CN117402336A - 一种Ta4HfC5先驱体制备方法及制得的纳米陶瓷和耐高温复合材料 - Google Patents

一种Ta4HfC5先驱体制备方法及制得的纳米陶瓷和耐高温复合材料 Download PDF

Info

Publication number
CN117402336A
CN117402336A CN202210795113.XA CN202210795113A CN117402336A CN 117402336 A CN117402336 A CN 117402336A CN 202210795113 A CN202210795113 A CN 202210795113A CN 117402336 A CN117402336 A CN 117402336A
Authority
CN
China
Prior art keywords
hfc
preparation
composite material
placing
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210795113.XA
Other languages
English (en)
Inventor
万帆
刘荣军
王衍飞
李端
李俊生
刘星煜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN202210795113.XA priority Critical patent/CN117402336A/zh
Publication of CN117402336A publication Critical patent/CN117402336A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

提供了一种Ta4HfC5液态先驱体的制备方法,包括以下步骤:步骤1),将柠檬酸加入乙醇中,充分搅拌溶解后得到柠檬酸乙醇溶液;步骤2),将TaCl5与HfCl4按照摩尔比4:1依次加入柠檬酸乙醇溶液内,经溶解反应后得到Ta4Hf‑柠檬酸配合溶液;步骤3),在Ta4Hf‑柠檬酸配合溶液中加入小分子多元醇,进行聚酯化反应后即得到Ta4HfC5先驱体溶液。本发明制备方法工艺简便,Ta4HfC5先驱体在1600℃下裂解得到纳米级别Ta4HfC5陶瓷,且粘度适中、能够长时间保存。基于所得Ta4HfC5先驱体,本发明制备了Cf/Ta4HfC5‑SiC超高温陶瓷基复合材料,复合材料力学性能高,抗烧蚀性能良好。

Description

一种Ta4HfC5先驱体制备方法及制得的纳米陶瓷和耐高温复合 材料
技术领域
本发明总体地涉及超高温陶瓷技术领域,具体涉及一种Ta4HfC5先驱体制备方法及制得的纳米陶瓷和耐高温复合材料。
背景技术
航空航天对极端服役环境下(例如高速气流冲刷、高温、有氧气氛、热辐射、高频振动和噪声等)的材料需求激发了科研人员对超高温陶瓷及其复合材料的研究兴趣,特别是随着高马赫数飞行器的发展,其尖锐前缘和推进系统面临极高温度、恶劣化学环境、高速粒子侵蚀和高压气流等,对相应材料的耐温等级和可靠性提出了更高的挑战,满足极端环境服役要求已成为超高温陶瓷及其复合材料研究的热点。
超高温陶瓷通常被定义为熔点高于3000℃的无机非金属材料,而超高温陶瓷基复合材料则是指以超高温陶瓷为基体,通过纤维增韧制得的复合材料。因能克服陶瓷的本征脆性,提高结构稳定性,超高温陶瓷基复合材料已成为超高温陶瓷在热防护领域的主要应用形式。
截至目前,超高温陶瓷基复合材料具备先驱体浸渍裂解(PIP)和反应熔渗(RMI)两种应用较广的制备工艺,其中PIP工艺因具有对各类复杂结构适用度高、产物较为纯净等优点,是目前制备超高温陶瓷基复合材料的主流工艺。
在超高温陶瓷的众多体系中,TaC和HfC因具有高熔点、高硬度、高模量等一系列特点,得到了研究者的青睐。而且由于Ta和Hf的原子半径相近,所以从理论上来说TaC和HfC可以实现无限互熔而形成TaxHf1-xC固溶体。TaxHf1-xC固溶体不论在耐超高温性上还是在耐烧蚀上都要优于TaC和HfC。其中,从文献报道上得知,Ta4HfC5固溶体的熔点可以达到接近4000℃,因此,在航空航天热防护领域中有着极大的应用前景。
针对Ta4HfC5超高温陶瓷的研究,目前主要集中在通过固溶强化原理直接烧结制备上,制备工艺包括无压、热压以及放电等离子烧结等。对于制备液态先驱体用于Ta4HfC5超高温陶瓷基复合材料的PIP工艺制备上,目前相关的研究还十分稀少。
CN201611051813.9的发明公开了一种Ta4HfC5合金先驱体的制备方法及其得到的Ta4HfC5合金:首先将四氯化铪分散在溶剂中,滴入一元醇和三乙胺的混合物,滴加完毕加热回流,过滤得铪醇盐溶液;然后将五氯化钽用同样的方式得到钽醇盐溶液;再将铪醇盐和钽醇盐溶液混合,滴加螯合剂,滴完回流后再滴加水和一元醇的混合液,滴完回流,减压蒸馏得到铪钽聚合物先驱体;最后将铪钽聚合物先驱体和烯丙基酚醛混合,得到铪钽合金先驱体。该发明制备的先驱体溶解性优良,稳定性好。
CN201911166167.4的发明公开了一种SiC掺杂Ta4HfC5陶瓷及其制备方法:首先将无水醇类、乙酰丙酮、钽盐、铪盐和碳源混合,搅拌,在180~240℃条件下保温,蒸馏,得到Ta4HfC5陶瓷先驱体;再将Ta4HfC5陶瓷先驱体与硅源混合均匀,得到溶胶;然后将所述乙醇和所述去离子水加入所述溶胶中,搅拌,干燥,得到Si-a4HfC5陶瓷先驱体。该发明制备的先驱体经放入石墨坩埚内并置于炭化炉中,在氩气气氛下升温至1600~1800℃,保温,冷却后可得到SiC掺杂Ta4HfC5陶瓷,所制备的SiC掺杂Ta4HfC5陶瓷纯度高、均匀性好和高温抗氧化性能优异。
申请号为201911166167.4的发明制备的Ta4HfC5先驱体虽然具备溶解性优良、稳定性好的优点,但制备工艺过于复杂繁琐,对每一步的准确性和可控性要求较高,且周期较长;而申请号为201611051813.9的发明虽然工艺简便,但因加入了酚醛树脂,导致所制备的Ta4HfC5先驱体短时间容易凝胶,无法满足较长时间摆放的使用需求。
发明内容
本发明的目的是提供一种Ta4HfC5液态先驱体的制备方法及制得的Ta4HfC5纳米陶瓷颗粒和Cf/Ta4HfC5-SiC耐超高温陶瓷基复合材料。柠檬酸络合法是溶胶-凝胶法中的一种制备纳米陶瓷粉体的常用方法,通常以水做溶剂,以柠檬酸为络合剂与多种金属离子络合形成金属配合物,再通过加热,使金属配合物经过聚酯化形成金属离子均匀分布的凝胶,最后通过煅烧等处理得到纳米陶瓷粉体。因具有操作简单、设备要求低、生产成本低、适合多组分体系、可达到纳米级别、预烧过程不产生中间相等优点,柠檬酸络合法已被广泛应用于多种复合氧化物体系的制备。本发明基于柠檬酸络合法的原理,创新性地将其运用于Ta4HfC5陶瓷制备中,同时为了避免生成水合物沉淀,采用乙醇作为溶剂,提出了改进柠檬酸络合法制备Ta4HfC5先驱体的方法。
本发明涉及的先驱体制备原料易得,工艺简单,所得Ta4HfC5液态先驱体粘度适中,溶液稳定性较好,基于所得先驱体可以得到Ta4HfC5纳米级陶瓷颗粒和Ta4HfC5基耐超高温复合材料。
本发明的技术方案是,本发明一方面提供了一种Ta4HfC5液态先驱体的制备方法,包括以下步骤:
步骤1),配制柠檬酸乙醇溶液:将柠檬酸加入乙醇中,经充分搅拌使柠檬酸溶解,得到柠檬酸乙醇溶液;
步骤2),制备配合物溶液:将TaCl5与HfCl4按照摩尔比4:1依次加入步骤1)所得的柠檬酸乙醇溶液内,进行溶解反应,得到Ta4Hf-柠檬酸配合溶液;
步骤3),制备Ta4HfC5先驱体溶液:在Ta4Hf-柠檬酸配合溶液中加入小分子多元醇,进行反应,得到所述Ta4HfC5先驱体溶液。
本发明以乙醇为溶剂,以TaCl5为钽源、HfCl4为铪源,以柠檬酸为络合剂,并通过与乙二醇/丙三醇发生酯缩合反应制备Ta4HfC5液相先驱体。
进一步的,上述步骤1)中,为加快溶解速率,柠檬酸在乙醇中搅拌溶解时温度控制为40~60℃。
进一步的,上述步骤2)中,按金属阳离子与柠檬酸的摩尔比范围为1:2.5~3.5来控制加入金属氯化物的重量;所述溶解反应时间为40~80min。
进一步的,上述步骤3)中,所述小分子多元醇为乙二醇或者丙三醇,优选羟基较多的丙三醇;所述小分子多元醇与Ta4Hf-柠檬酸配合溶液的量按体积比计为0.35~0.45:所述反应的温度设定40-60℃,反应时间为60min-120min。
进一步的,上述步骤(1)-(3)均在通风柜中进行。
本发明另一方面提供了一种Ta4HfC5纳米级陶瓷颗粒,它以上述Ta4HfC5液态先驱体的制备方法所得产物为原料,制备方法为:将上述的Ta4HfC5液态先驱体的制备方法所得的Ta4HfC5液态先驱体在150~220℃固化1h后,置于高温炉中,在氩气气氛下1600~1800℃下处理1~2h,得到所述Ta4HfC5纳米级陶瓷颗粒。
本发明中Ta4HfC5纳米陶瓷的生成基于碳热还原反应,碳源由柠檬酸和多元醇提供。
本发明还一方面提供了一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料,它以表面包括C界面的纤维预制件为增强体,以上述的Ta4HfC5液态先驱体的制备方法所得产物为第一组分基体原料,以商业采购的PCS先驱体作为第二组分基体原料。
本发明还提供了上述Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的制备方法,包括以下步骤:
步骤1),将C纤维预制件置于沉积炉中,采用化学气相沉积工艺,以丙烯为碳源,在960℃温度下、2kPa的压力下进行纤维表面C界面的沉积制备,C界面的厚度根据不同碳纤维预制件结构可为50nm~2μm;
步骤2),将步骤1)中表面形成C界面的C纤维预制件置入真空浸渍罐中,在真空环境下引入权利要求1-5中任一权利要求所述的Ta4HfC5液态先驱体的制备方法所得的Ta4HfC5液态先驱体,浸渍时间为6~10h;
步骤3),将步骤2)中的浸渍后的预制件在150~220℃固化1h;
步骤4),将步骤3)中固化后的预制件置于裂解炉中,在氩气气氛下600~1000℃下裂解1h;
步骤5),循环步骤2)-步骤4),直至增重率达到1%以下,便可将预制件在真空氛围下1600~1800℃下处理1~2h,即得到C/Ta4HfC5复合材料;
步骤6),将步骤5)所得的C/Ta4HfC5复合材料置于真空罐中,在真空环境下引入PCS先驱体,浸渍时间为4~8h;
步骤7),步骤6)中的浸渍后的预制件在150℃固化1h;
步骤8),将步骤7)中固化后的预制件置于裂解炉中,在氩气气氛下800~1200℃下裂解1h;
步骤9),循环步骤5-7),直至增重率达到1%以下,便可得到Cf/Ta4HfC5-SiC超高温陶瓷基复合材料。
本发明中为减少高温对纤维的损伤,在Ta4HfC5基体引入中采用了600~1000℃较低的预裂解温度,只在增重率达到1%以下才进行1次1600~1800℃的最终高温裂解。
本发明中Ta4HfC5基体和SiC基体的引入过程无先后顺序之分,即先引入SiC基体或先引入Ta4HfC5基体都可,抑或二者交叉引入。但为保证复合材料在热防护材料上的应用,应尽可能地多引入Ta4HfC5基体。
本发明相比现有技术的先进性在于:
提供了一种改性柠檬酸络合制备Ta4HfC5液态先驱体的方法,制备原料易得,工艺简便;所得液态先驱体粘度适中(30~100mPa.s)且可调,便于浸渗;先驱体溶液稳定性好,室温下可存放时间超过1个月,极适用于先驱体浸渍裂解工艺制备复合材料;在1600~1800℃较低温度下可转化生成纳米级别的Ta4HfC5陶瓷,减小复合材料制备过程中因高温给纤维带来的损伤。
附图说明
从下面结合附图对本发明实施例的详细描述中,本发明的这些和/或其它方面和优点将变得更加清楚并更容易理解,其中:
图1为本发明实施例1所得Ta4HfC5先驱体经800~1800℃不同温度点裂解后产物的XRD图;
图2为本发明实施例1所得Ta4HfC5先驱体在1800℃裂解所得陶瓷粉体SEM图;
图3为本发明实施例2所得Ta4HfC5先驱体经800~1800℃不同温度点裂解后产物的XRD图;
图4为本发明实施例2所得Ta4HfC5先驱体在1600℃裂解陶瓷粉体SEM图和能谱图,其中(a)为SEM图,(b)为能谱图;
图5为本发明实施例3所得的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料SEM图,其中(a)为复合材料整体横截面,(b)为纤维束内区域;
图6为本发明实施例3所得的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的XRD图(下),以及将其再在1600℃下高温处理一次后得到的XRD图(上)。
具体实施方式
为了使本领域技术人员更好地理解本发明,下面结合附图和具体实施方式对本发明作进一步详细说明。
实施例1
一种Ta4HfC5先驱体和Ta4HfC5纳米级陶瓷粉体的制备,包括以下步骤:
步骤1)将32.2g柠檬酸加入60ml乙醇内,在60℃下经充分搅拌后柠檬酸溶解于乙醇,得到柠檬酸乙醇溶液;
步骤2)取16gTaCl5与3.58gHfCl4依次加入步骤1)柠檬酸乙醇溶液内,温度设定为60℃,反应时间为60min,得到Ta4Hf-柠檬酸配合物溶液;
步骤3)在配合溶液中加入35ml乙二醇,60℃下反应60min,最后得到Ta4HfC5先驱体溶液。
步骤4)将步骤3)所得的Ta4HfC5先驱体90min升至220℃固化,保温1h,将固化后的先驱体置于高温炉中,在Ar气氛下800~1800℃下裂解1h,得到陶瓷粉体。
本实施例所得先驱体粘度为30.4mPa.s,具有优异的流动性。从图1先驱体在不同温度处理后所得产物的XRD图可以看到,当裂解温度达到1800℃时先驱体转化得到了单相的Ta4HfC5衍射峰,说明在1800℃裂解后得到了单相Ta4HfC5固溶体陶瓷。由图2可知,1800℃裂解后Ta4HfC5超高温陶瓷的SEM图可观察Ta4HfC5颗粒尺寸在50nm左右。
实施例2
一种Ta4HfC5先驱体和Ta4HfC5纳米级陶瓷粉体的制备,包括以下步骤:
步骤1)将53.7g柠檬酸加入100ml乙醇,在60℃下经充分搅拌后柠檬酸溶解于乙醇内,得到柠檬酸乙醇溶液;
步骤2)取26.7gTaCl5与6gHfCl4依次加入柠檬酸乙醇溶液内,温度设定为60℃,反应时间为60min,得到Ta4Hf-配合物溶液;
步骤3)在配合溶液中加入50ml丙三醇,60℃下反应60min,最后得到Ta4HfC5先驱体溶液;
步骤4)将步骤3)所得的Ta4HfC5先驱体在空气氛围下90min升至220℃固化,保温1h,将固化后的先驱体置于高温炉中,在Ar气氛下800~1800℃下裂解1h。
本实施例所得先驱体粘度为93.6mPa.s,具有良好的流动性。由图3先驱体在不同温度处理后所得产物的XRD图可以看到,当裂解温度达到1600℃时就可得到单相的Ta4HfC5衍射峰,因此在本次实施例中在1600℃就能得到Ta4HfC5陶瓷粉体。从图4的1600℃裂解后的Ta4HfC5超高温陶瓷SEM图可观察到生成的Ta4HfC5颗粒粒径在100nm以下,从能谱上看,Ta4HfC5陶瓷Ta:Hf接近4:1,粉体中存在一定的富余C。
实施例3
一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的制备,包括以下步骤:
步骤1)将C纤维预制件置于浸渍罐中,在真空环境下引入实施例2中步骤1-3)中的Ta4HfC5先驱体,浸渍时间为7h。
步骤2)将步骤1)中浸渍后的预制件经90min升至220℃固化,保温1h。
步骤3)将步骤2)中固化后的预制件置于裂解炉中,在氩气气氛中于1000℃下裂解1h。
步骤4)循环多次步骤1-3),增重小于1%后置于高温炉中,在真空氛围下1600℃下处理1h,即得到C/Ta4HfC5复合材料。
步骤5)将步骤4)所得的C/Ta4HfC5复合材料置于真空罐中,在真空环境下引入PCS先驱体,浸渍时间为7h。本实施例中采用的PCS先驱体采购自宁波众兴新材料科技有限公司,规格型号PCS-200/230。
步骤6)步骤5)中的浸渍后的预制件经120min升至150℃,固化1h。
步骤7)将步骤6)中固化后的预制件置于裂解炉中,在氩气气氛下1200℃下裂解1h。
步骤8)循环多次步骤5)-7),直至增重率达到1%以下,便可得到Cf/Ta4HfC5-SiC超高温陶瓷基复合材料。
由图5可知,在本实施例所得的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料中,Ta4HfC5基体同时分散在预制件纤维束间与束内区域。复合材料中SiC基体呈无定形态,因此在图6中下方的XRD中没有对应衍射峰出现,而1600℃热处理后SiC结晶,出现了对应的衍射峰(图6上方曲线)。采用三点弯曲测试方法测量本实施例中复合材料的弯曲性能,测试条件为:样品尺寸长ⅹ宽ⅹ高=50mmⅹ5mmⅹ4mm,跨距40mm,加载速率0.5mm/s。采用单边缺口梁三点弯曲法测量复合材料断裂韧性,测试条件为:样品尺寸长ⅹ宽ⅹ高=30mm ⅹ 2.5mm ⅹ5mm,跨距20mm,缺口深2.5mm,加载速率0.5mm/s。测试结果显示复合材料弯曲强度、弹性模量和断裂韧性均值分别为390.0±12.7MPa、52.3±6.9GPa和10.4±2.2MPa·m1/2,弯曲性能良好。采用氧乙炔焰考核方法测试复合材料抗烧蚀性能,测试条件为:样品尺寸长ⅹ宽ⅹ厚=50mm x 30mm x 8mm,氧气流量1500L/h,压力0.4MPa,乙炔流量1200L/h,压力0.095MPa,考核60s。考核结果显示复合材料质量烧蚀率和线烧蚀率分别为12.00mg/s、14.66μm/s,抗烧蚀性能良好。上述复合材料良好的弯曲性能和抗烧蚀性能,彰显了本实施例所制备的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料在防护材料领域的应用潜力。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

1.一种Ta4HfC5液态先驱体的制备方法,其特征在于,包括以下步骤:
步骤1),配制柠檬酸乙醇溶液:将柠檬酸加入乙醇中,经充分搅拌使柠檬酸溶解,得到柠檬酸乙醇溶液;
步骤2),制备配合物溶液:将TaCl5与HfCl4按照摩尔比4:1依次加入步骤1)所得的柠檬酸乙醇溶液内,进行溶解反应,得到Ta4Hf-柠檬酸配合溶液;
步骤3),制备Ta4HfC5先驱体溶液:在Ta4Hf-柠檬酸配合溶液中加入小分子多元醇,进行反应,得到所述Ta4HfC5先驱体溶液。
2.如权利要求1所述的Ta4HfC5液态先驱体的制备方法,其特征在于,所述步骤1)中,柠檬酸在乙醇中搅拌溶解的温度控制为40~60℃。
3.如权利要求1所述的Ta4HfC5液态先驱体的制备方法,其特征在于,所述步骤2)中,按金属阳离子与柠檬酸的摩尔比范围为1:(2.5~3.5)来控制加入金属氯化物的重量;所述溶解反应时间为40~80min。
4.如权利要求1所述的Ta4HfC5液态先驱体的制备方法,其特征在于,所述步骤3)中,所述小分子多元醇为乙二醇或者丙三醇;所述小分子多元醇与Ta4Hf-柠檬酸配合溶液的量按体积比计为(0.35~0.45):1;所述反应的温度设定40-60℃,反应时间为60min-120min。
5.如权利要求4所述的Ta4HfC5液态先驱体的制备方法,其特征在于,所述步骤(1)-(3)均在通风柜中进行,所述小分子多元醇为丙三醇。
6.一种Ta4HfC5纳米级陶瓷颗粒,其特征在于,它以权利要求1-5中任一权利要求所述的Ta4HfC5液态先驱体的制备方法所得产物为原料,制备方法为:将权利要求1-5中任一权利要求所述的Ta4HfC5液态先驱体的制备方法所得的产物在150~220℃固化1h后,置于高温炉中,在真空或惰性气氛下1600~1800℃下处理1~2h,得到所述Ta4HfC5纳米级陶瓷颗粒。
7.一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料,其特征在于,它以表面包括C界面的纤维预制件为增强体,以权利要求1-5中任一权利要求所述的Ta4HfC5液态先驱体的制备方法所得的Ta4HfC5液态先驱体为第一组分基体原料,以商业采购的聚碳硅烷先驱体作为第二组分基体原料。
8.如权利要求7所述的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的制备方法,其特征在于,包括以下步骤:
步骤1),将C纤维预制件置于沉积炉中,采用化学气相沉积工艺,以丙烯为碳源,在960℃温度下、2kPa的压力下进行纤维表面C界面的沉积,C界面的厚度为50nm~2μm,得到表面形成C界面的C纤维预制件;
步骤2),将步骤1)中表面形成C界面的C纤维预制件置入真空浸渍罐中,在真空环境下的真空浸渍罐引入权利要求1-5中任一权利要求所述的Ta4HfC5液态先驱体的制备方法所得的Ta4HfC5液态先驱体,对表面形成C界面的C纤维预制件进行浸渍,浸渍时间为6~10h;
步骤3),将步骤2)中的浸渍后的预制件在150~220℃固化1h;
步骤4),将步骤3)中固化后的预制件置于裂解炉中,在氩气气氛下于600~1000℃下裂解1h;
步骤5),循环步骤2)-步骤4),直至增重率达到1%以下,然后将预制件置于高温炉中,在真空氛围下1600~1800℃下处理1~2h,即得到Cf/Ta4HfC5复合材料;
步骤6),将步骤5)所得的Cf/Ta4HfC5复合材料置于真空罐中,在真空环境下引入聚碳硅烷先驱体,浸渍时间为4~8h;
步骤7),步骤6)中的浸渍后的预制件在150℃固化1h;
步骤8),将步骤7)中固化后的预制件置于裂解炉中,在氩气气氛下于800~1200℃下裂解1h;
步骤9),循环步骤5-7),直至增重率达到1%以下,便可得到Cf/Ta4HfC5-SiC超高温陶瓷基复合材料。
9.如权利要求7所述的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的制备方法,其特征在于,
步骤1),将C纤维预制件置于沉积炉中,采用化学气相沉积工艺,以丙烯为碳源,在960℃温度下、2kPa的压力下进行纤维表面C界面的沉积,C界面的厚度为50nm~2μm,得到表面形成C界面的C纤维预制件;
步骤2),将步骤1)所得的表面形成C界面的C纤维预制件置于真空罐中,在真空环境下引入聚碳硅烷先驱体,浸渍时间为4~8h;
步骤3),步骤2)中的浸渍后的预制件在150℃固化1h;
步骤4),将步骤3)中固化后的预制件置于裂解炉中,在氩气气氛下于800~1200℃下裂解1h;
步骤5),循环步骤2-5),直至增重率达到1%以下,便可得到Cf/SiC复合材料;
步骤6),将步骤5)中Cf/SiC复合材料置入真空浸渍罐中,在真空环境下的真空浸渍罐引入权利要求1-5中任一权利要求所述的Ta4HfC5液态先驱体的制备方法所得的Ta4HfC5液态先驱体,对Cf/SiC复合材料进行浸渍,浸渍时间为6~10h;
步骤7),将步骤6)中的浸渍后的复合材料在150~220℃固化1h;
步骤8),将步骤6)中固化后的复合材料置于裂解炉中,在氩气气氛下于600~1000℃下裂解1h;
步骤9),循环步骤6)-步骤8),直至增重率达到1%以下,然后将复合材料置于高温炉中,在真空氛围下1600~1800℃下处理1~2h,便可得到Cf/Ta4HfC5-SiC超高温陶瓷基复合材料。
10.如权利要求7所述的Cf/Ta4HfC5-SiC超高温陶瓷基复合材料的制备方法,其特征在于,包括以下步骤:
步骤1),将C纤维预制件置于沉积炉中,采用化学气相沉积工艺,以丙烯为碳源,在960℃温度下、2kPa的压力下进行纤维表面C界面的沉积,C界面的厚度为50nm~2μm,得到表面形成C界面的C纤维预制件;
步骤2),将步骤1)所得的表面形成C界面的C纤维预制件置于真空罐中,在真空环境下引入聚碳硅烷先驱体,浸渍时间为4~8h;
步骤3),步骤2)中的浸渍后的预制件在150℃固化1h;
步骤4),将步骤3)中固化后的预制件置于裂解炉中,在氩气气氛下于800~1200℃下裂解1h;
步骤5),将步骤4)中裂解后的复合材料置入真空浸渍罐中,在真空环境下的真空浸渍罐引入权利要求1-5中任一权利要求所述的Ta4HfC5液态先驱体的制备方法所得的Ta4HfC5液态先驱体,对Cf/SiC复合材料进行浸渍,浸渍时间为6~10h;
步骤6),将步骤5)中的浸渍后的复合材料在150~220℃固化1h;
步骤7),将步骤6)中固化后的复合材料置于裂解炉中,在氩气气氛下于600~1000℃下裂解1h;
步骤8),循环步骤2)-步骤7),直至增重率达到1%以下,然后将复合材料置于高温炉中,在真空氛围下1600~1800℃下处理1~2h,便可得到Cf/Ta4HfC5-SiC超高温陶瓷基复合材料。
CN202210795113.XA 2022-07-07 2022-07-07 一种Ta4HfC5先驱体制备方法及制得的纳米陶瓷和耐高温复合材料 Pending CN117402336A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210795113.XA CN117402336A (zh) 2022-07-07 2022-07-07 一种Ta4HfC5先驱体制备方法及制得的纳米陶瓷和耐高温复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210795113.XA CN117402336A (zh) 2022-07-07 2022-07-07 一种Ta4HfC5先驱体制备方法及制得的纳米陶瓷和耐高温复合材料

Publications (1)

Publication Number Publication Date
CN117402336A true CN117402336A (zh) 2024-01-16

Family

ID=89491272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210795113.XA Pending CN117402336A (zh) 2022-07-07 2022-07-07 一种Ta4HfC5先驱体制备方法及制得的纳米陶瓷和耐高温复合材料

Country Status (1)

Country Link
CN (1) CN117402336A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010046563A1 (en) * 2000-05-26 2001-11-29 Takeshi Nakamura Manufacturing method of ceramic matrix composite
US20030137084A1 (en) * 2001-02-27 2003-07-24 Japan Science And Technology Corporation SiC Fiber-reinforced SiC-matrix composite and manufacturing method thereof
CN106007766A (zh) * 2016-05-12 2016-10-12 中国人民解放军国防科学技术大学 Cf/MC-SiC复合材料及其制备方法
CN106588019A (zh) * 2016-11-25 2017-04-26 中国科学院化学研究所 一种HfxTa1‑xC合金前驱体的制备方法及其得到的HfxTa1‑xC合金
CN109400165A (zh) * 2018-11-21 2019-03-01 哈尔滨工业大学 一种简易批量合成高纯五碳化四钽铪陶瓷粉体的方法
CN110028330A (zh) * 2018-01-11 2019-07-19 航天特种材料及工艺技术研究所 一种陶瓷基复合材料及其制备方法
CN110372036A (zh) * 2019-08-23 2019-10-25 中国人民解放军国防科技大学 一种三元过渡金属氧化物粉体及其制备方法
CN112898023A (zh) * 2021-01-29 2021-06-04 中国科学院上海硅酸盐研究所 一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010046563A1 (en) * 2000-05-26 2001-11-29 Takeshi Nakamura Manufacturing method of ceramic matrix composite
US20030137084A1 (en) * 2001-02-27 2003-07-24 Japan Science And Technology Corporation SiC Fiber-reinforced SiC-matrix composite and manufacturing method thereof
CN106007766A (zh) * 2016-05-12 2016-10-12 中国人民解放军国防科学技术大学 Cf/MC-SiC复合材料及其制备方法
CN106588019A (zh) * 2016-11-25 2017-04-26 中国科学院化学研究所 一种HfxTa1‑xC合金前驱体的制备方法及其得到的HfxTa1‑xC合金
CN110028330A (zh) * 2018-01-11 2019-07-19 航天特种材料及工艺技术研究所 一种陶瓷基复合材料及其制备方法
CN109400165A (zh) * 2018-11-21 2019-03-01 哈尔滨工业大学 一种简易批量合成高纯五碳化四钽铪陶瓷粉体的方法
CN110372036A (zh) * 2019-08-23 2019-10-25 中国人民解放军国防科技大学 一种三元过渡金属氧化物粉体及其制备方法
CN112898023A (zh) * 2021-01-29 2021-06-04 中国科学院上海硅酸盐研究所 一种Cf/Ta4HfC5-SiC超高温陶瓷基复合材料及其制备方法

Similar Documents

Publication Publication Date Title
CN106588019B (zh) 一种HfxTa1-xC合金前驱体的制备方法及其得到的HfxTa1-xC合金
CN111471268B (zh) 一种碳化物高熵陶瓷前驱体及高熵陶瓷及制备方法
Zhu et al. Effect of Al2O3 coating thickness on microstructural characterization and mechanical properties of continuous carbon fiber reinforced aluminum matrix composites
JP4647370B2 (ja) 繊維強化炭化ケイ素複合材料及びその製造方法
CN106588020B (zh) 一种HfxTa1-xC合金前驱体的制备方法及其得到的HfxTa1-xC合金
Yan et al. In-situ homogeneous growth of ZrC nanowires on carbon cloth and their effects on flexural properties of carbon/carbon composites
Chunfeng et al. Chemical stability of carbon nanotubes in the 2024Al matrix
Yan et al. Fabrication and properties of 3-dimensional 4-directional Cf/HfC-SiC composites by precursor impregnation and pyrolysis process
Aguirre et al. Zirconium-diboride silicon-carbide composites: A review
Lu et al. Synthesis, characterization and microstructure of tantalum carbide-based ceramics by liquid polymeric precursor method
Simonenko et al. Oxidation of graphene-modified HfB2-SiC ceramics by supersonic dissociated air flow
Daniel et al. Effect of zirconium diboride incorporation on thermal stability and ablation characteristics of carbon fiber-reinforced resorcinol–formaldehyde composites
Zhang et al. Ablation-resistant Ta0. 78Hf0. 22C solid solution ceramic modified C/C composites for oxidizing environments over 2200° C
JP2011190169A (ja) 炭素繊維複合材、及びこの炭素繊維複合材を用いたブレーキ用部材、半導体用構造部材、耐熱性パネル、ヒートシンク
CN110304932B (zh) 一种具有HfB2界面的Cf/SiC复合材料的制备方法
Zeng et al. The effect of carbon source addition order during sol-gel process on the properties of C/C–ZrC–SiC composites
Zou et al. Microstructure and mechanical properties of Si3N4f/BN composites with BN interphase prepared by chemical vapor deposition of borazine
CN113279249B (zh) 一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法
Mallick et al. Synthesis and consolidation of ZrC based ceramics: a review
Zheng et al. Improving the sinterability of ZrC–SiC composite powders by Mg addition
Kurokawa et al. Preparation of refractory carbide fibers by thermal decomposition of transition metal (Ti, Zr, Hf, Nb, Ta) alkoxide-cellulose precursor gel fibers
CN117402336A (zh) 一种Ta4HfC5先驱体制备方法及制得的纳米陶瓷和耐高温复合材料
Zhang et al. Simple and efficient densification of SiCf/SiC composites by gradated concentration polymer infiltration and pyrolysis
Ren et al. Preparation and structure of SiOCN fibres derived from cyclic silazane/poly-acrylic acid hybrid precursor
Cai et al. Microstructure evolution and mechanical behavior of SS316L alloy fabricated by a non-toxic and low residue binder jetting process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination