得了‘优杂2’CoFAD7基因的3条CDS序列,与‘华硕’CoFAD7基因相同,其全长CDS序列均为1359bp,且均编码452个氨基酸。利用MegAlign比较了‘优杂2’和‘华硕’的CoFAD7基因翻译产生的氨基酸序列在10个位点(15,25,85,91,103,150,151,236,277和410)存在差异(图2)。具体表现为:‘优杂2’和‘华硕’的三类氨基酸在15位点上分别为P和Q,在91位点上分别为E和Q,而其他位点上的变化仅是单类氨基酸上的改变。除此之外,‘华硕’中一条氨基酸序列在277位点由R(精氨酸CGG-碱性氨基酸)到Q(谷氨酰胺CAG-酰胺类氨基酸)的改变,此位点可能是影响亚麻酸含量的重要位点。
结合不同材料或不同基因型的SNP多态性主要分布在基因的前半部分。已知普通油茶良种‘华鑫’的棕榈酸、硬脂酸、油酸、亚油酸和亚麻酸含量分别为9.22%、2.29%、76.85%、10.81%和0.30%,其亚麻酸含量高于‘华硕’。重点分析了‘华鑫’的CoFAD7基因预测产生的氨基酸序列在前半部分的差异,其中‘华鑫’的三类序列在277位置也均为R(精氨酸-碱性氨基酸)。基于氨基酸序列在277位置的变异,通过详细分析‘优杂2’和‘华硕’的基因序列发现,‘华硕’的三类序列在外显子V区,即CDS的830位置(起始位置从ATG开始算起)存在两种等位变异,其中一类序列为A,另外两类序列为G,而‘优杂2’的三类序列在CDS的830位置均表现为G(图3),我们把高亚麻酸含量的‘优杂2’命名为CoFAD7-G类型,低亚麻酸含量的‘华硕’为CoFAD7-G/A类型。
表2、油茶杂交F1代及其亲本脂肪酸成分含量分析
实施例3、检测其他油茶优株CoFAD7基因的等位变异
通过分析油茶‘优杂2’、‘华硕’和‘华鑫’在编码序列830位置碱基的不同,初步推断此位点可能和亚麻酸含量存在一定相关性,因此,我们提出了一种分析不同亚麻酸材料CoFAD7基因序列差异的方案:选择覆盖CoFAD7基因编码区V区域设计保守的PCR引物(SEQID No:8和SEQ ID No:9),以cDNA为模板,通过PCR扩增的方法得到包含三个同源基因的CoFAD7基因片段(791bp),通过Sanger测序分析不同材料的CoFAD7基因序列差异,从而实现对CoFAD7基因优异等位变异筛选的目的。
利用本发明方法已经有效分析了以攸县油茶‘优杂2’为母本、普通油茶‘华硕’为父本进行种间杂交获得了13个优株和亲本的CoFAD7等位变异类型。
一、引物设计
根据CoFAD7基因的序列信息,在外显子I区和外显子V区的保守序列位置设计引物对FAD7-EF1:GGGTCTAGAGAGAGAAACT(SEQ ID No:8)和FAD7-ER2:GTAGGGAACGCCATAGAGTT(SEQ ID No:9),且此引物对扩增的CDS序列包含不同亚麻酸含量油茶材料在CoFAD7上存在的两种等位变异,引物对中一条引物序列位于所述外显子I区中,引物对的另一条引物序列位于所述外显子V区中。
二、PCR扩增
利用实施例2中所提取的亚麻酸含量差异明显的‘优杂2’、‘华硕’及其13个杂交后代的cDNA为模板。
利用引物对SEQ ID No:8和SEQ ID No:9进行PCR,反应体系如下:
2×ApexHFFS PCR Master Mix | 10μL |
上游引物(10μM) | 0.5μL |
下游引物(10μM) | 0.5μL |
ddH2O | 8μL |
模板cDNA | 1μL |
反应总体积 | 20μL |
此PCR扩增产物(图4)直接送擎科生物公司测序,测序引物为SEQ ID No:9。
三、PCR产物测序结果的分析
通过对PCR产物的测序结果进行分析表明,经引物SEQ ID No:9进行单向测序后,此测序产物产生的序列包含有我们关注的编码序列的830位置,由于SEQ ID No:9是反向测序,其测序结果与真实位点反向互补,以‘优杂2’和‘华硕’为材料,测序结果表明高亚麻酸材料‘优杂2’对应的830位置为纯和的C,低亚麻酸材料‘华硕’对应的830位置为杂合的C/T(图5),因此,根据此位点的峰图可以判断扩增的CoFAD7在此位点是纯和CoFAD7-G类型还是杂合的CoFAD7-G/A类型。
四、不同CoFAD7基因型与亚麻酸的关联分析
利用CoFAD7基因的分子标记,以攸县油茶‘优杂2’为母本、普通油茶‘华硕’为父本进行种间杂交获得了13个优株和亲本为试材,对他们的CoFAD7基因型进行分析。结果表明,杂交后代的基因型有6个CoFAD7-G类型和7个CoFAD7-G/A类型,且杂交亲本和后代的亚麻酸含量存在一定变异,变异系数为0.24,亚麻酸含量的最大值和最小值分别为0.53和0.20(表2),CoFAD7-G类型和CoFAD7-G/A类型对应的亚麻酸含量分别为0.43±0.03和0.32±0.02(%),且存在显著差异(P<0.05)。综上所述,CoFAD7不同等位变异与亚麻酸含量显著相关,含有CoFAD7-G类型品种/优株的亚麻酸含量显著高于CoFAD7-G/A类型,CoFAD7-G类型属于CoFAD7基因的优异等位基因类型,表明CoFAD7基因的分子标记可作为油茶亚麻酸含量的功能标记在油茶品质改良中加以应用。
Claims (9)
1.一种与油茶亚麻酸含量关联的脂肪酸去饱和酶基因CoFAD7,其特征在于,其CDS序列如SEQ ID NO:3、SEQ ID No:4或SEQ ID No:5所示。
2.一种与油茶亚麻酸含量关联的SNP分子标记,其特征在于,所述SNP分子标记是权利要求1所述CoFAD7基因的830位置存在的多态性位点分别为G和G/A。
3.根据权利要求2所述的SNP分子标记,其特征在于,所述SNP分子标记是由引物对扩增得到,具体由SEQ ID NO:8和SEQ ID NO:9扩增得到。
4.权利要求2或3所述的SNP分子标记在早期预测油茶树种仁亚麻酸含量表型,或油茶种质资源鉴定或改良,或筛选高亚麻酸含量油茶品种,或培育高亚麻酸含量油茶品种中的应用。
5.根据权利要求4所述应用,其特征在于,所述油茶种质资源鉴定或改良为筛选高亚麻酸含量油茶品种。
6.一种早期预测油茶树种仁亚麻酸含量表型或筛选高亚麻酸含量油茶品种的方法,其特征在于,包括以下步骤:
1)提取待培育的油茶cDNA;
2)以步骤1)所述cDNA为模板,用引物对进行PCR扩增,得到PCR产物;
3)对步骤2)得到的PCR产物进行测序,从而根据SNP分子标记的基因型预测油茶树种仁亚麻酸含量表型或选择高亚麻酸含量的油茶品种;
所述预测油茶树种仁亚麻酸含量表型或选择高亚麻酸含量的油茶品种的判断方法为:当SNP分子标记中830位置为纯合G时,油茶为高亚麻酸含量的油茶品种;当SNP分子标记中830位置为杂合G/A时,油茶植株不属于高亚麻酸含量的油茶品种。
7.如权利要求6所述的方法,其特征在于,所述测序方法是Sanger测序。
8.如权利要求6所述的方法,其特征在于,所述引物对的核苷酸序列分别如SEQ ID NO:8和SEQ ID NO:9所示。
9.根据权利要求7所述的方法,其特征在于,对于早期预测油茶树种仁亚麻酸含量表型,在油茶的苗期实施所述方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311303104.5A CN117535315A (zh) | 2023-10-10 | 2023-10-10 | 一种脂肪酸去饱和酶基因及其在检测和培育高亚麻酸油茶的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311303104.5A CN117535315A (zh) | 2023-10-10 | 2023-10-10 | 一种脂肪酸去饱和酶基因及其在检测和培育高亚麻酸油茶的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117535315A true CN117535315A (zh) | 2024-02-09 |
Family
ID=89788773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311303104.5A Pending CN117535315A (zh) | 2023-10-10 | 2023-10-10 | 一种脂肪酸去饱和酶基因及其在检测和培育高亚麻酸油茶的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117535315A (zh) |
-
2023
- 2023-10-10 CN CN202311303104.5A patent/CN117535315A/zh active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107828908B (zh) | 甘蓝型油菜种子高油酸含量的分子标记方法及应用 | |
CN103484556A (zh) | 检测水稻香味等位基因的分子标记的引物和方法 | |
CN105087573A (zh) | 一种鉴定水稻Wx-mw基因的方法及其在优质水稻培育中的应用 | |
CN117106802B (zh) | 一种甘蓝型油菜高裂角抗性基因及其鉴定和应用 | |
CN103882146A (zh) | 一种鉴定水稻粒长基因gs3不同基因型的四引物分子标记方法 | |
US20170283820A1 (en) | High oleic acid soybean seeds | |
CN110129478B (zh) | 一种快速鉴定或辅助鉴定番茄可溶性固形物的dCAPS分子标记及应用 | |
CN102766697B (zh) | 一种检测甘蓝型油菜抗咪唑啉酮类除草剂基因的分子标记方法 | |
CN101643784B (zh) | 一种鉴别水稻低谷蛋白基因Lgc1的分子标记方法 | |
CN105219858A (zh) | 小麦粒重基因TaGS5-3A单核苷酸多态性标记及其应用 | |
CN111849999B (zh) | 水稻gs3突变基因、其分子标记及用途 | |
CN107937409B (zh) | 水稻分蘖角度基因tac3的克隆和应用 | |
CN112210616B (zh) | 一种与水稻籽粒长度性状相关的InDel分子标记引物及其应用 | |
CN118546947A (zh) | 一种温度响应的水稻垩白基因pgwc3及其编码蛋白和应用 | |
CN117535315A (zh) | 一种脂肪酸去饱和酶基因及其在检测和培育高亚麻酸油茶的应用 | |
CN109504798B (zh) | 一种基于高分辨率溶解曲线鉴定梨果核大小的snp标记及其应用 | |
CN116694655B (zh) | 一个陆地棉油分蛋白品质关联的葡萄糖-甲醇-胆碱氧化还原酶基因的应用 | |
CN116694799B (zh) | 水稻OsAUX5基因中与稻米必需氨基酸积累相关InDel的位点及应用 | |
CN116855506A (zh) | 一种调控油菜含油量的BnaC05.UK基因及其应用 | |
CN105506147B (zh) | 玉米发芽势基因ZmGLP的功能分子标记及其应用 | |
CN103103260A (zh) | 一种预测桃果实香气物质含量的pcr引物及方法 | |
Wang et al. | Inheritance and QTL mapping identified multi-effects loci for fatty acid related traits in peanut (Arachis hypogaea L.) | |
CN113278726B (zh) | 用于辅助鉴别大豆油脂含量高低的分子标记Oil-4-3776551、试剂盒和方法 | |
CN115927704B (zh) | 与玉米茎秆长度紧密连锁的分子标记及其应用 | |
CN114369680B (zh) | SEQ ID NO.1所示序列在作为小麦矮秆基因Rht8调控小麦株高方面的用途及其分子标记与应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |