CN117491329A - 比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法 - Google Patents

比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法 Download PDF

Info

Publication number
CN117491329A
CN117491329A CN202311481802.4A CN202311481802A CN117491329A CN 117491329 A CN117491329 A CN 117491329A CN 202311481802 A CN202311481802 A CN 202311481802A CN 117491329 A CN117491329 A CN 117491329A
Authority
CN
China
Prior art keywords
gsh
dispersion liquid
probe
composite system
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311481802.4A
Other languages
English (en)
Inventor
金辉
桂日军
杨梦�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202311481802.4A priority Critical patent/CN117491329A/zh
Publication of CN117491329A publication Critical patent/CN117491329A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/63Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing boron
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/29Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using visual detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种比色和荧光双重可视化检测谷胱甘肽(GSH)的纳米复合体系探针的制备方法。制备了双金属掺杂硼量子点,将其与四甲基联苯胺和罗丹明B自组装形成纳米复合体系;在该体系分散液中依次加入过氧化氢和GSH,以构建纳米复合体系探针;配制一系列含GSH不同共存浓度的该探针分散液,建立分散液特征峰吸光值和荧光峰强度与GSH浓度间的线性关系;采用相机拍摄含不同GSH浓度的探针分散液在自然光和紫外光激发下的溶液颜色,建立每一个探针分散液颜色与GSH共存浓度间的对应关系,制作检测GSH的裸眼可视比色卡和荧光可视比色卡;基于该比色卡,执行对生物流体样品中GSH浓度的比色和荧光双重可视化检测。

Description

比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的 制备方法
技术领域
本发明属于比色/荧光可视化检测探针和谷胱甘肽纳米生物探针的制备技术领域,具体涉及一种用于比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法,该制备的探针用于生物流体中谷胱甘肽的可视化检测。
背景技术
谷胱甘肽(glutathione)是一种含有巯基(-SH)的三肽,是由谷氨酸、半胱氨酸和甘氨酸结合形成。其中,半胱氨酸上的-SH为谷胱甘肽的活性基团,故谷胱甘肽通常简写为G-SH或GSH。GSH具有显著的生理功能,尤其是有解毒作用,与毒物或药物结合后,能整合和消除其毒性。GSH作为重要的还原剂,参与体内多种氧化还原反应。此外,GSH还能保护巯基酶的活性,使其活性基团-SH维持在还原状态。GSH能维持红细胞膜结构的稳定性,消除氧化剂的破坏作用,其作为细胞内一种重要生物标志物扮演着细胞代谢调节的角色。因此,对GSH执行精准、快捷和高效的检测对于人体健康监控和疾病诊疗都具有十分重要的意义。
当前,GSH检测方法主要包括高效液相色谱法、碘量分析法、电化学法、比色法、荧光法、拉曼法等。例如,包霞珍等合成了一种七甲川菁-萘酰亚胺杂合体并将其作为近红外荧光探针用于检测谷胱甘肽(包霞珍;曹雪慧;艾凯丽.国家发明专利申请号CN202210093783.7);戴志晖等开发了一种拉曼微创探针应用于谷胱甘肽的检测(戴志晖;张敏;王兆寅;尤永平;张军霞.国家发明专利申请号CN202211550114.4);孙为正等构筑了二维介孔碳材料表面修饰的玻碳电极并将其发展成电化学传感器用于检测人血清和猪肉样品中的谷胱甘肽(孙为正;车晶;梁振兴;苏国万;赵谋明.国家发明专利申请号CN202110196333.6);杨冉等制备了基于苯并双噻唑的光响应类氧化物酶用于比色检测食品中的谷胱甘肽(杨冉;武姣;孙远强;屈凌波;李朝辉.国家发明专利申请号CN202111609093.4)。
尽管先前的文献已经陆续报道了针对GSH检测的各种比色和荧光分析方法,主要涉及采用吸光值为信号输出的检测体系,荧光敏感响应的探针、传感器及其分析系统等,但截至目前,有关具备比色和荧光双重可视化检测谷胱甘肽功能的纳米复合体系探针及其实验制备与分析应用的研究工作鲜有文献报道。本发明公开了一种基于双金属掺杂硼量子点、四甲基联苯胺和罗丹明B三组分所组成的纳米复合体系,并将其开发成一种高效的纳米复合体系探针,用于生物流体样品中谷胱甘肽的具有比色和荧光双重信号输出模式的可视化检测。
发明内容
本发明之目的在于开发了一种设计新颖和简单高效的能够用于比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法,该制备的探针用于生物流体中谷胱甘肽的可视化检测。
为实现上述目的,本发明涉及的一种比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针,其制备方法具体包括以下步骤:
(1)以硼粉为原料,在特定溶剂中配制成硼粉的均匀分散液,然后加入两种金属盐溶液,在充分搅拌下形成混合分散液;其中的溶剂包括丙酮、异丙醇、乙二醇、二甲基甲酰胺、氮甲基吡咯烷酮;两种金属盐的组合及其质量比包括氯化铁/硝酸钴(2/1)、氯化铁/硝酸铜(5:1)、硝酸银/硝酸铜(2:1)、硝酸镍/硝酸钴(1:2)、硝酸镍/硝酸铜(1:5);两种金属盐和硼粉在该混合分散液中的质量浓度分别为0.05~0.5毫克/毫升和0.5~5.0毫克/毫升;
(2)利用探针超声处理该混合分散液,在400瓦下超声5分钟后间歇10分钟,如此超声-间歇循环操作2小时;然后用浴池超声处理,在40千赫兹和60℃下连续处理6小时;再将处理后的混合分散液转入高压反应釜中,加入1~3滴稀释的聚乙二醇作为表面包覆剂,在氮气氛保护、磁力搅拌和90~180℃下连续反应12~24小时;反应结束后,产物混合液冷却至室温,在3000转/分钟下离心20分钟以除去较大尺寸杂质,取离心后混合液的上层液在10000转/分钟下离心10分钟;所得沉淀物经乙醇和二次蒸馏水反复洗涤,所得产物经真空干燥12小时,得到双金属掺杂硼量子点;以氯化铁/硝酸钴作为两种特定金属盐为原料,依据上述步骤制得铁/钴双金属掺杂硼量子点Fe/Co@BQDs;
(3)以二次蒸馏水和乙醇为混合溶剂配制Fe/Co@BQDs的分散液,然后在磁力搅拌下依次加入适量的四甲基联苯胺TMB和罗丹明RhB,通过分子间相互作用和自组装形成“Fe/Co@BQDs-TMB-RhB”三组分纳米复合体系;其中Fe/Co@BQDs、TMB和RhB在纳米复合体系分散液中的浓度分别为0.1~2.0毫克/毫升、1~5毫摩尔/升和0.01~0.2毫克/毫升;
(4)向上述纳米复合体系分散液中加入过氧化氢H2O2,再加入谷胱甘肽GSH以形成纳米复合体系探针;其中H2O2和GSH的最终浓度分别为0.1~0.5毫摩尔/升和0.01~100微摩尔/升;分别测量含H2O2特定共存浓度和GSH不同共存浓度下的纳米复合体系探针分散液的紫外-可见吸收光谱和荧光发射光谱;依据GSH引起的TMB褪色作用建立TMB特征吸收峰吸光值与对应GSH浓度间的线性关系,发展检测GSH的比色探针;同时依据GSH引起的RhB荧光恢复建立RhB特征发射峰强度与对应GSH浓度间的线性关系,发展检测GSH的荧光探针;在0.01~100微摩尔/升浓度范围内选取10~15个GSH浓度,配制成一系列含GSH特定浓度的纳米复合体系探针分散液,采用相机拍摄每一个分散液在自然光状态和紫外光激发下的溶液颜色,基于每一个分散液颜色与GSH特定浓度间的对应关系,建立比色和荧光双重可视化检测GSH的比色卡。
本发明的效果是公开了一种用于比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法。设计制备了双金属掺杂硼量子点如Fe/Co@BQDs,将其与四甲基联苯胺TMB和罗丹明RhB自组装形成纳米复合体系“Fe/Co@BQDs-TMB-RhB”;加入过氧化氢H2O2以激活Fe/Co@BQDs的类过氧化物酶活性,使其产生羟基自由基·OH;而·OH引起无色TMB发生氧化生成蓝色的氧化态oxTMB,出现TMB着色过程,同时·OH也引起RhB荧光减弱;向加入了H2O2的纳米复合体系分散液中再加入谷胱甘肽GSH,GSH作为一种还原剂可消耗体系中产生的·OH,以清除·OH的氧化作用;由于·OH的氧化作用被清除,蓝色oxTMB转变成无色TMB,发生TMB褪色过程,同时RhB也发生荧光恢复。基于此,将“Fe/Co@BQDs-TMB-RhB”与H2O2和GSH组合发展成为纳米复合体系探针。
在该探针的分散液中,Fe/Co@BQDs和H2O2的共存浓度为特定值,而GSH的共存浓度值可自由调节,进而配制成一系列含有GSH不同共存浓度的探针分散液。采用相机拍摄每一个探针分散液在自然光状态和紫外光激发下的溶液颜色,建立每一个探针分散液颜色与其中GSH共存浓度之间的对应关系,再制作比色和荧光双重检测GSH的裸眼可视比色卡和荧光可视比色卡。将此双重比色卡用于生物流体样品如人血清和尿液中GSH的可视化检测,将含有GSH的生物流体样品用缓冲液稀释,以替换掉上述探针分散液中的GSH,然后用相机拍摄该探针分散液在自然光状态和紫外光激发下的溶液颜色,将此溶液颜色与裸眼可视比色卡和荧光可视比色卡进行认真对照,以比对出其中GSH的共存浓度,进而获得该生物流体样品中GSH浓度,实现基于该纳米复合体系探针对生物流体样品中GSH浓度的半定量化比色和荧光双重信号输出模式的可视化检测。
附图说明
图1为本案涉及的用于比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法及其可视化检测谷胱甘肽的原理示意图。
具体实施方式
下面结合附图并通过具体实施例对本发明进行详细说明。
实施例1
本实施例涉及的一种用于比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法及其检测原理如图1所示,具体制备步骤如下:
将30毫克硼粉加入50毫升丙酮中,充分搅拌形成均匀分散液,然后在搅拌下逐滴加入溶解了6毫克氯化铁和3毫克硝酸钴的水溶液,以形成混合分散液。采用探针超声处理该混合分散液,在400瓦下超声5分钟后间歇10分钟,如此超声-间歇循环操作2小时;然后用浴池超声处理,在40千赫兹和60℃下连续处理6小时;再将处理后的混合分散液转入高压反应釜中,加入1滴稀释的聚乙二醇PEG-400(1毫升蒸馏水稀释了0.2毫升PEG-400)作为表面包覆剂,在氮气氛保护、磁力搅拌和100℃下连续反应12小时。反应结束后,产物混合液冷却至室温,在3000转/分钟下离心20分钟以除去较大尺寸杂质,取离心后混合液的上层液在10000转/分钟下离心10分钟;所得沉淀物经乙醇和二次蒸馏水洗涤3次,产物经真空干燥12小时,得到纯净和干燥的铁/钴双金属掺杂硼量子点Fe/Co@BQDs。
采用二次蒸馏水和乙醇(体积比为2:1)为混合溶剂配制Fe/Co@BQDs的分散液,然后在磁力搅拌下依次加入四甲基联苯胺TMB和罗丹明RhB,形成“Fe/Co@BQDs-TMB-RhB”三组分纳米复合体系,其中Fe/Co@BQDs、TMB和RhB在该纳米复合体系分散液中的最终浓度分别为0.5毫克/毫升、2.0毫摩尔/升和0.05毫克/毫升。向该纳米复合体系分散液中加入过氧化氢H2O2,再加入谷胱甘肽GSH以形成纳米复合体系探针,其中探针分散液中H2O2和GSH的浓度分别为0.2毫摩尔/升和0.02~20微摩尔/升。分别测量含H2O2该特定共存浓度和GSH该共存浓度范围内某一特定浓度下探针分散液的紫外-可见吸收光谱和荧光发射光谱。
依据GSH引起的TMB褪色作用建立TMB特征吸收峰吸光值与对应GSH浓度间的线性关系,发展检测GSH的比色探针,其中GSH浓度的线性检测范围为0.1~10微摩尔/升,检测限为0.03微摩尔/升。同时,依据GSH引起的RhB荧光恢复建立RhB特征发射峰强度值与对应GSH浓度间的线性关系,发展检测GSH的荧光探针,其中GSH浓度的线性检测范围为0.05~20微摩尔/升,而检测限为0.01微摩尔/升。在0.02~20微摩尔/升浓度范围内选取10个GSH浓度,配制成一系列含GSH特定浓度的纳米复合体系探针分散液,采用相机拍摄每一个分散液在自然光状态和365纳米紫外光激发下的溶液颜色,基于每一个分散液颜色与GSH特定浓度间的对应关系,建立比色和荧光双重可视化检测GSH的比色卡。
实施例2
本实施例涉及的一种用于比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法及其检测原理如图1所示,具体制备步骤如下:
将40毫克硼粉加入50毫升乙二醇中,充分搅拌形成均匀分散液,然后在搅拌下逐滴加入溶解了10毫克氯化铁和2毫克硝酸铜的水溶液,以形成混合分散液。采用探针超声处理该混合分散液,在400瓦下超声5分钟后间歇10分钟,如此超声-间歇循环操作2小时;然后用浴池超声处理,在40千赫兹和60℃下连续处理6小时;再将处理后的混合分散液转入高压反应釜中,加入2滴稀释的聚乙二醇PEG-400(1毫升蒸馏水稀释了0.2毫升PEG-400)作为表面包覆剂,在氮气氛保护、磁力搅拌和120℃下连续反应15小时。反应结束后,产物混合液冷却至室温,在3000转/分钟下离心20分钟以除去较大尺寸杂质,取离心后混合液的上层液在10000转/分钟下离心10分钟;所得沉淀物经乙醇和二次蒸馏水洗涤3次,产物经真空干燥12小时,得到纯净和干燥的铁/钴双金属掺杂硼量子点Fe/Co@BQDs。
采用二次蒸馏水和乙醇(体积比为2:1)为混合溶剂配制Fe/Co@BQDs的分散液,然后在磁力搅拌下依次加入四甲基联苯胺TMB和罗丹明RhB,形成“Fe/Co@BQDs-TMB-RhB”三组分纳米复合体系,其中Fe/Co@BQDs、TMB和RhB在该纳米复合体系分散液中的最终浓度分别为1.0毫克/毫升、3.0毫摩尔/升和0.1毫克/毫升。向该纳米复合体系分散液中加入过氧化氢H2O2,再加入谷胱甘肽GSH以形成纳米复合体系探针,其中探针分散液中H2O2和GSH的浓度分别为0.3毫摩尔/升和0.05~50微摩尔/升。分别测量含H2O2该特定共存浓度和GSH该共存浓度范围内某一特定浓度下探针分散液的紫外-可见吸收光谱和荧光发射光谱。
依据GSH引起的TMB褪色作用建立TMB特征吸收峰吸光值与对应GSH浓度间的线性关系,发展检测GSH的比色探针,其中GSH浓度的线性检测范围为0.2~20微摩尔/升,检测限为0.06微摩尔/升。同时,依据GSH引起的RhB荧光恢复建立RhB特征发射峰强度值与对应GSH浓度间的线性关系,发展检测GSH的荧光探针,其中GSH浓度的线性检测范围为0.1~50微摩尔/升,而检测限为0.03微摩尔/升。在0.05~50微摩尔/升浓度范围内选取12个GSH浓度,配制成一系列含GSH特定浓度的纳米复合体系探针分散液,采用相机拍摄每一个分散液在自然光状态和365纳米紫外光激发下的溶液颜色,基于每一个分散液颜色与GSH特定浓度间的对应关系,建立比色和荧光双重可视化检测GSH的比色卡。
实施例3
本实施例涉及的一种用于比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法及其检测原理如图1所示,具体制备步骤如下:
将50毫克硼粉加入50毫升异丙醇中,充分搅拌形成均匀分散液,然后在搅拌下逐滴加入溶解了10毫克硝酸银和5毫克硝酸铜的水溶液,以形成混合分散液。采用探针超声处理该混合分散液,在400瓦下超声5分钟后间歇10分钟,如此超声-间歇循环操作2小时;然后用浴池超声处理,在40千赫兹和60℃下连续处理6小时;再将处理后的混合分散液转入高压反应釜中,加入3滴稀释的聚乙二醇PEG-400(1毫升蒸馏水稀释了0.2毫升PEG-400)作为表面包覆剂,在氮气氛保护、磁力搅拌和150℃下连续反应16小时。反应结束后,产物混合液冷却至室温,在3000转/分钟下离心20分钟以除去较大尺寸杂质,取离心后混合液的上层液在10000转/分钟下离心10分钟;所得沉淀物经乙醇和二次蒸馏水洗涤3次,产物经真空干燥12小时,得到纯净和干燥的铁/钴双金属掺杂硼量子点Fe/Co@BQDs。
采用二次蒸馏水和乙醇(体积比为2:1)为混合溶剂配制Fe/Co@BQDs的分散液,然后在磁力搅拌下依次加入四甲基联苯胺TMB和罗丹明RhB,形成“Fe/Co@BQDs-TMB-RhB”三组分纳米复合体系,其中Fe/Co@BQDs、TMB和RhB在该纳米复合体系分散液中的最终浓度分别为1.5毫克/毫升、4.0毫摩尔/升和0.15毫克/毫升。向该纳米复合体系分散液中加入过氧化氢H2O2,再加入谷胱甘肽GSH以形成纳米复合体系探针,其中探针分散液中H2O2和GSH的浓度分别为0.4毫摩尔/升和0.02~100微摩尔/升。分别测量含H2O2该特定共存浓度和GSH该共存浓度范围内某一特定浓度下探针分散液的紫外-可见吸收光谱和荧光发射光谱。
依据GSH引起的TMB褪色作用建立TMB特征吸收峰吸光值与对应GSH浓度间的线性关系,发展检测GSH的比色探针,其中GSH浓度的线性检测范围为0.1~50微摩尔/升,检测限为0.04微摩尔/升。同时,依据GSH引起的RhB荧光恢复建立RhB特征发射峰强度值与对应GSH浓度间的线性关系,发展检测GSH的荧光探针,其中GSH浓度的线性检测范围为0.05~100微摩尔/升,而检测限为0.02微摩尔/升。在0.02~100微摩尔/升浓度范围内选取15个GSH浓度,配制成一系列含GSH特定浓度的纳米复合体系探针分散液,采用相机拍摄每一个分散液在自然光状态和365纳米紫外光激发下的溶液颜色,基于每一个分散液颜色与GSH特定浓度间的对应关系,建立比色和荧光双重可视化检测GSH的比色卡。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

1.一种比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法,其特征在于,该制备方法具体包括以下步骤:
(1)以硼粉为原料,在特定溶剂中配制成硼粉的均匀分散液,然后加入两种金属盐溶液,在充分搅拌下形成混合分散液;其中的溶剂包括丙酮、异丙醇、乙二醇、二甲基甲酰胺、氮甲基吡咯烷酮;两种金属盐的组合及其质量比包括氯化铁/硝酸钴(2/1)、氯化铁/硝酸铜(5:1)、硝酸银/硝酸铜(2:1)、硝酸镍/硝酸钴(1:2)、硝酸镍/硝酸铜(1:5);两种金属盐和硼粉在该混合分散液中的质量浓度分别为0.05~0.5毫克/毫升和0.5~5.0毫克/毫升;
(2)利用探针超声处理该混合分散液,在400瓦下超声5分钟后间歇10分钟,如此超声-间歇循环操作2小时;然后用浴池超声处理,在40千赫兹和60℃下连续处理6小时;再将处理后的混合分散液转入高压反应釜中,加入1~3滴稀释的聚乙二醇作为表面包覆剂,在氮气氛保护、磁力搅拌和90~180℃下连续反应12~24小时;反应结束后,产物混合液冷却至室温,在3000转/分钟下离心20分钟以除去较大尺寸杂质,取离心后混合液的上层液在10000转/分钟下离心10分钟;所得沉淀物经乙醇和二次蒸馏水反复洗涤,所得产物经真空干燥12小时,得到双金属掺杂硼量子点;以氯化铁/硝酸钴作为两种特定金属盐为原料,依据上述步骤制得铁/钴双金属掺杂硼量子点Fe/Co@BQDs;
(3)以二次蒸馏水和乙醇为混合溶剂配制Fe/Co@BQDs的分散液,然后在磁力搅拌下依次加入适量的四甲基联苯胺TMB和罗丹明RhB,通过分子间相互作用和自组装形成“Fe/Co@BQDs-TMB-RhB”三组分纳米复合体系;其中Fe/Co@BQDs、TMB和RhB在纳米复合体系分散液中的浓度分别为0.1~2.0毫克/毫升、1~5毫摩尔/升和0.01~0.2毫克/毫升;
(4)向上述纳米复合体系分散液中加入过氧化氢H2O2,再加入谷胱甘肽GSH以形成纳米复合体系探针;其中H2O2和GSH的最终浓度分别为0.1~0.5毫摩尔/升和0.01~100微摩尔/升;分别测量含H2O2特定共存浓度和GSH不同共存浓度下的纳米复合体系探针分散液的紫外-可见吸收光谱和荧光发射光谱;依据GSH引起的TMB褪色作用建立TMB特征吸收峰吸光值与对应GSH浓度间的线性关系,发展检测GSH的比色探针;同时依据GSH引起的RhB荧光恢复建立RhB特征发射峰强度与对应GSH浓度间的线性关系,发展检测GSH的荧光探针;在0.01~100微摩尔/升浓度范围内选取10~15个GSH浓度,配制成一系列含GSH特定浓度的纳米复合体系探针分散液,采用相机拍摄每一个分散液在自然光状态和紫外光激发下的溶液颜色,基于每一个分散液颜色与GSH特定浓度间的对应关系,建立比色和荧光双重可视化检测GSH的比色卡。
CN202311481802.4A 2023-11-09 2023-11-09 比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法 Pending CN117491329A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311481802.4A CN117491329A (zh) 2023-11-09 2023-11-09 比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311481802.4A CN117491329A (zh) 2023-11-09 2023-11-09 比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法

Publications (1)

Publication Number Publication Date
CN117491329A true CN117491329A (zh) 2024-02-02

Family

ID=89673991

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311481802.4A Pending CN117491329A (zh) 2023-11-09 2023-11-09 比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法

Country Status (1)

Country Link
CN (1) CN117491329A (zh)

Similar Documents

Publication Publication Date Title
Liu et al. Smartphone based platform for ratiometric fluorometric and colorimetric determination H2O2 and glucose
Zhang et al. Copper sulfide nanoclusters with multi-enzyme-like activities and its application in acid phosphatase sensing based on enzymatic cascade reaction
Zhao et al. Colorimetric detection of blood glucose based on GOx@ ZIF-8@ Fe-polydopamine cascade reaction
CN112903635B (zh) 一种双发射CDs/R6G@ZIF-8比率荧光探针在检测Fe3+中的应用
Chen et al. An eco-friendly near infrared fluorescence molecularly imprinted sensor based on zeolite imidazolate framework-8 for rapid determination of trace trypsin
He et al. Facile and green synthesis of N, Cl-dual-doped carbon dots as a label-free fluorescent probe for hematin and temperature sensing
CN115215846B (zh) 一种荧光探针及其合成方法和检测cn-的应用
Zeng et al. Design and synthesis of a vanadate-based ratiometric fluorescent probe for sequential recognition of Cu 2+ ions and biothiols
Song et al. Oxidation activity modulation of a single atom Ce-NC nanozyme enabling a time-resolved sensor to detect Fe 3+ and Cr 6+
Qian et al. Colorimetric glucose sensing with multiple-color changes by using a MnO 2 NSs–TMB nanosystem
Zheng et al. Construction of a bioinspired Fe3O4/N-HCS nanozyme for highly sensitive detection of GSH
CN109852383B (zh) 基于富勒烯的快速高效响应谷胱甘肽的荧光探针及其制备方法和应用
Han et al. Fe 3 O 4@ Au–metal organic framework nanozyme with peroxidase-like activity and its application for colorimetric ascorbic acid detection
Yuan et al. BSA-stabilized silver nanoclusters for efficient photoresponsive colorimetric detection of chromium (VI)
CN117491329A (zh) 比色和荧光双重可视化检测谷胱甘肽的纳米复合体系探针的制备方法
Ye et al. The enhanced oxidase-like activity of modified nanoceria/ZIF-67 for fluorescence and smartphone-assisted visual detection of tannic acid
Yang et al. Surface recognition strategy via ascorbic acid-triggered decomposition of boron nitride-loaded cobalt oxyhydroxide nanosheets
CN115282966B (zh) 一种二价铁离子掺杂钴酸铜材料及其制备方法
CN113337278B (zh) 一种基于硅量子点的高选择性检测羟基自由基的荧光探针及其制备方法和应用
CN112730351B (zh) 一种快速检测高锰酸钾溶液浓度的方法
CN113304748B (zh) 一种具有多种仿酶活性的铜纳米团簇及其制备方法与应用
CN114433243A (zh) 一种多酶活性的金属基墨鱼汁黑色素复合材料及其制备方法
CN109482207B (zh) 一种Ag3PO4模拟酶材料及其应用
CN114441492A (zh) 一种酶标仪检测过氧化氢的方法
CN111122533A (zh) 一种zif纳米酶及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination