CN117459844A - 摄像器件和相机系统 - Google Patents

摄像器件和相机系统 Download PDF

Info

Publication number
CN117459844A
CN117459844A CN202311486547.2A CN202311486547A CN117459844A CN 117459844 A CN117459844 A CN 117459844A CN 202311486547 A CN202311486547 A CN 202311486547A CN 117459844 A CN117459844 A CN 117459844A
Authority
CN
China
Prior art keywords
voltage
image pickup
power supply
signal
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311486547.2A
Other languages
English (en)
Inventor
河津直树
佐佐木庆太
冈巧
本桥裕一
铃木敦史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Publication of CN117459844A publication Critical patent/CN117459844A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/002Diagnosis, testing or measuring for television systems or their details for television cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • H04N23/651Control of camera operation in relation to power supply for reducing power consumption by affecting camera operations, e.g. sleep mode, hibernation mode or power off of selective parts of the camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/749Circuitry for compensating brightness variation in the scene by influencing the pick-up tube voltages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • H04N25/69SSIS comprising testing or correcting structures for circuits other than pixel cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/68Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects
    • H04N25/683Noise processing, e.g. detecting, correcting, reducing or removing noise applied to defects by defect estimation performed on the scene signal, e.g. real time or on the fly detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

本发明涉及摄像器件和相机系统。其中,所述摄像器件可包括:像素阵列,所述像素阵列被配置为基于第一电源电压生成图像信号;AD转换器,所述AD转换器被配置为基于所述第一电源电压生成第一检测电压数据;以及标志生成器,所述标志生成器被配置为基于所述第一检测电压数据和第一参考电压数据生成错误标志,其中,所述第一参考电压数据具有确定的范围,并且基于所述第一检测电压数据被确定为在所述确定的范围之外,所述错误标志被设定为低电平。

Description

摄像器件和相机系统
本申请是申请日为2019年2月5日、发明名称为“摄像器件、摄像系统和摄像方法”的申请号为201980010013.8的专利申请的分案申请。
技术领域
本公开涉及用于摄像操作的摄像器件、摄像系统和摄像方法。
背景技术
例如,在存在问题的情况下,一些摄像器件检测该问题(例如,专利文献1)。
文献列表
专利文献
专利文献1:日本未经审查的专利申请公开号2002-027196
发明内容
以此方式,在存在问题的情况下,期望摄像器件能够检测该问题。
期望提供在存在问题的情况下均能够检测该问题的摄像器件、摄像系统和摄像方法。
根据本公开的一实施例的摄像器件包括摄像单元、数据生成器和标志生成部。摄像单元被构造为执行摄像操作。数据生成器被构造为生成与第一电源电压相对应的第一电源电压数据。第一电源电压被提供给摄像单元。标志生成部被构造为通过比较第一电源电压数据和第一参考数据来生成用于第一电源电压的标志信号。
此处,“摄像器件”不限于所谓的图像传感器自身,而是可以包括诸如数码相机或具有摄像功能的智能手机等电子装置。
根据本公开的一实施例的摄像系统包括摄像器件和处理设备。摄像器件被安装在车辆上,并被构造为通过对车辆周围的区域摄像来生成图像。处理设备被安装在车辆上,并被构造为基于图像执行与车辆的控制功能有关的处理。摄像器件包括摄像单元、数据生成器和标志生成部。摄像单元被构造为执行摄像操作。数据生成器被构造为生成与第一电源电压相对应的第一电源电压数据。第一电源电压被提供给摄像单元。标志生成部被构造为通过比较第一电源电压数据和第一参考数据来生成用于第一电源电压的标志信号。处理设备被构造为基于标志信号通知司机或限制控制车辆的功能,或者既通知司机又限制车辆的控制功能。
根据本公开的一实施例的摄像方法包括:执行摄像操作;生成与第一电源电压相对应的第一电源电压数据;并且通过比较第一电源电压数据和第一参考数据来生成用于第一电源电压的标志信号。在执行摄像操作时提供第一电源电压。
在根据本公开的各个实施例的摄像器件、摄像系统和摄像方法中,执行摄像操作并生成与第一电源电压相对应的第一电源电压数据。随后,比较第一电源电压数据和第一参考数据以生成用于第一电源电压的标志信号。
在根据本公开的各个实施例的摄像器件、摄像系统和摄像方法中,生成与第一电源电压相对应的第一电源电压数据,并且比较第一电源电压数据和第一参考数据以生成标志信号。由此,允许检测到问题。应当注意,此处说明的效果不必是限制性的,而是可以包括本公开中说明的任意效果。
附图说明
图1是示出根据本公开的实施例的摄像器件的构造示例的框图。
图2是示出图1所示的像素阵列的构造示例的电路图。
图3是示出图1所示的像素阵列的构造示例的说明图。
图4是示出图1所示的读出单元的构造示例的电路图。
图5是示出图1所示的电压传感器的构造示例的电路图。
图6是示出图1所示的电压确定单元的构造示例的框图。
图7是示出图6所示的计算部的操作示例的另一说明图。
图8A是示出图6所示的计算部的操作示例的另一说明图。
图8B是示出图6所示的计算部的另一操作示例的说明图。
图9是示出图6所示的确定部的操作示例的说明图。
图10是示出输出图1所示的错误标志信号的电路的构造示例的说明图。
图11是示出图10所示的错误标志信号的示例的说明图。
图12是示出图1所示的摄像器件的电路布局的示例的说明图。
图13是示出图1所示的摄像器件的构造示例的说明图。
图14是示出图1所示的摄像器件的另一电路布局的示例的说明图。
图15是示出图1所示的摄像器件的操作示例时序图。
图16是示出图1所示的摄像器件的操作示例的时序波形图。
图17A是示出图1所示的摄像器件的操作示例的另一时序波形图。
图17B是示出图1所示的摄像器件的操作示例的另一时序波形图。
图18A是示出图1所示的摄像器件的操作状态的说明图。
图18B是示出图1所示的摄像器件的另一操作状态的说明图。
图18C是示出图1所示的摄像器件的另一操作状态的说明图。
图19是示出图1所示的摄像器件中的图像合成示例的说明图。
图20是示出图1所示的摄像器件中的电压检测操作示例的时序波形图。
图21A是示出图20所示的电压检测操作中电压传感器的操作示例的说明图。
图21B是示出图20所示的电压检测操作中电压传感器的操作示例的另一说明图。
图22是示出校准处理的示例的流程图。
图23是示出根据变形例的摄像器件的构造示例的框图。
图24是示出图23所示的伪像素的构造示例的电路图。
图25是示出图23所示的读出单元的构造示例的电路图。
图26是示出根据另一变形例的摄像器件的构造示例的框图。
图27是示出根据另一变形例的摄像器件的构造示例的框图。
图28是示出根据另一变形例的电压传感器的构造示例的框图。
图29是示出根据另一变形例的电压检测操作的示例的时序波形图。
图30A是示出图29所示的电压检测操作中电压传感器的操作示例的说明图。
图30B是示出图29所示的电压检测操作中电压传感器的操作示例的另一说明图。
图31是示出根据另一变形例的摄像器件的构造示例的框图。
图32是示出图31所示的摄像像素的构造示例的电流图。
图33是示出图31所示的像素阵列的构造示例的说明图。
图34是示出图31所示的摄像器件的操作示例的时序波形图。
图35是示出图31所示的摄像器件的操作示例的另一时序波形图。
图36是示出根据另一变形例的摄像器件的构造示例的框图。
图37是示出根据另一变形例的摄像器件的实现示例的说明图。
图38是示出摄像器件的使用示例的说明图。
图39是示出车辆控制系统的示意性构造示例的框图。
图40是帮助说明车外信息检测部和摄像部的安装位置示例的视图。
具体实施方式
下面参照附图详细说明本公开的实施例。应当注意,按下列顺序说明。
1.实施例
2.摄像器件的使用示例
3.移动体的应用示例
<1.实施例>
[构造示例]
图1示出根据一实施例的摄像器件(摄像器件1)的构造示例。摄像器件1包括像素阵列9、扫描单元10、读出单元20、摄像控制器30、信号处理器40和存储单元8。
摄像器件1由随后所述的三个电源电压VDD(电源电压VDDH、VDDM和VDDL)供电,并且摄像器件1基于这些电源电压VDD进行操作。电源电压VDDH是主要给摄像器件1中的模拟电路供电的电源电压,并且例如是3.3V。电源电压VDDM是主要给摄像器件1的输入/输出缓冲器供电的电源电压,并且例如是1.8V。电源电压VDDL是主要给摄像器件1中的逻辑电路供电的电源电压,并且例如是1.1V。
像素阵列9包括布置为矩阵的多个摄像像素P1。摄像像素P1均包括光电二极管,并且生成摄像像素P1的像素电压VP。
图2示出摄像像素P1的构造示例。像素阵列9包括多条控制线TGLL、多条控制线FDGL、多条控制线RSTL、多条控制线FCGL、多条控制线TGSL、多条控制线SELL和多条信号线SGL。控制线TGLL均在水平方向(图1的横向方向)上延伸,并且扫描单元10将信号STGL施加到控制线TGLL。控制线FDGL均在水平方向上延伸,并且扫描单元10将信号SFDG施加到控制线FDGL。控制线RSTL均在水平方向上延伸,并且扫描单元10将信号SRST施加到控制线RSTL。控制线FCGL均在水平方向上延伸,并且扫描单元10将信号SFCG施加到控制线FCGL。控制线TGSL均在水平方向上延伸,并且扫描单元10将信号STGS施加到控制线TGSL。控制线SELL均在水平方向上延伸,并且扫描单元10将信号SSEL施加到控制线SELL。信号线SGL均在垂直方向(图1的纵向方向)上延伸,并且均连接到读出单元20。
摄像像素P1包括光电二极管PD1、晶体管TGL、光电二极管PD2、晶体管TGS、电容元件FC、晶体管FCG、RST和FDG、浮动扩散部FD和晶体管AMP和SEL。在该示例中,晶体管TGL、TGS、FCG、RST、FDG、AMP和SEL均是N型MOS(金属氧化物半导体)晶体管。
光电二极管PD1是生成并累积在数量上与接收光量相对应的电荷的光电转换元件。光电二极管PD1能够接收光的光接收区域比光电二极管PD2能够接收光的光接收区域具有更大的范围。光电二极管PD1的阳极接地,并且阴极连接到晶体管TGL的源极。
晶体管TGL的栅极连接到控制线TGLL,源极连接到光电二极管PD1的阴极,并且漏极连接到浮动扩散部FD。
光电二极管PD2是生成并累积在数量上与接收光量相对应的电荷的光电转换元件。光电二极管PD2能够接收光的光接收区域比光电二极管PD1能够接收光的光接收区域具有更小的范围。光电二极管PD2的阳极接地,并且阴极连接到晶体管TGS的源极。
晶体管TGS的栅极连接到控制线TGSL,源极连接到光电二极管PD2的阴极,并且漏极连接到电容元件FC的一个端部和晶体管FCG的源极。
电容元件FC的一个端部连接到晶体管TGS的漏极和晶体管FCG的源极,并且另一端部被提供电源电压VDDH。
晶体管FCG的栅极连接到控制线FCGL,源极连接到电容元件FC的一个端部和晶体管TGS的漏极,并且漏极连接到晶体管RST的源极和晶体管FDG的漏极。
晶体管RST的栅极连接到控制线RSTL,漏极被提供电源电压VDDH,并且源极连接到晶体管FCG和FDG的漏极。
晶体管FDG的栅极连接到控制线FDGL,漏极连接到晶体管RST的源极与晶体管FCG的漏极,并且源极连接到浮动扩散部FD。
浮动扩散部FD累积从光电二极管PD1和PD2提供的电荷,并且例如包括在半导体基板的表面上形成的扩散层。图2通过使用电容元件符号示出浮动扩散部FD。
晶体管AMP的栅极连接到浮动扩散部FD,漏极被提供电源电压VDDH,并且源极连接到晶体管SEL的漏极。
晶体管SEL的栅极连接到控制线SELL,漏极连接到晶体管AMP的源极,并且源极连接到信号线SGL。
该构造基于施加到摄像像素P1中的控制线SELL的信号SSEL使晶体管SEL导通,从而将摄像像素P1电连接到信号线SGL。由此,将晶体管AMP连接到读出单元20的电流源23(随后说明),并且晶体管AMP作为所谓的源极跟随器进行操作。随后,摄像像素P1将与浮动扩散部FD的电压相对应的像素电压VP作为信号SIG输出到信号线SGL。具体地,摄像像素P1在随后所述的所谓的水平时段H内的八个时段(转换时段T1至T8)中顺序地输出八个像素电压VP(VP1至VP8)。
图3示出像素阵列9中的光电二极管PD1和PD2的排列示例。在图3中,“R”表示红色滤色器,“G”表示绿色滤色器,并且“B”表示蓝色滤色器。在每个摄像像素P1中,在光电二极管PD1的右上方形成光电二极管PD2。在每个摄像像素P1中,在两个光电二极管PD1和PD2上形成相同颜色的滤色器。在该示例中,光电二极管PD1具有八边形形状,并且光电二极管PD2具有四边形形状。如图所示,光电二极管PD1能够接收光的光接收区域比光电二极管PD2能够接收光的光接收区域具有更大的范围。
扫描单元10(图1)基于来自摄像控制器30的指令以像素线L为单位顺序地驱动像素阵列9中的摄像像素P1。该扫描单元10基于三个所提供的电源电压VDD之中的电源电压VDDH和电源电压VDDL进行操作。扫描单元10包括地址解码器11、逻辑部12和驱动部13。
地址解码器11基于从摄像控制器30提供的地址信号来选择像素阵列9中的像素线L。像素线L对应于由该地址信号表示的地址。逻辑部12基于来自地址解码器11的指令生成与各条像素线L相对应的信号STGL1、SFDG1、SRST1、SFCG1、STGS1和SSEL1。驱动部13基于与各条像素线L相对应的信号STGL1、SFDG1、SRST1、SFCG1、STGS1和SSEL1来生成与各条像素线L相对应的信号STGL、SFDG、SRST、SFCG、STGS和SSEL。
读出单元20基于从像素阵列9经由像素线SGL提供的信号SIG来执行AD转换,由此生成图像信号DATA0。读出单元20基于三个所提供的电源电压VDD之中的电源电压VDDH和电源电压VDDL进行操作。
图4示出读出单元20的构造示例。应当注意,除了读出单元20之外,图4还示出摄像控制器30和信号处理器40。读出单元20包括多个模数(AD:Anolog to Digital)转换部ADC(AD转换部ADC[0]、ADC[1]、ADC[2]、……)、多个开关部SW(开关部SW[0]、SW[1]、SW[2]、……)和总线布线BUS。
AD转换部ADC均基于从像素阵列9提供的信号SIG执行AD转换,以将信号SIG的电压转换为数字代码CODE。多个AD转换部ADC与多条信号线SGL关联地设置。具体地,第零个AD转换部ADC[0]与第零条信号线SGL[0]关联地设置,第一个AD转换部ADC[1]与第一条信号线SGL[1]关联地设置,并且第二个AD转换部ADC[2]与第二条信号线SGL[2]关联地设置。
此外,AD转换部ADC还具有如下功能:在垂直消隐时段(随后说明的消隐时段T20)内,基于从摄像控制器30的电压传感器33(随后说明)提供的信号SIGV执行AD转换,由此将信号SIGV的电压转换为数字代码CODE。
AD转换部ADC均包括电容元件21和22、晶体管28和29、电流源23、比较器24、计数器25和锁存器26。电容元件21的一个端部被提供参考信号REF,且另一端部连接到比较器24的正输入端子。该参考信号REF由摄像控制器30的参考信号生成单元31(随后说明)生成,并且具有所谓斜坡波形,该斜坡波形的电压电平在用于执行随后所述的AD转换的八个时段(转换时段T1至T8)中随着时间流逝而逐渐降低。电容元件22的一个端部连接到信号线SGL,且另一端部连接到比较器24的负输入端子。晶体管28和29是N型MOS晶体管。晶体管28的栅极被提供信号SIGV,漏极被提供电源电压VDDH,且源极连接到晶体管29的漏极。在该示例中,晶体管28具有连接到源极的背栅极。晶体管29的栅极被提供控制信号SSELV,漏极连接到晶体管28的源极,并且源极连接到电容元件22的一个端部。电流源23允许具有预定电流值的电流从信号线SGL流动到接地点。比较器24比较正输入端子处的输入电压和负输入端子处的输入电压,并将比较结果作为信号CMP输出。比较器24基于电源电压VDDH进行操作。比较器24的正输入端子经由电容元件21被提供参考信号REF,并且负输入端子经由电容元件22被提供信号SIG。如下所述,该比较器24还具有使正输入端子和负输入端子在预定时间段内电连接的调零功能。计数器25基于控制信号CC和从比较器24提供的信号CMP来执行对从摄像控制器30提供的时钟信号CLK的脉冲进行计数的计数操作。锁存器26保持计数值CNT,作为具有多个位的数字代码CODE。该计数值CNT由计数器25获得。计数器25和锁存器26均基于电源电压VDDL进行操作。
开关部SW均基于从摄像控制器30提供的控制信号SSW向总线布线BUS提供从AD转换部ADC输出的数字代码CODE。多个开关部SW与多个AD转换部ADC关联地设置。具体地,第零个开关部SW[0]与第零个AD转换部ADC[0]关联地设置,第一个开关部SW[1]与第一个AD转换部ADC[1]关联地设置,第二个开关部SW[2]与第二个AD转换部ADC[2]关联地设置。
在该示例中,每个开关部SW包括的晶体管的数量与数字代码CODE的位数相同。基于从摄像控制器30提供的控制信号SSW(控制信号SSW[0]、SSW[1]、SSW[2]、……)控制这些晶体管导通和关断。具体地,例如,通过基于控制信号SSW[0]使各个晶体管导通,第零个开关部SW[0]将从第零个AD转换部ADC[0]输出的数字代码CODE提供给总线布线BUS。类似地,例如,通过基于控制信号SSW[1]使各个晶体管导通,第一个开关部SW[1]将从第一个AD转换部ADC[1]输出的数字代码CODE提供给总线布线BUS。这同样适用于其他开关部SW。
总线布线BUS包括多条布线,并传输从AD转换部ADC输出的数字代码CODE。读出单元20使用该总线布线BUS将从AD转换部ADC提供的多个数字代码CODE作为图像信号DATA0顺序地传输到信号处理器40(数据传输操作)。
摄像控制器30(图1)将控制信号提供给扫描单元10、读出单元20和信号处理器40,并且控制这些电路的操作,由此控制摄像器件1的操作。具体地,例如,摄像控制器30将地址信号提供给扫描单元10,由此执行控制,以使扫描单元10以像素线L为单位顺序地驱动像素阵列9中的摄像像素P1。此外,摄像控制器30将参考信号REF、时钟信号CLK、控制信号CC和控制信号SSW(控制信号SSW[0]、SSW[1]、SSW[2]、……)提供给读出单元20,由此执行控制,以使读出单元20基于信号SIG和SIGV生成图像信号DATA0。此外,摄像控制器30将控制信号提供给信号处理器40,以控制信号处理器40的操作。摄像控制器30基于三个所提供的电源电压VDD之中的电源电压VDDH和电源电压VDDL进行操作。摄像控制器30中的逻辑电路基于电源电压VDDL进行操作。摄像控制器30包括参考信号生成单元31、参考电压生成单元32和电压传感器33。
参考信号生成单元31生成参考信号REF。参考信号REF具有所谓斜坡波形,该斜坡波形的电压电平在用于执行AD转换的八个时段(转换时段T1至T8)内随着时间流逝而逐渐降低。随后,参考信号生成单元31将生成的参考信号REF提供给读出单元20的多个AD转换部ADC中的每一个。参考信号生成单元31基于电源电压VDDH进行操作。
参考电压生成单元32是所谓的带隙电压参考电路,并生成作为参考电压的电压Vbgr。随后,参考电压生成单元32将该电压Vbgr提供给摄像器件1中的各个电路。参考电压生成单元32基于电源电压VDDH进行操作。
电压传感器33生成信号SIGV。信号SIGV包括对应于电源电压VDDH的电压、对应于电源电压VDDM的电压、对应于电源电压VDDL的电压和对应于电压Vbgr的电压。
图5示出电压传感器33的构造示例。应当注意,除了电压传感器33以外,图5还示出读出单元20的AD转换部ADC[0]。电压传感器33包括电阻电路部RH、RR、RM和RL、开关SWH、SWR、SRM和SWL、选择器ASEL和放大器AMPV。
电阻电路部RH、RR、RM和RL均包括多个(在该示例中,四个)串联连接的电阻元件。电阻电路部RH的一个端部被提供电源电压VDDH,且另一端部接地。在该示例中,电阻电路部RH输出通过将电源电压VDDH乘以“3/4”获得的电压和通过将电源电压VDDH乘以“1/2”获得的电压。电阻电路部RR的一个端部被提供电压Vbgr,且另一端部接地。在该示例中,电阻电路部RR输出通过将电压Vbgr乘以“3/4”获得的电压和通过将电压Vbgr乘以“1/2”获得的电压。电阻电路部RM的一个端部被提供电源电压VDDM,且另一端部接地。在该示例中,电阻电路部RM输出通过将电源电压VDDM乘以“3/4”获得的电压和通过将电源电压VDDM乘以“1/2”获得的电压。电阻电路部RL的一个端部被提供电源电压VDDL,且另一端部接地。在该示例中,电阻电路部RL输出通过将电源电压VDDL乘以“3/4”获得的电压和通过将电源电压VDDL乘以“1/2”获得的电压。
基于由摄像控制器30生成的控制信号SELSW,开关SWH选择通过将电源电压VDDH乘以“3/4”获得的电压和通过将电源电压VDDH乘以“1/2”获得的电压中的一者,并且输出所选择的电压。基于由摄像控制器30生成的控制信号SELSW,开关SWR选择通过将电源电压Vbgr乘以“3/4”获得的电压和通过将电源电压Vbgr乘以“1/2”获得的电压中的一者,并且输出所选择的电压。基于由摄像控制器30生成的控制信号SELSW,开关SWM选择通过将电源电压VDDM乘以“3/4”获得的电压和通过将电源电压VDDM乘以“1/2”获得的电压中的一者,并且输出所选择的电压。基于由摄像控制器30生成的控制信号SELSW,开关SWL选择通过将电源电压VDDL乘以“3/4”获得的电压和通过将电源电压VDDL乘以“1/2”获得的电压中的一者,并且输出所选择的电压。
基于由摄像控制器30生成的控制信号SASEL,选择器ASEL选择从开关SWH、SWR、SWM和SWL提供的电压中的一者,并输出所选择的电压。
放大器AMPV放大从选择器ASEL提供的电压,并且将所放大的电压作为信号SIGV输出。放大器AMPV基于电源电压VDDH进行操作。
这种构造使电压传感器33生成信号SIGV,信号SIGV包括对应于电源电压VDDH的电压、对应于电源电压VDDM的电压、对应于电源电压VDDL的电压和对应于电压Vbgr的电压。随后,电压传感器33将所生成的信号SIGV提供给读出单元20的多个AD转换部ADC中的每一者。
信号处理器40对图像信号DATA0执行信号处理。信号处理器40基于三个所提供的电源电压VDD之中的电源电压VDDL进行操作。信号处理器40包括图像处理单元41和电压确定单元42。
图像处理单元41对由图像信号DATA0表示的图像执行预定图像处理。例如,预定图像处理包括图像合成处理。在图像合成处理中,图像处理单元41基于从读出单元20提供的并且在用于执行AD转换的八个时段(转换时段T1至T8)中获得的八个数字代码CODE(数字代码CODE1至CODE8)来生成四个图像PIC(图像PIC1、PIC2、PIC3和PIC4)。图像处理单元41随后合成四个图像PIC以生成一个拍摄图像PICA。图像处理单元41随后将该拍摄图像PICA作为图像信号DATA输出。
电压确定单元42生成用于表示电源电压VDDH、VDDM和VDDL以及电压Vbgr的电压值的相应电压代码VCODE(电压代码VCODEH、VCODEM、VCODEL和VCODER),并且确认电源电压VDDH、VDDM和VDDL以及电压Vbgr的相应电压值是否落入预定电压范围内,由此生成错误标志信号XERR。
图6示出电压确定单元42的构造示例。应当注意,除了电压确定单元42以外,图6还示出存储单元8。电压确定单元42包括计算部43和确定部44。
计算部43基于图像信号DATA0中包括的数字代码CODE来生成用于表示电源电压VDDH、VDDM和VDDL以及电压Vbgr的电压值的四个相应电压代码VCODE(电压代码VCODEH、VCODEM、VCODEL和VCODER)。图像信号DATA0中包括的数字代码CODE是在垂直消隐时段(vertical blanking period)内基于信号SIGV获得的。具体地,计算部43基于电源电压VDDH的从多个AD转换部ADC获得的多个数字值VALV执行计算处理,由此生成具有预定代码系统的电压代码VCODE1。在该代码系统中,例如,将电压代码VCODE1表达为通过将电压值乘以“1000”获得的值。具体地,在电源电压VDDH的电压值是“3.3V”的情况下,由电压代码VCODE1表示的值是“3300”。当生成电压代码VCODE1时,计算部43基于存储单元8中存储的校准参数PCAL(随后说明)生成电压代码VCODE1。计算部43随后获得由多个电压代码VCODE1表示的值的平均值,以生成一个电压代码VCODE。计算部43将以此方式生成的电压代码VCODE作为对应于电源电压VDDH的电压代码VCODEH输出。类似地,计算部43生成对应于电源电压VDDM的电压代码VCODEM、对应于电源电压VDDL的电压代码VCODEL和对应于电压Vbgr的电压代码VCODER。下面作为示例详细说明针对电源电压VDDH的处理,但这同样适用于针对电源电压VDDM和VDDL以及电压Vbgr的处理。应当注意,期望的是,由计算部43获得的平均值是用作算数平均值的平均值,但也可以采用几何平均值、加权平均值、调和平均值等。
图7示意性地示出计算部43的计算处理的示例。由电压传感器33生成的信号SIGV的每个电压可能由于所谓的制造差异、摄像器件1中电源电压布线的阻抗等而偏离期望的电压。在这种情况下,如图7所示,电压代码VCODE1也偏离期望代码。例如,检查装置随后在装运摄像装置1之前的检查过程中向摄像器件1提供被设置为预定电压VDDH1(例如3.1V)的电源电压VDDH,并且使存储单元8的非易失性存储器8A(随后说明)预先存储此时由摄像器件1生成的电压代码VCODE和与电压VDDH1相对应的理想电压代码。类似地,检查装置向摄像器件1提供被设置为预定电压VDDH2(例如,3.5V)的电源电压VDDH,并且使存储单元8的非易失性存储器8A(随后说明)预先存储此时由摄像器件1生成的电压代码VCODE和与电压VDDH2相对应的理想电压代码。计算部43随后基于存储单元8中存储的这些种类的信息来获得校准参数PCAL,并且从这时起通过使用该校准参数PCAL执行计算处理,由此生成电压代码VCODE1。由此,计算部43可通过使用如图7的粗线所示的更期望的转换特性来获得电压代码VCODE1。计算部43基于从多个AD转换部ADC获得的数字代码CODE执行这种计算处理,由此生成多个电压代码VCODE1。
计算部43随后获得由多个电压代码VCODE1表示的值的平均值,以生成一个电压代码VCODE。多个AD转换部ADC基于一个信号SIGV在消隐时段内执行AD转换,并因此期望多个电压代码VCODE1表示的值基本相同。然而,例如,在多个AD转换部ADC中的某个AD转换部ADC(AD转换部ADCA)被破坏的情况下,由基于通过AD转换部ADC生成的数字代码CODE生成的电压代码VCODE1(电压代码VCODE1A)表示的值有时极大地不同于由另一电压代码VCODE1表示的值。此外,例如,由于多个AD转换部ADC中的由所谓的制造差异导致的特性差异,由某个电压代码VCODE1(电压代码VCODE1A)表示的值也可能有时极大地不同于由另一电压代码VCODE1表示的值。相应地,例如,在某个电压代码VCODE1(电压代码VCODE1A)的值极大地偏离于多个电压代码VCODE1之中的除了电压代码VCODE1A之外的电压代码的值的情况下,例如,如图8A所示,计算部43通过使用与对应于电压代码VCODE1A的AD转换部ADCA相邻的AD转换部ADC的电压代码VCODE1来执行插值计算,由此校正电压代码VCODE1A。计算部43随后获得由包括已校正的电压代码VCODE1A的所有电压代码VCODE1表示的值的平均值,以生成一个电压代码VCODE。计算部43随后输出以这种方式生成的电压代码VCODE,作为对应于电源电压VDDH的电压代码VCODEH。
应当注意,这不是限制性的。在某个电压代码VCODE1(电压代码VCODE1A)的值极大地偏离多个电压代码VCODE1之中的除了电压代码VCODE1A之外的电压代码的值的情况下,如图8B所示,计算部43可以获得由所有电压代码VCODE1之中的除了电压代码VCODE1A以外的多个电压代码VCODE1表示的值的平均值,由此生成一个电压代码VCODE。
以此方式,计算部43生成对应于电源电压VDDH的电压代码VCODEH,生成对应于电源电压VDDM的电压代码VCODEM,生成对应于电源电压VDDL的电压代码VCODEL,并生成对应于电压Vbgr的电压代码VCODER。
确定部44(图6)基于由计算部43获得的电压代码VCODEH、VCODEM、VCODEL和VCODER分别确认电源电压VDDH、VDDM和VDDL以及电压Vbgr的相应电压值是否落入预定电压范围内,由此生成错误标志信号XERR。确定部44包括比较器45和46以及OR电路47。
比较器45比较由电压代码VCODE表示的值和阈值THmax。比较器45的正输入端子被提供电压代码VCODE,并且负输入端子被提供阈值THmax。利用该构造,比较器45在由电压代码VCODE表示的值大于阈值THmax的情况下输出“1”,并在由电压代码VCODE表示的值小于或等于阈值THmax的情况下输出“0”。
比较器46比较由电压代码VCODE表示的值和阈值THmin。比较器46的正输入端子被提供阈值THmin,并且负输入端子被提供电压代码VCODE。该构造使比较器46在由电压代码VCODE表示的值小于阈值THmin的情况下输出“1”,并在电压代码VCODE表示的值大于或等于阈值THmax的情况下输出“0”。
OR电路47获得比较器45的输出信号和比较器46的输出信号的逻辑或(OR),并且将该结果作为信号S47输出。
利用该构造,确定部44在由电压代码VCODE表示的值小于阈值THmin的情况下且在由电压代码VCODE表示的值大于阈值THmax的情况下将信号S47设置为“1”,并且在电压代码VCODE表示的值大于或等于阈值THmin并且小于或等于阈值THmax的情况下将信号S47设置为“0”。
以此方式,确定部44确认由四个电压代码VCODE表示的值(电压值)是否落入为四个电压代码VCODE分别设置的预定范围内。具体地,确定部44确认由电源电压VDDH的电压代码VCODEH表示的值(电压值)是否落入电源电压VDDH的预定范围内。确定部44确认由电源电压VDDM的电压代码VCODEM表示的值(电压值)是否落入电源电压VDDM的预定范围内。确定部44确认由电源电压VDDL的电压代码VCODEL表示的值(电压值)是否落入电源电压VDDL的预定范围内。确定部44确认由电压Vbgr的电压代码VCODER表示的值(电压值)是否落入电源电压Vbgr的预定范围内。
图9示出确定部44针对电源电压VDDH的处理示例。确定部44将在电源电压VDDH大于或等于与阈值THmin相对应的电压Vmin(例如,3.1V)并且小于或等于与阈值THmax相对应的电压Vmax(例如,3.5V)的情况下确定为正常,并且在电源电压VDDH小于电压Vmin或电源电压VDDH大于Vmax的情况下确定存在问题。这同样适用于电源电压VDDM和VDDL以及电压Vbgr。摄像器件1随后在确定部44确定电源电压VDDH、VDDM和VDDL以及电压Vbgr中的一者或多者存在问题的情况下将错误标志信号XERR设置为低电平(有效)。
存储单元8(图1)存储在摄像器件1中使用的各种设置信息。如图6所示,存储单元8包括非易失性存储器8A以及寄存器8B、8C和8D。非易失性存储器8A存储在摄像器件1中使用的各种设置信息。寄存器8B存储用于使计算部43执行处理的信息。寄存器8C存储电源电压VDDH、VDDM和VDDL及电压Vbgr的四个阈值THmax。寄存器8D存储电源电压VDDH、VDDM和VDDL及电压Vbgr的四个阈值THmin。例如,当摄像器件1通电时,从非易失性存储器8A读出由寄存器8B、8C和8D存储的多条信息。
图10示出用于输出摄像器件1中的错误标志信号XERR的电路的构造示例。摄像器件1被提供三个电源电压VDD(电源电压VDDH、VDDM和VDDL)和三个接地电压VSS(接地电压VSSH、VSSM和VSSL)。电源电压VDDH例如是3.3V,电源电压VDDM例如是1.8V,并且电源电压VDDL例如是1.1V。所有的接地电压VSSH、VSSM和VSSL都是0V。
信号处理器40包括缓冲器BF。缓冲器BF生成信号XERR1。信号处理器40被提供电源电压VDDL和接地电压VSSL,并且缓冲器BF因而基于电源电压VDDL和接地电压VSSL进行操作。由缓冲器BF生成的信号XERR1是在电源电压VDDL和接地电压VSSL之间转变的逻辑信号。信号XERR1是所谓的负逻辑信号,该信号在信号处理器40的电压确定单元42确认不存在问题的情况下设置为高电平(电源电压VDDL)并且在确认存在问题的情况下设置为低电平(接地电压VSSL)。
摄像器件1包括输出缓冲器BFOUT。输出缓冲器BFOUT基于信号XERR1生成错误标志信号XERR,并且经由输出端子TOUT输出该错误标志信号XERR。输出缓冲器BFOUT基于电源电压VDDM和接地电压VSSM操作。错误标志信号XERR是在电源电压VDDM和接地电压VSSM之间转变的逻辑信号。如图10和11所示,错误标志信号XERR是所谓的负逻辑信号,该信号在信号处理器40的电压确定单元42确认不存在问题的情况下设置为高电平(电源电压VDDM),并且在确认存在问题的情况下设置为低电平(接地电压VSSM)。
接下来说明摄像器件1的实施。例如,在摄像器件1中,可以在一个或多个半导体基板上形成图1所示的组件。
图12示出在一个半导体基板200上形成摄像器件1的情况下的电路布局的示例。在半导体基板200上形成像素阵列9。随后,在图12中,在像素阵列9的左侧形成扫描单元10,并且在像素阵列9上方依次形成读出单元20和周边电路部分201。周边电路部分201对应于信号处理器40和摄像控制器30中包括的多个电路之中的除了参考电压生成单元32和电压传感器33之外的电路。在形成有周边电路部分201的区域内部的右侧区域中形成电压确定单元42。在读出单元20的左侧形成参考电压生成单元32,并且在周边电路部分201的左侧形成电压传感器33。此外,在半导体基板200的左侧端部处存在端子单元202。端子单元202并排地设置有多个焊盘电极。类似地,在半导体基板200的右侧端部处设置有端子单元203。端子单元203并排地设置有多个焊盘电极。
例如,电源端子TVDDH、接地端子TVSSH、电源端子TVDDM、接地端子TVSSM、电源端子TVDDL、接地端子TVSSL和端子TVbgr在端子单元202中布置在靠近参考电压生成单元32和电压传感器33的位置处。电源端子TVDDH被提供电源电压VDDH。接地端子TVSSH被提供接地电压VSSH。电源端子TVDDM被提供电源电压VDDM。接地端子TVSSM被提供接地电压VSSM。电源端子TVDDL被提供电源电压VDDL。接地端子TVSSL被提供接地电压VSSL。从端子TVbgr输出电压Vbgr。由此,例如,电源端子TVDDH、TVDDM和TVDDL以及接地端子TVSSH、TVSSM和TVSSL与电压传感器33之间的布线抑制了摄像器件1中的电压下降,并因此可以提高电压检测精度。
此外,例如,输出端子TOUT在端子单元203中布置在靠近电压确定单元42的位置处。从输出端子TOUT输出错误标志信号XERR。由此,可以缩短输出端子TOUT与电压确定单元42之间的信号路径。
图13示出在两个半导体基板301和302上形成摄像器件1的情况下两个半导体基板301和302连接的示例。在该示例中,半导体基板301和302堆叠并通过多个导通孔303彼此连接。例如,可以在半导体基板301上形摄像素阵列9。此外,可以在半导体基板302上形成扫描单元10、读出单元20、摄像控制器30、信号处理器40和存储单元8。例如,半导体基板301中的多条控制线TGLL、FDGL、RSTL、FCGL、TGSL和SELL通过多个导通孔303A与半导体基板302中的扫描单元10连接。此外,例如,半导体基板301中的多条信号线SGL通过多个导通孔303B与半导体基板302中的读出单元20连接。应当注意,各个电路的布局不限于此。例如,扫描单元10可以形成在半导体基板301上。
图14示出半导体基板302上的电路布局的示例。在半导体基板302中间的周围形成周边电路部分311。该周边电路部分311对应于信号处理器40以及摄像控制器30中包括的多个电路之中的除了参考电压生成单元32和电压传感器33之外的电路。在形成该周边电路部分311的区域内部的右上方区域中形成电压确定单元42。接着,在图14中,在该周边电路部分311的左侧形成扫描单元10,并且在周边电路部分311上方形成读出单元20。此外,在周边电路部分311的左上方形成参考电压生成单元32和电压传感器33。此外,在半导体基板302的左侧端部处存在端子单元312。端子单元312并排地设置有多个焊盘电极。类似地,在半导体基板302的右侧端部处设置有端子单元313。端子单元313并排地设置有多个焊盘电极。
例如,电源端子TVDDH、TVDDM和TVDDL、接地端子TVSSH、TVSSM和TVSSL以及端子TVbgr在端子单元312中布置在靠近参考电压生成单元32和电压传感器33的位置处。由此,例如,电源端子TVDDH、TVDDM和TVDDL以及接地端子TVSSH、TVSSM和TVSSL与电压传感器33之间的布线抑制了摄像器件1中的电压下降,并由此可以提高电压检测精度。
此外,例如,输出端子TOUT在端子单元313中布置在靠近电压确定单元42的位置处。由此,可以缩短输出端子TOUT与电压确定单元42之间的信号路径。
此处,扫描单元10和像素阵列9对应于本公开中的“摄像单元”的特定示例。读出单元20和计算部43对应于本公开中的“数据生成器”的特定示例。读出单元20对应于本公开中的“转换单元”的特定示例。计算部43对应于本公开中的“计算部”的特定示例。确定部44对应于本公开中的“标志生成部”的特定示例。错误标志信号XERR对应于本公开中的“标志信号”的特定示例。电压传感器33对应于本公开中的“电压检测单元”的特定示例。电源电压VDDH、VDDM和VDDL中的任意一者对应于本公开中的“第一电源电压”的特定示例。电压代码VCODEH、VCODEM和VCODEL中的任意一者对应于本公开中的“第一电源电压数据”的特定示例。阈值THmax或阈值THmin对应于本公开中的“第一参考数据”的特定示例。
[操作和效果]
接下来,说明根据本实施例的摄像器件1的操作和效果。
(整体操作概览)
首先,参照图1至图4说明摄像器件1的整体操作概览。扫描单元10以像素线L为单位顺序地驱动像素阵列9中的摄像像素P1。摄像像素P1在八个转换时段T1至T8中顺序地输出八个像素电压VP1至VP8。读出单元20的各个AD转换部ADC基于这八个像素电压VP1至VP8执行AD转换,并且输出八个数字代码(数字代码CODE1至CODE8)。信号处理器40的图像处理单元41基于图像信号DATA0中包括的八个数字代码CODE1至CODE8生成四个图像PIC(图像PIC1至PIC4)。信号处理器40随后组合这四个图像PIC以生成一个拍摄图像PICA,并且将该拍摄图像PICA作为图像信号DATA输出。此外,AD转换部ADC通过基于从摄像控制器30的电压传感器33提供的信号SIGV在垂直消隐时段中执行AD转换而将信号SIGV的电压转换为数字代码CODE。信号处理器40的电压确定单元42基于图像信号DATA0中包括的数字代码CODE生成对应于电源电压VDDH的电压代码VCODEH、对应于电源电压VDDM的电压代码VCODEM、对应于电源电压VDDL的电压代码VCODEL和对应于电压Vbgr的电压代码VCODER。该数字代码CODE是在垂直消隐时段内基于信号SIGV获得的。此外,电压确定单元42确认由四个电压代码VCODE(电压代码VCODEH、VCODEM、VCODEL和VCODER)表示的值是否落入针对四个相应电压代码VCODE设置的预定范围内。摄像器件1随后在确定电源电压VDDH、VDDM和VDDL以及电压Vbgr中的一者或多者存在问题的情况下将错误标志信号XERR设置为低电平(有效)。
(详细操作)
在摄像器件1中,像素阵列9中的每个摄像像素P1均根据接收光量来累积电荷,并且将像素电压VP作为信号SIG输出。下面详细说明该操作。
图15示出扫描像素阵列9中的多个摄像像素P1的操作示例。
在从时刻t0到时刻t1的时段内,摄像器件1在垂直方向上从顶部依次对像素阵列9中的多个摄像像素P1执行累积启动驱动D1。具体地,例如,扫描单元10在水平时段H中的预定时段内以像素线L为单位在垂直方向上从顶部依次导通晶体管TGL、RST、FDG、TGS和FCG,并随后关断这些晶体管。由此,多个相应的摄像像素P1在执行读出驱动D2之前的累积时段T10内累积电荷。
随后,在从时刻t10到时刻t11的时段内,摄像器件1在垂直方向上从顶部依次对多个摄像像素P1执行读出驱动D2。由此,多个相应的摄像像素P1顺序地输出八个像素电压VP1至VP8。读出单元20基于这八个相应的像素电压VP1至VP8执行AD转换,并且输出八个相应的数字代码CODE(数字代码CODE1至CODE8)。
信号处理器40随后基于从读出单元20提供的八个数字代码CODE1至CODE8生成四个图像PIC(图像PIC1、PIC2、PIC3和PIC4),并且组合这四个图像PIC以生成一个拍摄图像PICA。
摄像器件1如此这样地重复累积启动驱动D1和读出驱动D2。具体地,如图15所示,摄像器件1在从时刻t2到时刻t3的时段内执行累积启动驱动D1,并且在从时刻t12到时刻t13的时段内执行读出驱动D2。此外,摄像器件1在从时刻t4到时刻t5的时段内执行累积启动驱动D1,并在从时刻t14到时刻t15的时段内执行读出驱动D2。
(关于读出驱动D2)
接下来,详细说明读出驱动D2。下面关注多个摄像像素P1中的摄像像素P1A,并且详细说明有关摄像像素P1A的操作。
图16、图17A和图17B均示出摄像器件1的操作示例。在图16中,(A)表示水平同步信号XHS的波形,(B)表示被提供给摄像像素P1A的信号SSEL的波形,(C)表示被提供给摄像像素P1A的信号SRST的波形,(D)表示被提供给摄像像素P1A的信号SFDG的波形,(E)表示被提供给摄像像素P1A的信号STGL的波形,(F)表示被提供给摄像像素P1A的信号SFCG的波形,(G)表示被提供给摄像像素P1A的信号STGS的波形,(H)表示参考信号REF的波形,(I)表示从摄像像素P1A输出的信号SIG的波形,并且(J)表示连接到摄像像素P1A的AD转换部ADC中的计数器25的操作。图17A示出图16A所示的操作的前半部分,并且图17B示出图16所示的操作的后半部分。在图16的(H)和(I)、图17A的(H)和(I)以及图17B的(H)和(I)中,各个信号的波形绘制在同一电压轴上。图16的(H)、图17A的(H)和图17B的(H)中的参考信号REF均表示比较器24的正输入端子处的波形,并且图16的(I)、图17A的(I)和图17B的(I)中的信号SIG均表示比较器24的负输入端子处的波形。此外,在图16的(J)、图17A的(J)和图17B的(J)中,斜线表示计数器25正在执行计数操作。
图18A至图18C均示出摄像像素P1A的状态。在图18A至图18C中,通过使用对应于晶体管的操作状态的开关来示出晶体管TGL、RST、FDG、TGS、FCG和SEL。
在读出驱动D2中,摄像控制器30将控制信号SSELV(图4)设置为低电平。由此,在读出单元20的多个AD转换部ADC的每一者中,晶体管29关断。由此,AD转换部ADC基于经由信号线SGL提供的信号SIG执行AD转换。
在摄像器件1中,扫描单元10首先在某个水平时段H内通过使用信号SSEL来选择包括摄像像素P1A的像素线L,并且将摄像像素P1A电连接到对应于摄像像素P1A的信号线SGL。扫描单元10随后通过使用信号SRST、SFDG、STGL、SFCG和STGS控制摄像像素P1A的操作,并且摄像像素P1A在八个转换时段T1至T8中顺序输出八个像素电压VP1至VP8。读出单元20的相应AD转换部ADC随后基于这八个像素电压VP1至VP8执行AD转换,并且输出八个相应的数字代码CODE。下面详细说明该操作。
首先,当在时刻t1开始水平时段H时,扫描单元10在时刻t2将信号SSEL的电压从低电平改变成高电平(图17A的(B))。由此,摄像像素P1A中的晶体管SEL导通,并且摄像像素P1A电连接到信号线SGL。
在直到时刻t11的时段中,扫描单元10将信号SRST和SFDG都设置为高电平(图17A的(C)和(D))。由此,摄像像素P1A中的晶体管FDG和RST均导通,并且浮动扩散部FD的电压设置为电源电压VDD以复位浮动扩散部FD。
(从时刻t11到时刻t21的操作)
接下来,在时刻t11,扫描单元10将信号SFDG的电压从高电平改变成低电平(图17A的(D))。由此,摄像像素P1A中的晶体管FDG关断。随后,在时刻t12,扫描单元10将信号SRST的电压从高电平改变成低电平(图17A的(C))。由此,摄像像素P1A中的晶体管RST关断。接着,在时刻t13,扫描单元10将信号SFDG的电压从低电平改变成高电平(图17A的(D))。由此,摄像像素P1A中的晶体管FDG导通。此外,在时刻t13到时刻t14的时段中,比较器24执行用于使正输入端子和负输入端子电连接的调零。
接下来,在时刻t14,比较器24完成调零,并且使正输入端子和负输入端子断开电连接。在该时刻t14,参考信号生成单元31随后将参考信号REF的电压改变成电压V1(图17A的(H))。
由此,如图18A所示,摄像像素P1A中的晶体管FDG和SEL导通,并且所有其他晶体管关断。晶体管FDG导通,并且浮动扩散部FD和晶体管FDG因此被包括在组合电容中。在摄像像素P1A中,该组合电容用作将电荷转换为电压的转换电容。在摄像像素P1A中,以此方式导通晶体管FDG。因此,摄像像素P1A中的转换电容具有大的电容值,从而导致低的电荷-电压转换效率。该转换电容保持在时刻t12之前的时段中复位浮动扩散FD时的电荷。摄像像素P1A此时输出与浮动扩散部FD的电压相对应的像素电压VP(像素电压VP1)。
接着,在从时刻t15到时刻t17的时段(转换时段T1)中,AD转换部ADC基于该像素电压VP1执行AD转换。具体地,在时刻t15,摄像控制器30开始生成时钟信号CLK。与此同时,参考信号生成单元31开始使参考信号REF的电压从电压V1以预定变化程度降低(图17A的(H))。相应地,AD转换部ADC的计数器25开始计数操作(图17A的(J))。
在时刻t16,参考信号REF的电压随后下降至低于信号SIG的电压(像素电压VP1)(图17A的(H)和(I))。相应地,AD转换部ADC的比较器24改变信号CMP的电压。因此,计数器25停止计数操作(图17A的(J))。停止计数操作的计数器25的计数值CNT对应于像素电压VP1。AD转换部ADC以此方式基于像素电压VP1执行AD转换,并且AD转换部ADC的锁存器26将计数器25的计数值CNT作为数字代码CODE1输出(图17A的(J))。
在时刻t17,摄像控制器30随后在转换时段T1的结束时停止生成时钟信号CLK,参考信号生成单元31停止改变参考信号REF的电压(图17A的(H)),并且计数器25复位计数值CNT。
(从时刻t21到时刻t31的操作)
接下来,在时刻t21,扫描单元10将信号SFDG的电压从高电平改变成低电平(图17A的(D))。由此,摄像像素P1A中的晶体管FDG关断。此外,在从时刻t21到时刻t22的时段中,比较器24执行用于使正输入端子和负输入端子电连接的调零。
接着,在时刻t22,比较器24完成调零,并且使正输入端子和负输入端子断开电连接。在该时刻t22,参考信号生成单元31随后将参考信号REF的电压改变成电压V1(图17A的(H))。
由此,如图18B所示,摄像像素P1A中的晶体管SEL导通,并且所有其他的晶体管关断。在摄像像素P1A中,晶体管FDG以此方式关断。因此,摄像像素P1A中的转换电容具有小的电容值,从而导致高的电荷-电压转换效率。该转换电容保持在时刻t12之前的时段内复位浮动扩散部时的电荷。摄像像素P1A此时输出与浮动扩散部FD的电压相对应的像素电压VP(像素电压VP2)。
接着,在从时刻t23到时刻t25的时段(转换时段T2)中,AD转换部ADC基于该像素电压VP2执行AD转换。该操作类似于转换时段T1中的操作。AD转换部ADC基于像素电压VP2执行AD转换,并且AD转换部ADC的锁存器26将计数器25的计数值CNT作为数字代码CODE2输出(图17A的(J))。
(从时刻t31到时刻t41的操作)
接着,在时刻t31,扫描单元10将信号STGL的电压从低电平改变成高电平(图17A的(E))。由此,摄像像素P1A中的晶体管TGL导通。由此,在光电二极管PD1中生成的电荷传输到浮动扩散部FD。此外,在该时刻t31,参考信号生成单元31将参考信号REF的电压改变成电压V1(图17A的(H))。
接着,在时刻t32,扫描单元10将信号STGL的电压从高电平改变成低电平(图17A的(E))。由此,摄像像素P1A中的晶体管TGL关断。
由此,如图18B所示,摄像像素P1A中的晶体管FDG关断。因此,摄像像素P1A中的转换电容具有小的电容值,从而导致高的电荷-电压转换效率。该转换电容从时刻t31到时刻t32保持从光电二极管PD1传输的电荷。摄像像素P1A此时输出与浮动扩散部FD的电压相对应的像素电压VP(像素电压VP3)。
接着,在从时刻t33到时刻t35的时段(转换时段T3)中,AD转换部ADC基于该像素电压VP3执行AD转换。该操作类似于转换时段T1中的操作。AD转换部ADC基于像素电压VP3执行AD转换,并且AD转换部ADC的锁存器26将计数器25的计数值CNT作为数字代码CODE3输出(图17A的(J))。该数字代码CODE3对应于也在转换效率为高时(转换时段T2)获得的数字代码CODE2。
(从时刻t41到时刻t51的操作)
接着,在时刻t41,扫描单元10将信号SFDG的电压从低电平改变成高电平,并且将信号STGL的电压从低电平改变成高电平(图17A的(D)和(E))。由此,摄像像素P1A中的晶体管FDG和TGL均导通。此外,在该时刻t41,参考信号生成单元31将参考信号REF的电压改变成电压V1(图17A的(H))。接着,在时刻t42,扫描单元10将信号STGL的电压从高电平改变成低电平(图17A的(E))。由此,摄像像素P1A中的晶体管TGL关断。
由此,如图18A所示,摄像像素P1A中的晶体管FDG导通,并且浮动扩散部FD和晶体管FDG由此被包括在组合电容(转换电容)中。因此,摄像像素P1A中的转换电容具有高电容值,从而导致低的电荷-电压转换效率。该转换电容保持在从时刻t31到时刻t32并且在从时刻t41到时刻t42从光电二极管PD1传输的电荷。摄像像素P1A此时输出与浮动扩散部FD的电压相对应的像素电压VP(像素电压VP4)。
接着,在从时刻t43到时刻t45的时段(转换时段T4)中,AD转换部ADC基于该像素电压VP4执行AD转换。该操作类似于转换时段T1中的操作。AD转换部ADC基于像素电压VP4执行AD转换,并且AD转换部ADC的锁存器26将计数器25的计数值CNT作为数字代码CODE4输出(图17A的(J))。该数字代码CODE4对应于也在转换效率为低时(转换时段T1)获得的数字代码CODE1。
(从时刻t51到时刻t61的操作)
接着,在时刻t51,扫描单元10将信号SRST的电压从低电平改变成高电平(图17B的(C))。由此,摄像像素P1A中的晶体管RST导通。晶体管FDG导通。由此,将浮动扩散部FD的电压设置为电源电压VDD,并且复位浮动扩散部FD。接着,在时刻t52,扫描单元10将信号SRST的电压从高电平改变成低电平(图17B的(C))。由此,摄像像素P1A中的晶体管RST关断。此外,在该时刻t52,参考信号生成单元31将参考信号REF的电压改变成电压V1(图17B的(H))。
接着,在时刻t53,扫描单元10将信号SFCG的电压从低电平改变成高电平(图17B的(F))。由此,摄像像素P1A中的晶体管FCG导通。此外,在从时刻t53至时刻t54的时段中,比较器24执行用于使正输入端子和负输入端子电连接的调零。
接着,在时刻t54,比较器24完成调零,并且使正输入端子和负输入端子断开电连接。此外,在该时刻t54,参考信号生成单元31将参考信号REF的电压改变成电压V1(图17B的(H))。
由此,如图18C所示,摄像像素P1A中的晶体管FDG、FCG和SEL导通,并且所有其他的晶体管关断。晶体管FDG和FCG都导通。由此,浮动扩散部FD、晶体管FDG和FCG以及电容元件FC被包括在组合电容(转换电容)中。该转换电容保持光电二极管PD2在时刻t53之前生成的且经由晶体管TGS提供并累积在电容元件FC中的电荷。摄像像素P1A此时输出与浮动扩散部FD的电压相对应的像素电压VP(像素电压VP5)。
接着,在从时刻t55到时刻t57的时段(转换时段T5)中,AD转换部ADC基于该像素电压VP5执行AD转换。该操作类似于转换时段T1中的操作。AD转换部ADC基于像素电压VP5执行AD转换,并且AD转换部ADC的锁存器26将计数器25的计数值CNT作为数字代码CODE5输出(图17B的(J))。
(从时刻t61到时刻t71的操作)
接着,在时刻t61,扫描单元10将信号STGS的电压从低电平改变成高电平(图17B的(G))。由此,摄像像素P1A中的晶体管TGS导通。由此,在光电二极管PD2中生成的电荷传输到浮动扩散部FD和电容元件FC。此外,在该时刻t61,参考信号生成单元31将参考信号REF的电压改变成电压V1(图17B的(H))。
接着,在时刻t62,扫描单元10将信号STGS的电压从高电平改变成低电平(图17B的(G))。由此,摄像像素P1A中的晶体管TGS关断。
由此,如图18C所示,摄像像素P1A中的晶体管FDG和FCG均导通,并且浮动扩散部FD、晶体管FDG和FCG以及电容元件FC由此被包括在组合电容(转换电容)中。除了光电二极管PD2在时刻t53之前生成且经由晶体管TGS提供并累积在电容元件FC中的电荷之外,该转换电容还保持在从时刻t61到时刻t62从光电二极管PD2传输的电荷。摄像像素P1A此时输出与浮动扩散部FD的电压相对应的像素电压VP(像素电压VP6)。
接着,在从时刻t63到时刻t65的时段(转换时段T6)中,AD转换部ADC基于该像素电压VP6执行AD转换。该操作类似于转换时段T1中的操作。AD转换部ADC基于像素电压VP6执行AD转换,并且AD转换部ADC的锁存器26将计数器25的计数值CNT作为数字代码CODE6输出(图17B的(J))。该数字代码CODE6对应于当浮动扩散部FD、晶体管FDG和FCG以及电容元件FC被包括在组合电容中时获得的数字代码CODE5。
(从时刻t71到时刻t81的操作)
接着,在从时刻t71到时刻t72的时段中,比较器24执行用于使正输入端子和负输入端子电连接的调零。
接着,在时刻t72,比较器24完成调零,并且使正输入端子和负输入端子断开电连接。此外,在该时刻t72,参考信号生成单元31将参考信号REF的电压改变成电压V1(图17B的(H))。
由此,如图18C所示,晶体管FDG和FCG在摄像像素P1A中均导通,并且浮动扩散部FD、晶体管FDG和FCGG以及电容元件FC由此包括在组合电容(转换电容)中。除了光电二极管PD2在时刻t53之前生成的且经由晶体管TGS提供并累积在电容元件FC中的电荷之外,该转换电容还保持从时刻t61至时刻t62从光电二极管PD2传输的电荷。摄像像素P1A此时输出与浮动扩散部FD的电压相对应的像素电压VP(像素电压VP7)。
接着,在时刻t73到时刻t75的时段(转换时段T7)中,AD转换部ADC基于该像素电压VP7执行AD转换。该操作类似于转换时段T1中的操作。AD转换部ADC基于像素电压VP7执行AD转换,并且AD转换部ADC的锁存器26输出计数器25的计数值CNT作为数字代码CODE7(图17B的(J))。
(从时刻t81到时刻t7的操作)
接着,在时刻t81,扫描单元10将信号SRST的电压从低电平改变成高电平(图17B的(C))。由此,摄像像素P1A中的晶体管RST导通。晶体管FDG和FCG导通。浮动扩散部FD的电压和电容元件FC的电压由此设置成电源电压VDD,并且浮动扩散部FD和电容元件FC复位。
接着,在时刻t82,扫描单元10将信号SFCG的电压从高电平改变成低电平(图17B的(F))。由此,摄像像素P1A中的晶体管FCG关断。
接着,在时刻t83,扫描单元10将信号SRST的电压从高电平改变成低电平(图17B的(C))。由此,摄像像素P1A中的晶体管RST关断。
接着,在时刻t84,扫描单元10将信号SFCG的电压从低电平改变成高电平(图17B的(F))。由此,摄像像素P1A中的晶体管FCG导通。此外,在该时刻t84,参考信号生成单元31将参考信号REF的电压改变成电压V1(图17B的(H))。
由此,如图18C所示,摄像像素P1A中的晶体管FDG和FCG均导通,并且浮动扩散部FD、晶体管FDG和FCG以及电容元件FC由此被包括在组合电容(转换电容)中。该转换电容保持在从时刻t81到时刻t82复位浮动扩散部FD和电容元件FC时的电荷。摄像像素P1A此时输出与浮动扩散部FD的电压相对应的像素电压VP(像素电压VP8)。
接着,在从时刻t85到时刻t87的时段(转换时段T8)中,AD转换部ADC基于该像素电压VP8执行AD转换。该操作类似于转换时段T1中的操作。AD转换部ADC基于像素电压VP8执行AD转换,并且AD转换部ADC的锁存器26将计数器25的计数值CNT作为数字代码CODE8输出(图17B的(J))。该数字代码CODE8对应于当浮动扩散部FD、晶体管FDG和FCG以及电容元件FC被包括在组合电容中时获得的数字代码CODE7。
接着,在时刻t7,扫描单元10将信号SFDG的电压从高电平改变成低电平,并且将信号SFCG的电压从高电平改变成低电平(图17B的(D)和(F))。由此,摄像像素P1A中的晶体管FDG和FCG关断。
在时刻t8,扫描单元10随后将信号SSEL的电压从高电平改变成低电平(图17B的(B))。由此,摄像像素P1A中的晶体管SEL关断,并且摄像像素P1A与信号线SGL断开电连接。
接着,说明由信号处理器40的图像处理单元41进行的图像合成处理。图像处理单元41基于从读出单元20提供的数字代码CODE生成四个图像PIC(图像PIC1至PIC4)。图像处理单元41随后组合四个图像PIC以生成一个拍摄图像PICA。
图19示意性地示出图像合成处理。图19的(A)至(G)所示的波形类似于图16的(A)至(G)所示的波形。如参考图16、图17A和图17B所述,读出单元20基于从时刻t11到时刻t21的时段内的操作来生成数字代码CODE1,基于从时刻t21到时刻t31的时段内的操作来生成数字代码CODE2,基于从时刻t31到时刻t41的时段内的操作来生成数字代码CODE3,基于从时刻t41到时刻t51的时段内的操作来生成数字代码CODE4,基于从时刻t51到时刻t61的时段内的操作来生成数字代码CODE5,基于从时刻t61到时刻t71的时段内的操作来生成数字代码CODE6,基于从时刻t71到时刻t81的时段内的操作来生成数字代码CODE7,并且基于从时刻t81到时刻t7的时段内的操作来生成数字代码CODE8。
图像处理单元41基于数字代码CODE2和数字代码CODE3生成像素值VAL1。具体地,图像处理单元41将数字代码CODE3减去数字代码CODE2(CODE3-CODE2)以计算像素值VAL1。即,摄像器件1利用所谓的双采样(CDS:Correlated double sampling)原理通过使用对应于P相位(预充电阶段)数据的数字代码CODE2和对应于D相位(数据阶段)数据的数字代码CODE3来计算像素值VAL1。在摄像器件1中,执行这种相关双采样,并且可以由此移除像素值VAL1中包含的噪声分量。因此,可以提高拍摄图像的图像质量。
类似地,图像处理单元41基于数字代码CODE1和数字代码CODE4生成像素值VAL2。具体地,图像处理单元41将数字代码CODE4减去数字代码CODE1(CODE4-CODE1)以计算像素值VAL2。即,摄像器件1利用相关双采样原理通过使用对应于P相位数据的数字代码CODE1和对应于D相位数据的数字代码CODE4来计算像素值VAL2。
类似地,图像处理单元41基于数字代码CODE5和数字代码CODE6生成像素值VAL3。具体地,图像处理单元41将数字代码CODE6减去数字代码CODE5(CODE6-CODE5)以计算像素值VAL3。即,摄像器件1利用相关双采样原理通过使用对应于P相位数据的数字代码CODE5和对应于D相位数据的数字代码CODE6来计算像素值VAL3。
图像处理单元41随后基于数字代码CODE7和数字代码CODE8生成像素值VAL4。具体地,图像处理单元41将数字代码CODE7减去数字代码CODE8(CODE7-CODE8)以计算像素值VAL4。即,摄像器件1利用所谓的双重数据采样原理通过使用在复位浮动扩散部FD和电容元件FC之前的数字代码CODE7以及在复位浮动扩散部FD和电容元件FC之后的数字代码CODE8来计算像素值VAL4。
图像处理单元41随后基于像素阵列9的所有摄像像素P1中的像素值VAL1来生成图像PIC1,基于像素阵列9的所有摄像像素P1中的像素值VAL2来生成图像PIC2,基于像素阵列9的所有摄像像素P1中的像素值VAL3来生成图像PIC3并且基于像素阵列9的所有摄像像素P1中的像素值VAL4来生成图像PIC4。图像处理单元41随后组合这些图像PIC1至PIC4以生成拍摄图像PICA。
(关于电压检测操作)
在图15中,例如,从时刻t11到时刻t12的消隐时段T20是所谓的垂直消隐时段,并且摄像器件1不执行读出驱动D2。即,在该时段中,信号线SGL不传输摄像像素P1的像素电压VP。摄像器件1使用该消隐时段T20执行电压检测操作。下面详细说明该电压检测操作。
读出单元20的AD转换部ADC在消隐时段T20中的与水平时段H(图16)具有相同长度的检测时段M中基于信号SIGV执行AD转换。在检测时段M中,参考信号生成单元31和读出单元20均执行与水平时段H(图16)中的操作相类似的操作。在该检测时段M中,摄像控制器30将控制信号SSELV(图4)设置成高电平。由此,读出单元20的多个AD转换部ADC的每一者中的晶体管29导通,并且与通过电压传感器33生成的信号SIGV相对应的信号经由晶体管29和电容元件22提供给比较器24的负输入端子。以此方式,AD转换部ADC基于信号SIGV执行AD转换。在该示例中,摄像器件1在与水平时段H(图16)中的从时刻t21到时刻t41的时段相对应的时段内执行电压检测操作。作为示例,下面详细说明检测电源电压VDDH的操作。应当注意,这同样适用于电源电压VDDM和VDDL以及电压Vbgr。
图20示出摄像器件1中的电压检测操作的示例。图20对应于示出水平时段H的前半部分的操作的图17A。在图20中,(A)表示参考信号REF的波形,(B)表示信号SIGV的波形,并且(C)表示AD转换部ADC中的计数器25的操作。时刻t111对应于图17A中的时刻t11,时刻t121对应于图17A中的时刻t21,时刻t131对应于图17A中的时刻t31,时刻t141对应于图17A中的时刻t41,并且时刻t151对应于图17A中的时刻t51。
图21A和21B均示出电压检测操作中的电压传感器33的操作示例。图21A和21B均通过使用表示连接状态的开关示出选择器ASEL。在该示例中,选择器ASEL基于控制信号SASEL选择从开关SWH提供的电压。应当注意,选择器ASEL以时分方式基于控制信号SASEL切换选择目标,由此使摄像器件1以时分方式执行电源电压VDDH、VDDM和VDDL以及电压Vbgr的检测操作。
(从时刻t121到时刻t131的操作)
如图21A所示,在从时刻t121到时刻t131的时段中,电压传感器33的开关SWH基于控制信号SELSW选择通过将电源电压VDDH乘以“3/4”获得的电压。放大器AMPV放大从开关SWH经由选择器ASEL提供的电压,并且将放大后的电压作为信号SIGV输出。由此,将与通过将电源电压VDDH乘以“3/4”获得的电压相对应电压VDDH34提供给AD转换部ADC的比较器24的负输入端子(图20的(B))。
在从时刻t121到时刻t122的时段中,比较器24执行用于使正输入端子和负输入端子电连接的调零。
接着,在时刻t122,比较器24完成调零,并使正输入端子和负输入端子断开电连接。在该时刻t122,参考信号生成单元31随后将参考信号REF的电压改变成电压V1(图20的(A))。
在从时刻t123到时刻t125的时段(转换时段TA)中,AD转换部ADC随后基于该电压VDDH34执行AD转换。该操作类似于水平时段H的转换时段T2中的操作(图17A)。AD转换部ADC基于电压VDDH34执行AD转换,并且AD转换部ADC的锁存器26将计数器25的计数值CNT作为数字代码CODEA输出(图20的(C))。
(从时刻t131到时刻t141的操作)
如图21B所示,在从时刻t131到时刻t141的时段中,电压传感器33的开关SWH基于控制信号SELSW选择通过将电源电压VDDH乘以“1/2”获得的电压。放大器AMPV放大从开关SWH经由选择器ASEL提供的电压,并且将放大后的电压作为信号SIGV输出。由此,将与通过将电源电压VDDH乘以“1/2”获得的电压相对应的电压VDDH12提供给AD转换部ADC的比较器24的负输入端子(图20的(B))。
在从时刻t132到时刻t134的时段(转换时段TB)中,AD转换部ADC随后基于该电压VDDH12执行AD转换。该操作类似于水平时段(H)的转换时段T3中的操作(图17A)。AD转换部ADC基于电压VDDH12执行AD转换,并且AD转换部ADC的锁存器26将计数器25的计数值CNT作为数字代码CODEB输出(图20的(C))。
接着,说明由信号处理器的电压确定单元42进行的处理。
电压确定部42的计算部43首先基于从读出单元20提供的数字代码CODEA和CODEB来计算数字值VALV。具体地,电压确定单元42将数字代码CODEB减去数字代码CODEA(CODEB-CODEA)以计算数字值VALV。即,摄像器件1利用所谓的相关双采样原理通过使用对应于P相位(预充电阶段)数据的数字代码CODEA和对应于D相位(数据阶段)数据的数字代码CODEB来计算数字值VALV。摄像器件1执行这种相关双采样,并因此可以移除数字值VALV中包含的噪声分量。以此方式,电压确定单元42基于从多个AD转换部ADC获得的数字代码CODEA和CODEB计算多个数字值VALV。
接着,计算部43通过使用存储单元8中存储的校准参数PCAL基于数字值VALV执行计算处理,由此生成具有预定代码系统的电压代码VCODE1。以此方式,计算部43基于从多个AD转换部ADC获得的多个数字值VALV来生成多个相应的电压代码VCODE1。
计算部43随后获得由多个电压代码VCODE1表示的值的平均值,以生成一个电压代码VCODE。例如,在某个电压代码VCODE1(电压代码VCODE1A)的值极大地偏离于多个电压代码VCODE1之中的除电压代码VCODE1A之外的电压代码的值的情况下,例如如图8A所示,通过使用与对应于该电压代码VCODE1A的AD转换部ADCA相邻的AD转换部ADC的电压代码VCODE1来执行插值计算,由此校正电压代码VCODE1A。计算部43随后获得由包括校正后的电压代码VCODE1A的所有电压代码VCODE1表示的值的平均值,以生成一个电压代码VCODE。计算部43随后将以此方式生成的电压代码VCODE作为对应于电源电压VDDH的电压代码VCODEH输出。
电压确定单元42的确定部44随后确认由以此方式获得的电压代码VCODEH表示的值(电压值)是否落入预定范围内。在该值(电压值)没有落入预定范围内的情况下,摄像器件1使错误标志信号XERR有效(低电平)。
(关于校准)
由电压传感器33生成的信号SIGV的每个电压可能由于所谓的制造差异、摄像器件1中的电源布线的阻抗等而偏离期望电压。在这种情况下,如图7所示,电压代码VCODE1也变化。相应地,例如,在装运前的检查处理中校准摄像器件1。由此,可以提高摄像器件1的电压检测精度。下面详细说明检查处理中的校准处理。
图22示出检查处理中的校准处理的示例。图22示出电源电压VDDH的校准处理。这同样适用于电源电压VDDM和VDDL以及电压Vbgr。
首先,检查装置将电源电压VDDH的电压设置成电压VDDH1(例如,3.1V),并且使存储单元8存储由摄像器件1生成的电压代码VCODEH和对应于电压VDDH1的理想电压代码(步骤S101)。
接着,检查装置将电源电压VDDH的电压设置成电压VDDH2(例如,3.5V),并且使存储单元8存储由摄像器件1生成的电压代码VCODEH和对应于电压VDDH2的理想电压代码(步骤S102)。
接着,摄像器件1的电压确定单元42的计算部43基于在步骤S101和S102中存储单元8存储的各条信息生成校准参数PCAL(步骤S103)。
相应地,计算部43从这时起通过使用在步骤S103中生成的校准参数PCAL获得电压代码VCODE1,并且由此,计算部43通过使用例如如图7粗线所示的更期望的转换特性来获得电压代码VCODE1。计算部43随后获得由多个AD转换部ADC的多个电压代码VCODE1表示的值的平均值,以生成电压代码VCODE。
接着,检查装置将电源电压VDDH的电压设置成电压VDDH1(例如,3.1V),获取由摄像器件1生成的电压代码VCODEH,并确认由该电压代码VCODEH表示的电压值和该电压VDDH1的电压值之间的电压差落入允许范围内(步骤S104)。
接着,检查装置将电源电压VDDH的电压设置成电压VDDH2(例如,3.5V),获取由摄像器件1生成的电压代码VCODEH,并且确认由该电压代码VCODEH表示的电压值和该电压VDDH2的电压值之间的电压差落入允许范围内(步骤S105)。
由此,完成流程。
如上所述,摄像器件1检测三个所提供的电源电压VDD(电源电压VDDH、VDDM和VDDL),确认这些电源电压VDD是否均落入预定范围内,并且基于确认结果生成错误标志信号XERR。由此,摄像器件1在电源电压VDD均处于预定范围之外时向外部设备通知问题。由此,例如,该设备能够在摄像器件1的摄像操作本身出现问题的情况下获知该问题由电源电压VDD导致。此外,例如,在摄像器件1的摄像操作本身没有问题的情况下,该设备能够调整电源电压VDD的电压值或基于该错误标志信号XERR阻止摄像器件1的操作。由此,可以避免摄像器件1由于电源电压VDD而发生故障。
此外,摄像器件1检测由参考电压生成单元32生成的电压Vbgr,确认该电压Vbgr是否落入预定范围内,并且基于确认结果生成错误标志信号XERR。由此,摄像器件1在电压Vbgr处于预定范围之外时向外部设备通知问题。由此,例如,该设备能够基于该错误标志信号XERR阻止摄像器件1的操作,并且由此可以避免摄像器件1由于电源电压VDD而发生故障。
此外,摄像器件1在消隐时段T20(垂直消隐时段)中执行电压检测操作,由此可以在执行摄像操作的同时执行电压检测操作。相应地,例如,当在提供电源电压VDD时存在问题的情况下,摄像器件1能够及时地检测到问题并发出通知。
此外,在摄像器件1中,AD转换部ADC基于由电压传感器33生成的信号SIGV执行AD转换,由此生成数字代码CODE。电压确定单元42基于该数字代码CODE生成电压代码VCODE。电压确定单元42随后基于该电压代码VCODE确定电源电压VDDH、VDDM和VDDL以及电压Vbgr是否均落入预定范围内。由此,摄像器件1作出作为数字值的确定。相应地,例如,可以提高确定精度并减少电路规模。
此外,在摄像器件1中,基于像素电压VP执行AD转换的AD转换部ADC基于由电压传感器33生成的信号SIGV来执行AD转换。由此,消除了提供专用AD转换部来执行电压检测操作的必要性,并由此可以简化电路构造。
此外,在摄像器件1中,电压确定单元42基于多个AD转换部ADC的多个电压代码VCODE1来获得由多个电压代码VCODE1表示的值的平均值,由此获得一个电压代码VCODE。例如,由此,可以抑制由多个AD转换部ADC中所谓的制造差异导致的特性差异对摄像器件1中的电压代码VCODE的影响。由此,可以提高摄像器件1的电压检测精度。
此外,例如,在某个电压代码VCODE1(电压代码VCODE1A)的值大大偏离于多个电压代码VCODE1之中的除了电压代码VCODE1A之外的电压代码的值的情况下,如图8A所示,摄像器件1例如通过使用与对应于该电压代码VCODE1A的AD转换部ADCA相邻的AD转换部ADC的电压代码VCODE1来执行插值计算,由此校正电压代码VCODE1A。例如,由此,可以提高摄像器件1的电压检测精度,甚至在多个AD转换部ADC中的一者损坏的情况下也是如此。
此外,在摄像器件1中,读出单元20基于电源电压VDDH和电源电压VDDL进行操作,并且电压确定单元42基于电源电压VDDL进行操作。相应地,例如,在摄像器件1检测电源电压VDDM的电压的情况下,这些电路不基于电源电压VDDM进行操作。由此,可以更精确地检测有关电源电压VDDM的问题。
此外,摄像器件1使用所谓的负逻辑信号作为信号XERR1。相应地,例如,即使当存在例如没有将电源电压VDDL提供到用于生成信号XERR1的信号处理器40的类似问题时,摄像器件1中的信号XERR1变成低电平(接地电压VSSL),由此可以将错误标志信号XERR转变成低电平。由此,可以发送问题的通知。
[效果]
如上所述,在本实施例中,检测三个所提供的电源电压VDDH、VDDM和VDDL以及电压Vbgr,确认这些电压是否均落入预定范围内,并且基于确认结果生成错误标志信号。相应地,在这些电压均处于预定范围之外的情况下,可以向外部设备通知问题。
在本实施例中,在消隐时段内执行电压检测操作,并且因而可以在执行摄像操作的同时执行电压检测操作。相应地,例如,当在提供电源电压时存在问题时,可以及时检测问题并发出通知。
在本实施例中,AD转换部基于由电压传感器生成的信号SIGV执行AD转换,由此生成数字代码。电压确定单元基于该数字代码生成电压代码。基于该电压代码来确定电源电压VDDH、VDDM和VDDL以及电压Vbgr是否均落入预定范围内。相应地,可以作出作为数字值的确定。例如,由此,可以提高确定精度并减少电路规模。
在本实施例中,基于像素电压执行AD转换的AD转换部基于由电压传感器生成的信号SIGV执行AD转换,并因而可以简化电路构造。
在本实施例中,电压确定单元基于多个AD转换部的多个电压代码获得由多个电压代码表示的值的平均值,由此获得一个电压代码。由此,可以提高电压检测精度。
在本实施例中,例如,在某个电压代码的值极大地偏离于多个电压代码之中的除该电压代码之外的电压代码的值的情况下,使用与对应于该电压代码的AD转换部相邻的AD转换部的电压代码执行插值处理,由此校正电压代码。由此,可以提高电压检测精度。
在本实施例中,读出单元基于电源电压VDDH和电源电压VDDL进行操作,并且电压确定单元基于电源电压VDDL进行操作。相应地,例如,在检测电源电压VDDM的电压的情况下,可以更精确地检测有关电源电压VDDM的问题。
[变形例1]
在上述实施例中,如图4和图5所示,电压传感器33将信号SIGV直接提供到读出单元20的AD转换部ADC,但这不是限制性的。替代地,例如,信号SIGV可以经由像素阵列提供到读出单元的AD转换部。下面参照一些示例详细说明本变形例。
图23示出根据本变形例的摄像器件1A的构造示例。摄像器件1A包括像素阵列9A、读出单元20A和摄像控制器30A。
像素阵列9A设置有摄像像素区RG1和伪像素区RG2。多个摄像像素P1布置在摄像像素区RG1中,并且一行的多个伪像素P2布置在伪像素区RG2。在该示例中,在垂直方向(图23的纵向方向)上,伪像素区RG2布置在摄像像素区RG1的上方。
图24示出伪像素区RG2中的伪像素P2的构造示例。像素阵列9A在伪像素区RG2中包括控制线SIGVL和控制线SELL。控制线SIGVL在水平方向(图24的横向方向)上延伸,并且控制线SIGVL被从摄像控制器30A的电压传感器33提供信号SIGV。控制线SELL均在水平方向上延伸,并且扫描单元10向控制线SELL施加信号SSEL。
伪像素P2包括晶体管AMP和SEL。晶体管AMP的栅极连接到控制线SIGVL,漏极被提供电源电压VDDH,并且源极连接到晶体管SEL的漏极。晶体管SEL的栅极连接到控制线SELL,漏极连接到晶体管AMP的源极,并且源极连接到信号线SGL。通过导通伪像素P2中的晶体管SEL,该构造使晶体管AMP经由晶体管SEL向信号线SGL输出与信号SIGV的电压相对应的信号SIG。
图25示出读出单元20A的构造示例。读出单元20A包括多个AD转换部ADC2(AD转换部ADC2[0]、ADC2[1]、ADC2[2]、……)。AD转换部ADC2是从上述实施例移除晶体管28和29而获得的AD转换部(图4)。该晶体管28对应于伪像素P2(图24)中的晶体管AMP,并且晶体管29对应于伪像素P2中的晶体管SEL。
摄像控制器30A(图23)将控制信号提供给扫描单元10、读出单元20A和信号处理器40,并且控制这些电路的操作,由此控制摄像器件1A的操作。摄像控制器30A的电压传感器33将生成的信号SIGV提供给像素阵列9A的伪像素区RG2中的控制线SIGVL,由此将信号SIGV提供给多个伪像素P2。
如同根据上述实施例的摄像器件1,该构造允许摄像器件1A通过在消隐时段T20内操作伪像素P2来执行电压检测操作。
图26示出根据本变形例的另一摄像器件1B的构造示例。摄像器件1B包括像素阵列9B、读出单元20A、摄像控制器30B和信号处理器40B。
像素阵列9B设置有摄像像素区RG1和伪像素区RG3。一列的多个伪像素P2布置在伪像素区RG3中。在该示例中,在水平方向(图26的横向方向)上,伪像素区RG3布置在摄像像素区RG1的左侧。
摄像控制器30B将控制信号提供给扫描单元10、读出单元20A和信号处理器40B,并且控制这些电路的操作,由此控制摄像器件1B的操作。摄像控制器30B的电压传感器33将生成的信号SIGV提供给像素阵列9B的伪像素区RG3中的多个伪像素P2。
信号处理器40B包括电压确定单元42B。电压确定单元42B基于摄像信号DATA0中包括的数字代码CODE生成电压代码VCODE。数字代码CODE是基于信号SIGV获得的。
该构造允许摄像器件1B在执行摄像操作的同时在除消隐时段T20之外的时段中执行电压检测操作。相应地,例如,当在提供电源电压VDD时存在问题时,可以更及时地检测问题并发出通知。
[变形例2]
在上述实施例中,信号处理器40的电压确定单元42确认电源电压VDDH、VDDM和VDDL以及电压Vbgr是否均落入预定范围内,但这不是限制性的。替代地,例如,如在图27的摄像系统100C中,不同于摄像器件的外部处理设备可以确认电源电压VDDH、VDDM和VDDL以及电压Vbgr是否均落入预定范围内。该摄像系统100C包括摄像器件1C和处理设备110C。此处,摄像系统100C对应于本公开中的“摄像器件”的特定示例。
摄像器件1C包括信号处理器40C。信号处理器40C包括数字代码输出单元49C。数字代码输出单元49C输出图像代码DATA0中包括的数字代码CODE。数字代码CODE是在垂直消隐时段内基于信号SIGV获得的。
处理设备110C包括电压确定单元111C和存储单元112C。电压确定单元111C基于从摄像器件1C的数字代码输出单元49C提供的数字代码CODE来生成表示电源电压VDDH、VDDM和VDDL以及电压Vbgr的相应电压代码VCODE(电压代码VCODEH、VCODEM、VCODEL和VCODER),并且确认电源电压VDDH、VDDM和VDDL以及电压Vbgr的相应电压值是否落入预定电压范围内,由此生成错误标志信号XERR。例如,电压确定单元111C包括与根据上述实施例的电压确定单元42(图6)的组件相似的组件。存储单元112C存储在电压确定单元111C中使用的各种设置信息,并且与根据上述实施例的存储单元8一样例如包括非易失性存储器和寄存器。
应当注意,在该示例中,处理设备110C包括电压确定单元111C,但这不是限制性的。替代地,例如,电压确定单元42(图6)中包括的电路的一部分(例如,计算部43)可以设置到摄像器件的信号处理器,并且其余电路(例如,确定部44)可以设置到不同于摄像器件的处理设备。
[变形例3]
在上述实施例中,电源电压VDDH、VDDM和VDDL以及电压Vbgr均受到电压检测操作,但这不是限制性的。例如,可以省略这些操作中的一者或多者,或者可以进一步检测其他电压。下面详细说明进一步检测其他电压的该示例。
图28示出根据本变形例的摄像器件1D中的摄像控制器30D的构造示例。该摄像控制器30D包括负电压生成单元34D和电压传感器33D。负电压生成单元34D生成作为负电压的电压VCP。电压传感器33D包括电阻电路部RN、开关SWN和选择器ASEL2。
电阻电路部RN包括串联连接的多个(该示例中四个)电阻元件。电阻电路部RN的一个端部被提供作为负电压的电压VCP,并且另一端部接地。在该示例中,电阻电路部RN随后输出通过将电压VCP乘以“3/4”获得的电压和通过将电压VCP乘以“1/2”获得的电压。
基于由摄像控制器30D生成的控制信号SELSW,开关SWH选择通过将电压VCP乘以“3/4”获得的电压和通过将电压VCP乘以“1/2”获得的电压中的一者,并且输出所选择的电压。
基于由摄像控制器30D生成的控制信号SASEL2,选择器ASEL2选择从开关SWH、SWR、SWM、SWL和SWN提供的电压中的一者,并且输出所选择的电压。
图29示出摄像器件1D中的电压检测操作的示例。图30A和30B均示出电压检测操作中电压传感器33D的操作示例。在该示例中,选择器ASEL2基于控制信号SASEL2选择从开关SWN提供的电压。
如图30A所示,在从时刻t121到时刻t131的时段中,电压传感器33D的开关SWN基于控制信号SELSW选择通过将电压VCP乘以“1/2”获得的电压。放大器AMPV放大从开关SWN经由选择器ASEL2提供的电压,并且将放大的电压作为信号SIGV输出。由此,将与通过将电压VCP乘以“1/2”获得的电压相对应的电压VCP12提供给AD转换部ADC的比较器24的负输入端子(图20的(B))。在从时刻t123到时刻t125的时段(转换时段TA)中,AD转换部ADC随后基于该电压VCP12执行AD转换。
如图30B所示,在从时刻t131至时刻t141的时段中,电压传感器33D的开关SWN基于控制信号SELSW选择通过将电压VCP乘以“3/4”获得的电压。放大器AMPV放大从开关SWN经由选择器ASEL2提供的电压,并且将放大的电压作为信号SIGV输出。由此,将与通过将电压VCP乘以“3/4”获得的电压相对应的电压VCP34提供给AD转换部ADC的比较器24的负输入端子(图20的(B))。在从时刻t132到时刻t134的时段(转换时段TB)中,AD转换部ADC随后基于该电压VCP34执行AD转换。
[变形例4]
在上述实施例中,多个摄像像素P1均设置有两个光电二极管PD1和PD2,但这不是限制性的。下面详细说明根据本变形例的摄像器件2。
图31示出摄像器件2的构造示例。摄像器件2包括像素阵列59、扫描单元50、读出单元20、摄像控制器60和信号处理器70。
像素阵列59包括布置为矩阵的多个摄像像素P11。
图32示出摄像像素P11的构造示例。像素阵列59包括多条控制线TGLL、多条控制线RSTL、多条控制线SELL和多条信号线SGL。控制线TGLL均在水平方向(图31的横向方向)上延伸,且扫描单元50将信号STG施加到控制线TGLL。控制线RSTL均在水平方向上延伸,且扫描单元50将信号SRST施加到控制线RSTL。控制线SELL均在水平方向上延伸,且扫描单元50将信号SSEL施加到控制线SELL。信号线SGL均在垂直方向(图31的纵向方向)上延伸,且均连接到读出单元20。
摄像像素P11包括光电二极管PD、晶体管TG、晶体管RST、浮动扩散部FD和晶体管AMP和SEL。晶体管TG、RST和SEL在该示例中均是N型MOS晶体管。光电二极管PD是生成并累积在数量上与接收光量相对应的电荷的光电转换元件。光电二极管PD的阳极接地,并且阴极连接到晶体管TG的源极。晶体管TG的栅极连接到控制线TGLL,源极连接到光电二极管PD的阴极,并且漏极连接到浮动扩散部FD。晶体管RST的栅极连接到控制线RSTL,漏极被提供电源电压VDD,并且源极连接到浮动扩散部FD。
该构造基于施加到摄像像素P11中的控制线SELL的信号SSEL导通晶体管SEL,从而将摄像像素P11电连接到信号线SGL。摄像像素P11随后将与浮动扩散部FD的电压相对应的像素电压VP作为信号SIG输出到信号线SGL。具体地,摄像像素P11在如上所述所谓的水平时段H内的两个时段(P相时段TP和D相时段TD)中顺序地输出两个像素电压VP(VP11和VP12)。
图33示出光电二极管PD的布置示例。在图33中,“R”表示红色滤色器、“G”表示绿色滤色器,并且“B”表示蓝色滤色器。光电二极管PD布置为矩阵。
扫描单元50(图31)基于来自摄像控制器60的指令以像素线L为单位顺序地驱动像素阵列59中的摄像像素P11。扫描单元50包括地址解码器11、逻辑部52和驱动部53。逻辑部52基于来自地址解码器11的指令生成与各条像素线L相对应的信号STG1、SRST1和SSEL1。驱动部53基于与各条像素线L相对应的信号STG1、SRST1和SSEL1分别生成与各条像素线L相对应的信号STG、SRST和SSEL。
摄像控制器60(图31)将控制信号提供给扫描单元50、读出单元20和信号处理器70,并且控制这些电路的操作,由此控制摄像器件2的操作。摄像控制器60包括参考信号生成单元61。参考信号生成单元61生成参考信号REF。参考信号REF具有所谓的斜坡波形,该斜坡波形的电压电平在用于执行AD转换的两个时段(P相时段TP和D相时段TD)中随着时间流逝而逐渐降低。
信号处理器70包括图像处理单元71。图像处理单元71对由图像信号DATA0表示的图像执行预定图像处理。
如同摄像器件1的情况(图15),摄像器件2执行累积启动驱动D1和读出驱动D2。
图34示出摄像器件2的操作示例。(A)表示水平同步信号XHS的波形,(B)表示第零条像素线L的控制线RSTL(0)中的信号SRST(0)的波形,(C)表示第零条像素线L的控制线TGLL(0)中的信号STG(0)的波形,(D)表示第零条像素线L的控制线SELL(0)中的信号SSEL(0)的波形,(E)表示第一条像素线L的控制线RSTL(1)中的信号SRST(1)的波形,(F)表示第一条像素线L的控制线TGLL(1)中的信号STG(1)的波形,(G)表示第一条像素线L的控制线SELL(1)中的信号SSEL(1)的波形,(H)表示第二条像素线L的控制线RSTL(2)中的信号SRST(2)的波形,(I)表示第二条像素线L的控制线TGLL(2)中的信号STG(2)的波形,并且(J)表示第二条像素线L的控制线SELL(2)中的信号SSEL(2)的波形。
例如,在累积启动驱动D1中,扫描单元50在水平时段H的预定时段内以像素线L为单位在垂直方向上从顶部依次导通晶体管TG和RST,并且随后关断这些晶体管。由此,多个相应的摄像像素P11在执行读出驱动D2之前的累积时段T10内累积电荷。
随后,例如,在读出驱动D2中,扫描单元50以像素线L为单位在垂直方向上从顶部依次控制晶体管TG、RST和SEL的操作。由此,多个相应的摄像像素P11顺序地输出两个像素电压VP(VP11和VP12)。读出单元20基于这两个像素电压VP11和VP12中的每一者执行AD转换,并且输出数字代码CODE。
图35示出在所关注的摄像像素P11A中的读出驱动D2的操作示例。(A)表示水平同步信号XHS的波形,(B)表示信号SRST的波形,(C)表示信号STG的波形,(D)表示信号SSEL的波形,(E)表示参考信号REF的波形,(F)表示信号SIG的波形,(G)表示从AD转换部ADC的比较器24输出的信号CMP的波形,(H)表示时钟信号CLK的波形,并且(I)表示AD转换部ADC的计数器25中的计数值CNT。此处,图35的(E)中的参考信号REF表示比较器24的正输入端子处的波形,并且图35的(F)中的信号SIG表示比较器24的负输入端子处的波形。
在摄像器件2中,在某个水平时段H中,首先,扫描单元50对摄像像素P11A执行复位操作,并且AD转换部ADC在随后的P相时段TP内基于从摄像像素P11A输出的像素电压VP11执行AD转换。扫描单元50随后对摄像像素P11A执行电荷传输操作,并且AD转换部ADC在D相时段TD内基于从摄像像素P11A输出的像素电压VP12执行AD转换。下面详细说明该操作。
首先,当在时刻t91开始水平时段H时,扫描单元50在时刻t92将信号SSEL的电压从低电平改变成高电平(图35的(D))。由此,摄像像素P11A中的晶体管SEL导通,并且摄像像素P11A电连接到信号线SGL。
接着,在时刻t93,扫描单元50将信号SRST的电压从低电平改变成高电平(图35的(B))。由此,摄像像素P11A中的晶体管RST导通,并且浮动扩散部FD的电压设置成电源电压VDD(复位操作)。
接着,在时刻t94,扫描单元50将信号SRST的电压从高电平改变成低电平(图35的(B))。由此,摄像像素P11A中的晶体管RST关断。在从时刻t94到时刻t95的时段中,比较器24随后执行用于使正输入端子和负输入端子电连接的调零。
接着,在时刻t95,比较器24完成调零,并且使正输入端子和负输入端子断开电连接。在该时刻t95,参考信号生成单元61随后将参考信号REF的电压改变成电压V1(图35的(E))。
由此,在摄像像素P11A中,晶体管SEL导通,并晶体管TG和RST均关断。浮动扩散部FD在从时刻t93到时刻t94的时段内保持在复位浮动扩散部FD时的电荷。摄像像素P11A此时输出与浮动扩散部FD的电压相对应的像素电压VP(像素电压VP11)。
接着,在从时刻t96到时刻t98的时段(P相时段TP)中,读出单元20基于该像素电压VP11执行AD转换。具体地,在时刻t96,摄像控制器60首先开始生成时钟信号CLK(图35的(H))。与此同时,参考信号生成单元61开始使参考信号REF的电压从电压V1以预定变化程度降低(图35的(E))。相应地,AD转换部ADC的计数器25开始计数操作以顺序地改变计数值CNT(图35的(I))。
随后,在时刻t97,参考信号REF的电压下降至低于像素电压VP11(图35的(E)和(F))。相应地,AD转换部ADC的比较器24将信号CMP的电压从高电平改变成低电平(图35的(G))。由此,计数器25停止计数操作(图35的(I))。
接着,在时刻t98,摄像控制器60在P相时段TP结束时停止生成时钟信号CLK(图35的(H))。与此同时,参考信号生成单元61停止改变参考信号REF的电压,并且在随后的时刻t99将参考信号REF的电压改变成电压V1(图35的(E))。相应地,参考信号REF的电压超过像素电压VP11(图35的(E)和(F)),并且AD转换部ADC的比较器24由此将信号CMP的电压从低电平改变成高电平(图35的(G))。
接着,在时刻t100,AD转换部ADC的计数器25基于控制信号CC使计数值CNT的极性反转(图35的(I))。
接着,在时刻t101,扫描单元50将信号STG的电压从低电平改变成高电平(图35的(C))。由此,摄像像素P11A中的晶体管TG导通。由此,将在光电二极管PD中生成的电荷传输到浮动扩散部FD(电荷传输操作)。相应地,信号SIG的电压降低(图35的(F))。
在时刻t102,扫描单元50随后将信号STG的电压从高电平改变成低电平(图35的(C))。由此,摄像像素P11A中的晶体管TG关断。
由此,在摄像像素P11A中,晶体管SEL导通,并晶体管TG和RST均关断。浮动扩散部FD保持在从时刻t101到时刻t102的时段内从光电二极管PD传输的电荷。摄像像素P11A此时输出与浮动扩散部FD的电压相对应的像素电压VP(像素电压VP12)。
接着,在从时刻t103到时刻t105的时段(D相时段TD)中,读出单元20基于像素电压VP12执行AD转换。具体地,在时刻t103,摄像控制器60首先开始生成时钟信号CLK(图35的(H))。与此同时,参考信号生成单元61开始使参考信号REF的电压从电压V1以预定的变化程度降低(图35的(E))。相应地,AD转换部ADC的计数器25开始计数操作以顺序地改变计数值CNT(图35的(I))。
随后,在时刻t104,参考信号REF的电压下降至低于像素电压VP12(图35的(E)和(F))。相应地,AD转换部ADC的比较器24将信号CMP的电压从高电平改变成低电平(图35的(G))。由此,计数器25停止计数操作(图35的(I))。以此方式,AD转换部ADC获得与像素电压VP11和VP12之间的差相对应的计数值CNT。AD转换部ADC的锁存器26随后将该计数值CNT作为数字代码CODE输出。
接着,在时刻t105,摄像控制器60在D相时段TD结束时停止生成时钟信号CLK(图35的(H))。与此同时,参考信号生成单元61停止改变参考信号REF的电压,并且在随后的时刻t106将参考信号REF的电压改变成电压V2(图35的(E))。相应地,参考信号REF的电压超过像素电压VP12(图35的(E)和(F)),并且AD转换部ADC的比较器24由此将信号CMP的电压从低电平改变成高电平(图35的(G))。
接着,在时刻t107,扫描单元50将信号SSEL的电压从高电平改变成低电平(图35的(D))。由此,摄像像素P11A中的晶体管SEL关断,并且摄像像素P11A与信号线SGL中断开电连接。
接着,在时刻t108,AD转换部ADC的计数器25基于控制信号CC将计数值CNT设置为“0”(图35的(I))。
以此方式,摄像器件2在P相时段TP中基于像素电压VP11执行计数操作,使计数值CNT的极性反转,并随后在D相时段TD中基于像素电压VP12执行计数操作。由此,摄像器件2获取与像素电压VP11和VP12之间的电压差相对应的数字代码CODE。在摄像器件2中,执行这种相关双采样,并且由此可以移除像素电压VP12中包含的噪声分量。由此,可以提高拍摄图像的图像质量。
如同根据上述实施例的摄像器件1,摄像器件2通过使用消隐时段T20执行电压检测操作。具体地,读出单元20的AD转换部ADC在消隐时段T20中的与水平时段H(图35)具有相同长度的检测时段M中基于信号SIGV执行AD转换。在检测时段M中,参考信号生成单元61和读出单元20均执行与水平时段H(图35)中的操作相似的操作。在该检测时段M中,摄像控制器60将控制信号SSELV(图4)设置成高电平。由此,读出单元20的多个AD转换部ADC中的晶体管29导通,并且经由晶体管29和电容元件22向比较器24的负输入端子施加与由电压传感器33生成的信号SIGV相对应的信号。如同上述实施例的情况(图20),AD转换部ADC随后在P相时段TP内基于信号SIGV的电压VDDH34执行AD转换,并且在D相时段TD内基于信号SIGV的电压VDDH12执行AD转换,由此生成数字代码CODE。
电压确定单元42的计算部43随后将该数字代码CODE用作数字值VALV,以基于该数字值VALV执行计算处理,由此生成具有预定代码系统的电压代码VCODE1。以此方式,计算部43基于从多个AD转换部ADC获得的多个数字值VALV来生成多个相应的电压代码VCODE1。计算部43随后获得由多个这些电压代码VCODE1表示的值的平均值,以生成电压代码VCODE。
[变形例5]
例如,在上述实施例中,与相同的控制线TGLL、FDGL、RSTL、FCGL、TGSL和SELL连接的多个摄像像素P1在水平方向上并排地布置在像素阵列9中,但这不是限制性的。替代地,例如,如在图36所示的摄像器件1E中,与相同控制线TGLL、FDGL、RSTL、FCGL、TGSL和SELL连接的多个(该示例中四个)摄像像素P1可以在垂直方向上并排地布置。该摄像器件1E包括像素阵列9E、扫描单元10E、读出单元20E1和20E2、摄像控制器30E和信号处理器40E。像素阵列9E中的偶数编号(第零条、第二条、第四条、……)的信号线SGL连接到读出单元20E1,并且像素阵列9E中的奇数编号(第一条、第三条、第五条、……)的信号线SGL连接到读出单元20E2。控制线TGLL、FDGL、RSTL、FCGL、TGSL和SELL连接到扫描单元10E。在该示例中,与相同控制线TGLL、FDGL、RSTL、FCGL、TGSL和SELL连接的四个摄像像素P1在垂直方向(图36的纵向方向)上并排地布置。扫描单元10E包括逻辑部12E和驱动部13E。读出单元20E1基于从像素阵列9E经由偶数编号的信号线SGL提供的信号来执行AD转换,由此生成图像信号DATAE1。读出单元20E2基于从像素阵列9E经由奇数编号的信号线SGL提供的信号SIG来执行AD转换,由此生成图像信号DATAE2。信号处理器40E对由图像信号DATAE1和DATAE2表示的图像执行信号处理。
[变形例6]
在上述实施例中,各个AD转换部ADC连接到像素阵列9中的一列的多个摄像像素P1,但这不是限制性的。替代地,例如,如在图37所示的摄像器件1F中,各个AD转换部ADC可以连接到属于预定区域的多个摄像像素P1。该摄像器件1F形成在两个半导体基板401和402上。像素阵列9形成在半导体基板401上。该像素阵列9划分为多个(该示例中,21个)区域AR,并且每个区域AR包括多个(该示例中160个)摄像像素P1。读出单元20形成在半导体基板402上。具体地,在半导体基板402上,半导体基板401上的与多个区域AR相对应的多个相应区域包括AD转换部ADC,AD转换部ADC连接到属于这些区域AR的多个摄像像素P1。例如,半导体基板401和半导体基板402堆叠并通过使用铜-铜连接(Cu-Cu coupling)的连接单元403彼此电连接。应当注意,该示例中像素阵列9划分为21个区域AR,但这不是限制性的。替代地,例如,像素阵列9可以划分为20个以上或者22个以上的区域AR。此外,在该示例中,每个区域AR设置有160个摄像像素P1,但这不是限制性的。替代地,例如,可以设置159个以下或161个以上的摄像像素P1。
[其它变形例]
另外,可以组合这些变形例中的两者或以上。
<2.摄像器件的使用示例>
图38示出根据上述实施例的摄像器件1等的使用示例。例如,上述的摄像器件1等能够用于感测诸如可见光、红外光、紫外光和X射线之类的光线的各种情况。
-用于拍摄鉴赏用图像的设备,例如数码摄像机或具有摄像机功能的移动设备
-用于交通的设备,例如拍摄汽车的前侧、后侧、外围、内部等以用于诸如自动停止、驾驶员状态识别等安全驾驶的车载传感器;监视行驶车辆或道路的监视摄像机;或测量车辆之间的距离的测距传感器
-用于家用电器的设备,例如拍摄用户的手势并根据该手势操作设备的电视、冰箱或空调
-用于医疗护理和健康保健的设备,例如内窥镜或通过接收红外光进行血管造影的设备
-用于安全的设备,例如用于预防犯罪的监视摄像机或用于个人身份验证的监控摄像机
-用于美容护理的设备,例如拍摄皮肤的皮肤测量设备或拍摄头皮的显微镜
-用于运动的设备,例如运动摄像机或用于运动用途的可穿戴式摄像机等
-用于农业的设备,例如监控农田或农作物状态的摄像机。
<3.移动体的应用示例>
根据本公开的技术(本技术)可以应用到各种产品。例如,根据本公开实施例的技术可以实现为安装在任何类型的移动体上的设备的形式,移动体例如是汽车、电动车、混合动力电动车、摩托车、自行车、个人移动装置、飞机、无人机、船舶或机器人。
图39是描绘作为可应用根据本公开实施例的技术的移动体控制系统示例的车辆控制系统的示意性构造示例的框图。
车辆控制系统12000包括经由通信网络12001彼此连接的多个电子控制单元。在图39所示的示例中,车辆控制系统12000包括行驶系统控制单元12010、车身系统控制单元12020、车外信息检测单元12030、车内信息检测单元12040和集成控制单元12050。另外,微型计算机12051、声音/图像输出部12052和车载网络接口(I/F)12053被作为集成控制单元12050的功能构造示出。
行驶系统控制单元12010根据各种类型的程序来控制与车辆的行驶系统相关的设备的操作。例如,行驶系统控制单元12010用作如下装置的控制设备:诸如内燃机或驱动马达等之类的用于生成车辆驱动力的驱动力生成设备、用于将驱动力传送到车轮的驱动力传送机构、用于调节车辆的转向角的转向机构以及用于生成车辆的制动力的制动设备等。
车身系统控制单元12020根据各种类型的程序来控制设置在车身上的各种设备的操作。例如,车身系统控制单元12020用作无钥匙进入系统、智能钥匙系统、电动车窗设备或诸如前照灯、倒车灯、刹车灯、转向灯或雾灯等各种灯的控制设备。在这种情况下,可以将从移动设备传送的代替钥匙的无线电波或各种类型的开关的信号输入到车身系统控制单元12020中。车身系统控制单元12020接收这些输入的无线电波或信号,并控制车辆的门锁设备、电动车窗设备、车灯等。
车辆外部信息检测单元12030检测有关包括车辆控制系统12000的车辆的外部的信息。例如,车辆外部信息检测单元12030与摄像部12031连接。车辆外部信息检测单元12030使摄像部12031拍摄车辆外部图像,并接收拍摄图像。基于所接收的图像,车辆外部信息检测单元12030可以执行用于检测诸如人、车辆、障碍物、标志、路面上的字符等物体的处理,或者执行用于检测至车辆的距离的处理。
摄像部12031是光学传感器,其接收光并输出对应于所接收的光量的电信号。摄像部12031可以输出电信号作为图像,或者可以输出电信号作为有关测量距离的信息。另外,由摄像部12031接收的光可以是可见光,或者可以是诸如红外线等不可见光。
车内信息检测单元12040检测有关车辆内部的信息。例如,车内信息检测单元12040与用于检测驾驶员状态的驾驶员状态检测部12041连接。驾驶员状态检测部12041例如包括对驾驶员进行摄像的摄像机。基于从驾驶员状态检测部12041输入的检测信息,车内信息检测单元12040可以计算驾驶员的疲劳程度或驾驶员的集中程度,或者可以确定驾驶员是否在打瞌睡。
微型计算机12051可以基于由车外信息检测单元12030或车内信息检测单元12040获得的有关车辆内部或外部的信息来计算驱动力生成设备、转向机构或制动设备的控制目标值,并可以将控制命令输出到行驶系控制单元统12010。例如,微型计算机12051可以执行旨在实现高级驾驶员辅助系统(ADAS)功能的协同控制,ADAS功能包括车辆碰撞避免或车辆碰撞减震、基于跟随距离的跟随行驶、车辆速度维持行驶、车辆碰撞警告、车辆偏离车道警告等。
另外,通过基于由车外信息检测单元12030或车内信息检测单元12040获得的有关车辆内部或外部的信息控制驱动力生成设备、转向机构或制动设备等,微型计算机12051可以执行旨在实现自主行驶的协同控制,该协同控制使车辆自动行驶而不取决于驾驶员的操作。
另外,微型计算机12051可以基于由车外信息检测单元12030获得的车辆外部信息向车身系统控制单元12020输出控制命令。例如,微型计算机12051可以执行旨在通过根据由车辆外部信息检测单元12030检测的前方车辆或迎面车辆的位置控制前照灯并将远光灯改变成近光灯以防止眩光的协同控制。
声音/图像输出部12052将声音和图像中的至少一者的输出信号传送到能够在视觉上或听觉上将信息通知给车辆的乘客或车辆外部。在图39的示例中,音频扬声器12061、显示部12062和仪表板12063被作为输出设备的示例示出。显示部12062可以例如包括车载显示器和抬头显示器中的至少一者。
图40是示出摄像部12031的安装位置的示例的图。
在图40中,摄像部12031包括摄像部12101、12102、12103、12104和12105。
例如,摄像部12101、12102、12103、12104和12105设置在诸如车辆12100的前鼻、后视镜、后保险杠和后门以及车辆内部挡风玻璃上部的位置。设置在前鼻处的摄像部12101和设置在车辆内部挡风玻璃上部处的摄像部12105主要获得车辆12100前方的图像。设置在后视镜处的摄像部12102和12103主要获得车辆12100两侧的图像。设置在后保险杠或后门处的摄像部12104主要获得车辆12100后方的图像。设置在车辆内部挡风玻璃上部处的12105主要用于检测前方车辆、行人、障碍物、交通灯、交通标志或车道等。
注意,图40描绘了摄像部12101至12104的摄像范围的示例。摄像范围12111表示设置在前鼻处的摄像部12101的摄像范围。摄像范围12112和12113分别表示设置在后视镜处的摄像部12102和12103的摄像范围。摄像范围12114表示设置在后保险杠或后门处的摄像部12104的摄像范围。例如,通过使由摄像部12101至12104拍摄的图像数据叠加来获得车辆12100的如从上方观察的鸟瞰图像。
摄像部12101至12104中的至少一者可以具有获得距离信息的功能。例如,摄像部12101至12104中的至少一者可以是由多个摄像元件组成的立体摄像机,或者可以是包括用于相位差检测的像素的摄像元件。
例如,微型计算机12051能够基于从摄像部12101至12104获得的距离信息来确定距摄像范围12111到12114内的每个三维(3D)物体的距离以及该距离的时间变化(相对于车辆12100的相对速度),并由此提取尤其存在于车辆12100的行驶路径上并且在与车辆12100基本上相同的方向上以预定速度(例如,等于或大于0km/h)行进的最近的三维物体,以作为前方车辆。此外,微型计算机12051可以预先设置前方车辆的前方所要维持的跟随距离,并执行自动制动控制(包括跟随停止控制)、自动加速控制(包括跟随启动驾驶控制)等。因而,可以执行旨在实现自主行驶的协同控制,自主行驶是车辆自动行驶而不取决于驾驶员的操作等。
例如,微型计算机12051可以基于从摄像部12101到12104获得的距离信息将三维物体的三维物体数据分类为两轮车辆、标准车辆、大型车辆、行人、电线杆或其它三维物体的三维物体数据,提取所分类的三维物体数据,并使用所提取的三维物体数据来自动避开障碍物。例如,微型计算机12051将车辆12100周围的障碍物识别为车辆12100的驾驶员可以在视觉上辨认的障碍物以及驾驶员难以在视觉上辨认的障碍物。然后,微型计算机12051确定用于指示与每个障碍物发生碰撞的危险水平的碰撞风险。在碰撞风险等于或高于预设值时并且因而存在碰撞可能的情形下,微型计算机12051经由音频扬声器12061或显示部12062向驾驶员输出警告,并且经由行驶系统控制单元12010执行强制减速或防撞转向。由此,微型计算机12051能够执行驾驶辅助以避免碰撞。
摄像部12101至12104中的至少一者可以是检测红外光的红外摄像机。例如,微型计算机12051可以通过确定摄像部12101至12104的拍摄图像中是否存在行人来识别行人。行人的这种识别例如通过如下过程来执行:在作为红外摄像机的摄像部12101至12104的拍摄图像中提取特征点的过程;以及通过执行对表示物体轮廓的一系列特征点执行图案匹配来确定其是否是行人的过程。在微型计算机12051确定摄像部12101至12104的拍摄图像中存在行人并且因此识别出行人的情况下,声音/图像输出部12052控制显示部12062,使得以在所识别的行人上叠加的方式显示方形轮廓线以进行强调。声音/图像输出部12052还可以控制显示部12062,以将用于表示行人的图标等显示在期望位置。
上文说明了可以应用根据本公开的技术的车辆控制系统的示例。根据本公开的技术可以应用到上述部件之中的摄像部12031。由此,车辆控制系统12000能够检测被提供到摄像部12031的电源电压VDD是否正常,或者由摄像部12031生成的电压Vbgr是否正常。于是,在这些电压中的一者或多者不正常的情况下,例如,微型控制器12051被通知其检测结果,由此允许车辆控制系统12000中的车外信息检测单元12030获知摄像部12031存在问题。在此,该车外信息检测单元12030对应于本公开中的“处理设备”的特定示例。另外,这允许车辆控制系统12000执行诸如提醒驾驶员注意等适当处理,从而能够增加可靠性。另外,在车辆控制系统12000中,能够基于检测结果限制车辆控制功能。车辆控制功能的特定示例包括避免碰撞或车辆缓冲的功能、基于车间距离跟随行驶的功能、车辆速度保持行驶功能、车辆碰撞警告功能、车辆偏离车道警告功能等。在确定摄像部12031的电压不正常的情况下,能够限制或禁止车辆控制功能。具体地,车外信息检测单元12030和车辆控制系统12000能够控制制动、发动机输出和传动。由此,车辆控制系统12000能够防止由基于摄像部12031的不正常电压的错误检测导致的意外。
另外,例如,在车辆控制系统12000包括两个冗余摄像部12031(摄像部12031A和12031B)的情况下,摄像部12031之中的摄像部12031B可以在确定摄像部12301之中的摄像部12031A的电压不正常的情况下操作,并且摄像部12031A被怀疑存在问题。另外,例如,在车辆控制系统12000除摄像部12031之外还包括用于检测距目标的距离的距离测量部(例如,LIDAR(光雷达)设备或TOF(传播时间)图像传感器)的情况下,距离测量部可以在确定摄像部12031的电压不正常的情况下操作。在这种情况下,能够至少检测距目标的距离。由此,能够防止由基于摄像部12031的不正常电压的错误检测导致的意外。
尽管上文已经参考实施例、变形例及其具体应用示例说明了本技术,但本技术不限于这些实施例等。本技术可以根据各种方式进行修改。
例如,在图19所示的摄像器件1中,读出单元20输出数字码CODE2和CODE3,且图像处理单元41使数字码CODE3减去数字码CODE2(CODE3-CODE2),由此计算像素值VAL1。然而,这不是限制性的。替代地,如同根据变形例4的摄像器件2的情况(图35),读出单元20可以通过在转换时段T2之后使计数值CNT的极性反转来输出与数字码CODE2和CODE3之间的差值相对应的数字码OCDE。这同样适用于数字码CODE5和CODE6。这同样适用于数字码CODE7和CODE8。这同样适用于数字码CODEA和CODEB。
例如,在图19所示的摄像器件1中,读出单元20输出数字码CODE1和CODE4,且图像处理单元41使数字码CODE4减去数字码CODE1(CODE4-CODE1),由此计算像素值VAL2。然而,这不是限制性的。替代地,在转换时段T1之后,读出单元20的AD转换部ADC可以临时存储此时的计数值CNT。在转换时段T4之前,读出单元20的AD转换部ADC可以设置计数器25中的计数值CNT并使计数值CNT的极性反转。即使在这种情况下,如同根据变形例4的摄像器件2的情况(图35)的情况,图像处理单元41能够获得与数字码CODE1和CODE4之间的差值相对应的数字码CODE。
另外,例如,摄像器件1不限于图1等所示的构造,但可以适当地修改。类似地,例如,摄像器件2不限于图31等所示的构造,但可以适当修改。
注意,本说明书中描述的效果仅是说明性的,且不受限制。例如,还可以包括其他效果。
注意,本技术可具有如下构造。
(1)一种摄像器件,包括:
摄像单元,其被构造为执行摄像操作;
数据生成器,其被构造为生成与被提供给所述摄像单元的第一电源电压相对应的第一电源电压数据;和
标志生成部,其被构造为通过比较所述第一电源电压数据和第一参考数据来生成用于所述第一电源电压的标志信号。
(2)根据(1)所述的摄像器件,其中,
所述数据生成器包括被构造为执行AD转换的转换单元,并且
所述数据生成器被构造为通过所述转换单元基于所述第一电源电压执行AD转换来生成所述第一电源电压数据。
(3)根据(2)所述的摄像器件,其还包括被构造为生成第一检测电压和第二检测电压的电压检测单元,所述第一检测电压和所述第二检测电压对应于所述第一电源电压,
其中,所述数据生成器被构造为基于以下差值来生成所述第一电源电压数据,所述差值是所述转换单元通过在第一时段内基于所述第一检测电压执行AD转换获得的结果和所述转换单元通过在第二时段内基于所述第二检测电压执行AD转换获得的结果之间的差值。
(4)根据(2)或(3)的摄像器件,其中,所述数据生成器还包括计算部,所述计算部通过将以下结果转换为具有预定代码系统的数据来生成所述第一电源电压数据,所述结果是所述转换单元通过基于所述第一电源电压执行AD转换获得的结果。
(5)根据任一项(2)至(4)所述的摄像器件,其中,
所述转换单元包括多个转换电路,每个转换电路被构造为基于所述第一电源电压执行AD转换,并且
所述数据生成器被构造为基于所述多个转换电路通过执行AD转换获得的结果来生成所述第一电源电压数据。
(6)根据(5)所述的摄像器件,其中,所述数据生成器被构造为基于所述多个转换电路通过执行AD转换获得的所述结果的平均值来生成所述第一电源电压数据。
(7)根据任一项(1)至(6)所述的摄像器件,其中,
所述摄像单元包括被构造为输出像素电压的摄像像素,
所述数据生成器包括被构造为执行AD转换的转换单元,并且
所述数据生成器被构造为通过所述转换单元基于所述第一电源电压执行AD转换来生成所述第一电源电压数据,并且被构造为通过所述转换单元基于所述像素电压执行AD转换来生成像素电压数据。
(8)根据(7)所述的摄像器件,还包括电压检测单元,所述电压检测单元被构造为生成与所述第一电源电压相对应的检测电压,并将生成的所述检测电压提供给所述转换单元,
其中,所述摄像单元还包括被构造为将所述像素电压传输到所述转换单元的信号线。
(9)根据(7)所述的摄像器件,还包括电压检测单元,所述电压检测单元生成与所述第一电源电压相对应的检测电压,
其中,所述摄像单元还包括被构造为将所述像素电压和所述检测电压传输到所述转换单元的信号线。
(10)根据任一项(1)至(9)所述的摄像器件,其中,所述转换单元在垂直消隐时段内基于所述第一电源电压执行AD转换。
(11)根据任一项(1)至(10)所述的摄像器件,其中,所述标志生成部被构造为通过进一步比较所述第一电源电压数据和第二参考数据来生成所述标志信号。
(12)根据任一项(1)至(11)所述的摄像器件,其中,所述数据生成器和所述标志生成部均包括利用第二电源电压进行操作的电路。
(13)根据任一项(1)至(12)所述的摄像器件,还包括电压生成单元,所述电压生成单元被构造为生成预定电压,
其中,所述数据生成器被构造为生成与所述预定电压相对应的电压数据,并且
所述标志生成部被构造为通过比较所述电压数据和第三参考数据来生成所述标志信号。
(14)根据(13)所述的摄像器件,其中,所述数据生成器被构造为在第三时段内生成所述第一电源电压数据,并在第四时段内生成所述电压数据。
(15)根据任一项(1)至(14)所述的摄像器件,其中,
所述数据生成器被构造为生成与第二电源电压相对应的第二电源电压数据,并且
所述标志生成部被构造为通过比较所述第二电源电压数据和第四参考数据来生成所述标志信号。
(16)一种摄像系统,包括:
摄像器件,其被安装在车辆上,并被构造为通过对所述车辆周围的区域摄像来生成图像;和
处理设备,其被安装在所述车辆上,并被构造为基于所述图像来执行与所述车辆的控制功能有关的处理,
其中,所述摄像器件包括:
摄像单元,其被构造为执行摄像操作,
数据生成器,其被构造为生成与被提供给所述摄像单元的第一电源电压相对应的第一电源电压数据,和
标志生成部,其被构造为通过比较所述第一电源电压数据和第一参考数据来生成用于所述第一电源电压的标志信号,并且
所述处理设备被构造为基于所述标志信号通知司机或限制所述车辆的所述控制功能,或者既通知所述司机又限制所述车辆的所述控制功能。
(17)一种摄像方法,包括:
执行摄像操作;
生成与在执行所述摄像操作时提供的第一电源电压相对应的第一电源电压数据;和
通过比较所述第一电源电压数据和第一参考数据来生成用于所述第一电源电压的标志信号。
本申请要求2018年2月22日向日本专利局提交的日本专利申请2018-029771的优先权,该申请的全部内容通过引用的方式并入本申请。
本领域技术人员应当理解,在不脱离所附权利要求及其等同方案的范围的情况下,可以根据设计要求和其它因素作出各种变形、组合、子组合和替代。

Claims (10)

1.一种摄像器件,其包括:
像素阵列,所述像素阵列被配置为基于第一电源电压生成图像信号;
AD转换器,所述AD转换器被配置为基于所述第一电源电压生成第一检测电压数据;以及
标志生成器,所述标志生成器被配置为基于所述第一检测电压数据和第一参考电压数据生成错误标志,其中,
所述第一参考电压数据具有确定的范围,并且
基于所述第一检测电压数据被确定为在所述确定的范围之外,所述错误标志被设定为低电平。
2.根据权利要求1所述的摄像器件,其中,所述像素阵列被实施在第一基板上,并且
所述AD转换器被实施在第二基板上,
所述第二基板包括:
第一焊盘电极,所述第一焊盘电极被配置为接收所述第一电源电压,以及
第二焊盘电极,所述第二焊盘电极被配置为接收接地电压。
3.根据权利要求2所述的摄像器件,其中,所述第一焊盘电极邻近于所述第二焊盘电极。
4.根据权利要求1所述的摄像器件,其还包括:
电压传感器,所述电压传感器被配置为基于所述第一电源电压生成第一检测电压,其中,
所述AD转换器被配置为基于所述第一检测电压生成所述第一检测电压数据。
5.根据权利要求4所述的摄像器件,其中,所述电压传感器被配置为响应于所述第一电源电压和接地电压生成所述第一检测电压。
6.根据权利要求4所述的摄像器件,其中,所述电压传感器包括电阻电路和开关。
7.根据权利要求4所述的摄像器件,其中,所述电压传感器被配置为基于第二电源电压生成第二检测电压,
所述AD转换器被配置为响应于所述第二检测电压生成第二检测电压数据,
所述标志生成器被配置为响应于以下中的至少一者来生成所述错误标志:
(i)所述第一检测电压数据和所述第一参考电压数据之间的比较,以及
(ii)所述第二检测电压数据和第二参考电压数据之间的比较。
8.根据权利要求7所述的摄像器件,其中,所述电压传感器被配置为基于第三电源电压生成第三检测电压,
所述AD转换器被配置为响应于所述第三检测电压生成第三检测电压数据,
所述标志生成器被配置为响应于以下中的至少一者来生成所述错误标志:
(i)所述第一检测电压数据和所述第一参考电压数据之间的比较,
(ii)所述第二检测电压数据和所述第二参考电压数据之间的比较,以及
(iii)所述第三检测电压数据和第三参考电压数据之间的比较。
9.根据权利要求1所述的摄像器件,其中,所述像素阵列中的多个像素的每个像素包括:
光电转换元件;
传输晶体管,所述传输晶体管连接到所述光电转换元件;
放大晶体管,
其中,所述放大晶体管的栅极连接到所述传输晶体管,并且
所述第一电源电压被供应到所述放大晶体管的端子。
10.一种用于移动设备的相机系统,其包括:
根据权利要求1至9中任一项所述的摄像器件;以及
信息检测部,其被构造为将所述摄像器件的故障通知给所述移动设备中的控制电路。
CN202311486547.2A 2018-02-22 2019-02-05 摄像器件和相机系统 Pending CN117459844A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-029771 2018-02-22
JP2018029771A JP2019146071A (ja) 2018-02-22 2018-02-22 撮像装置、撮像システム、および撮像方法
CN201980010013.8A CN111656771A (zh) 2018-02-22 2019-02-05 摄像器件、摄像系统和摄像方法
PCT/JP2019/004036 WO2019163511A1 (ja) 2018-02-22 2019-02-05 撮像装置、撮像システム、および撮像方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201980010013.8A Division CN111656771A (zh) 2018-02-22 2019-02-05 摄像器件、摄像系统和摄像方法

Publications (1)

Publication Number Publication Date
CN117459844A true CN117459844A (zh) 2024-01-26

Family

ID=67687058

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201980010013.8A Pending CN111656771A (zh) 2018-02-22 2019-02-05 摄像器件、摄像系统和摄像方法
CN202311486547.2A Pending CN117459844A (zh) 2018-02-22 2019-02-05 摄像器件和相机系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201980010013.8A Pending CN111656771A (zh) 2018-02-22 2019-02-05 摄像器件、摄像系统和摄像方法

Country Status (5)

Country Link
US (3) US11343427B2 (zh)
EP (1) EP3758366B1 (zh)
JP (1) JP2019146071A (zh)
CN (2) CN111656771A (zh)
WO (1) WO2019163511A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7078818B2 (ja) * 2018-01-31 2022-06-01 ソニーセミコンダクタソリューションズ株式会社 撮像装置およびキャリブレーション方法
CN117479032A (zh) * 2018-03-07 2024-01-30 索尼半导体解决方案公司 成像设备和成像方法
JP2021027543A (ja) * 2019-08-08 2021-02-22 ソニーセミコンダクタソリューションズ株式会社 信号処理装置、信号処理方法、および撮像装置
US20230007202A1 (en) * 2019-11-29 2023-01-05 Sony Semiconductor Solutions Corporation Semiconductor device, imaging element, and electronic device
CN114982224A (zh) * 2020-01-29 2022-08-30 索尼半导体解决方案公司 固态成像装置、驱动固态成像装置的方法以及电子装置
WO2022263272A1 (en) * 2021-06-16 2022-12-22 Sony Semiconductor Solutions Corporation Image sensor with voltage monitoring circuit
CN116246422A (zh) * 2023-05-11 2023-06-09 西安理工大学 电压等级自适应的近电预警方法、装置、设备及存储介质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122119A (ja) * 1998-10-19 2000-04-28 Olympus Optical Co Ltd カメラ
JP2002027196A (ja) * 2000-07-04 2002-01-25 Ricoh Co Ltd 画像読取装置及び画像形成装置
US7218259B2 (en) * 2005-08-12 2007-05-15 Analog Devices, Inc. Analog-to-digital converter with signal-to-noise ratio enhancement
US7466172B2 (en) * 2006-09-01 2008-12-16 Via Technologies, Inc. Supply voltage level detector
JP4974701B2 (ja) * 2007-02-21 2012-07-11 オリンパス株式会社 固体撮像装置
TWI530183B (zh) * 2011-12-08 2016-04-11 Sony Corp An imaging element, a control method, and an imaging device
US9131211B2 (en) * 2012-09-25 2015-09-08 Semiconductor Components Industries, Llc Imaging systems with verification pixels
WO2016076139A1 (ja) * 2014-11-14 2016-05-19 ソニー株式会社 信号処理装置、制御方法、撮像素子、並びに、電子機器
KR102210273B1 (ko) * 2014-12-29 2021-01-29 에스케이하이닉스 주식회사 오차를 보정하는 아날로그 디지털 컨버터
CN108605106B (zh) * 2016-02-15 2021-01-12 松下半导体解决方案株式会社 固体摄像装置以及摄像装置
KR102022819B1 (ko) * 2016-05-31 2019-09-18 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 장치 및 촬상 방법, 카메라 모듈, 및 전자 기기
JP2018029771A (ja) 2016-08-24 2018-03-01 キヤノンメディカルシステムズ株式会社 穿刺アダプタ
KR20190044261A (ko) * 2017-10-20 2019-04-30 에스케이하이닉스 주식회사 저잡음 싱글-슬롭 비교 장치 및 그에 따른 아날로그-디지털 변환 장치와 씨모스 이미지 센서
JPWO2020149094A1 (ja) * 2019-01-17 2021-11-25 ソニーセミコンダクタソリューションズ株式会社 撮像装置、撮像システムおよび故障検出方法

Also Published As

Publication number Publication date
EP3758366A1 (en) 2020-12-30
JP2019146071A (ja) 2019-08-29
US20220279121A1 (en) 2022-09-01
US20200412950A1 (en) 2020-12-31
US20230336867A1 (en) 2023-10-19
EP3758366A4 (en) 2021-01-13
WO2019163511A1 (ja) 2019-08-29
EP3758366B1 (en) 2024-04-17
US11343427B2 (en) 2022-05-24
CN111656771A (zh) 2020-09-11
US11729496B2 (en) 2023-08-15

Similar Documents

Publication Publication Date Title
EP3758366B1 (en) Image pickup device, image pickup system, and image pickup method
US11711633B2 (en) Imaging device, imaging system, and imaging method
CN111630846B (zh) 摄像装置和校准方法
US11381764B2 (en) Sensor element and electronic device
JP7503500B2 (ja) 撮像装置
CN116250249A (zh) 固态成像设备
CN111201781B (zh) 摄像器件和诊断方法
CN111630853B (zh) 摄像装置、摄像系统和方法
TWI840454B (zh) 攝像裝置
EP4280594A1 (en) Imaging device and electronic apparatus
US20240064430A1 (en) Imaging device and electronic apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination