CN117385236A - 一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备方法 - Google Patents

一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN117385236A
CN117385236A CN202311374286.5A CN202311374286A CN117385236A CN 117385236 A CN117385236 A CN 117385236A CN 202311374286 A CN202311374286 A CN 202311374286A CN 117385236 A CN117385236 A CN 117385236A
Authority
CN
China
Prior art keywords
layered structure
fatigue
nanocomposite
powder
discontinuous layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311374286.5A
Other languages
English (en)
Inventor
姜龙涛
韩秉卓
晁振龙
王平平
陈国钦
修子扬
康鹏超
芶华松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202311374286.5A priority Critical patent/CN117385236A/zh
Publication of CN117385236A publication Critical patent/CN117385236A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/04Casting by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0475Impregnated alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0057Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on B4C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Abstract

一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备方法。本发明属于抗疲劳金属基复合材料领域,具体涉及一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备方法。本发明目的是为了解决现有颗粒增强金属基复合材料疲劳强度低,疲劳寿命短,实际应用受限;以及非连续层状结构金属基复合材料制备流程复杂,制备尺寸小,微观结构难以调控的问题。方法:球形Al粉球磨成片状Al粉,再加入纳米B4C粉末高能球磨得到B4C增强冷焊Al颗粒,将冷焊颗粒冷压制备成预制体,将铝液浸渗到冷焊颗粒空隙中,通过热挤压形成交替分布的非连续层状结构。该制备方法简单便捷,微观结构易于调控,生产效率高、流程短、便于大规模生产。

Description

一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备 方法
技术领域
本发明属于抗疲劳金属基复合材料领域,具体涉及一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备方法。
背景技术
B4C/Al纳米复合材料具有密度低、强度高、耐磨性好的优点,能够应用于国防军事、交通运输等诸多领域,是代替铝合金的理想材料。但是材料在实际使用过程中往往承担循环载荷,导致材料在远低于抗拉强度甚至是屈服强度的载荷下失效。据统计,90%以上的机械失效都是由于循环载荷下的疲劳引起的。B4C/Al纳米复合材料在强度获得大幅提升的同时,疲劳强度尤其是低周疲劳强度大幅下降,这大大限制了B4C/Al纳米复合材料的实际应用。随着B4C/Al纳米复合材料的应用逐渐广泛,对其疲劳性能提出了更高的要求。
相比于传统均匀分布的B4C/Al纳米复合材料,非连续层状结构B4C/Al纳米复合材料能够在保持静载强度基本不变的同时提高复合材料的疲劳强度,延长疲劳寿命。但目前非连续层状结构B4C/Al纳米复合材料的制备流程复杂,制备周期长,且制备的材料尺寸较小。同时,由于制备工艺较为复杂,对非连续层状结构B4C/Al纳米复合材料的微观结构实现精确调控具有较高难度。因此,需要一种新的制备方法,在简化非连续层状结构B4C/Al纳米复合材料制备流程的同时实现微观结构调控。
发明内容
本发明是要解决现有颗粒增强金属基复合材料疲劳强度低,疲劳寿命短,实际应用受限;以及非连续层状结构金属基复合材料制备流程复杂,制备尺寸小,微观结构难以调控的问题。而提供一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备方法。
一种抗疲劳非连续层状结构B4C/Al纳米复合材料内部为便质层和软质层交替排列,呈非连续层状结构;纳米B4C增强的Al基复合材料为硬质层、Al为软质层;所述硬质层厚度为5μm~40μm、软质层厚度为1μm~10μm;所述软质层占复合材料体积分数的20%~60%。
一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法具体按以下步骤进行:
一、片状Al粉制备:对微米尺寸的球形Al粉进行球磨,将球磨后的粉末在氩气气氛下热处理去除硬脂酸,得到片状Al粉;
二、B4C/Al冷焊颗粒制备:将片状Al粉和纳米尺寸B4C粉末混合进行高能球磨,得到纳米B4C增强的冷焊Al颗粒;
三、B4C/Al冷焊颗粒浸渗铝液:将纳米B4C增强的冷焊Al颗粒装入钢模具中压制,得到预制体,对预制体进行保温处理;然后将铝液浇入装有预制体的钢模具中,施加压力进行浸渗,然后自然冷却至室温,脱模后得到纳米B4C不均匀分布的B4C/Al纳米复合材料铸锭;
四、B4C/Al纳米复合材料热挤压:将纳米B4C不均匀分布的B4C/Al纳米复合材料铸锭置于热挤压机中进行热挤压,得到非连续层状结构的B4C/Al纳米复合材料。
本发明的有益效果:
本发明提供的非连续层状结构B4C/Al纳米复合材料,以纳米B4C增强的Al基复合材料为硬质层,Al为软质层,硬质层抑制了软质层变形,使复合材料具有较高强度,软质层缓解了硬质层的应力集中,同时阻碍了裂纹扩展,使复合材料轻质高强的同时具备优异的抗疲劳性能。本发明提供的非连续层状结构B4C/Al纳米复合材料是通过高能球磨法结合压力浸渗制备的,原材料廉价易得,制备流程少,工艺简单,易于大规模制备,可以满足工业化生产需求。
通过改变微米Al粉的粒径,可以改变B4C/Al冷焊颗粒的尺寸,从而改变非连续层状结构B4C/Al纳米复合材料软质层和硬质层的厚度;通过改变预制体的堆积密度,可以改变复浸渗Al液的体积分数,从而改变非连续层状结构B4C/Al纳米复合材料软质层和硬质层的体积分数。本发明提供的非连续层状结构B4C/Al纳米复合材料制备方法,可以在大范围内实现软质层和硬质层厚度及体积分数的调控,从而制备出不同力学性能及疲劳性能的非连续层状结构B4C/Al纳米复合材料,满足不同领域的应用需求。
附图说明
图1为实施例1得到的非连续层状结构B4C/Al纳米复合材料的显微组织照片;
图2为实施例1得到的非连续层状结构B4C/Al纳米复合材料的S-N曲线;
图3为实施例2得到的非连续层状结构B4C/Al纳米复合材料的显微组织照片;
图4为实施例2得到的非连续层状结构B4C/Al纳米复合材料的S-N曲线。
具体实施方式
具体实施方式一:本实施方式一种抗疲劳非连续层状结构B4C/Al纳米复合材料内部为便质层和软质层交替排列,呈非连续层状结构;纳米B4C增强的Al基复合材料为硬质层、Al为软质层;所述硬质层厚度为5μm~40μm、软质层厚度为1μm~10μm;所述软质层占复合材料体积分数的20%~60%。
具体实施方式二:本实施方式一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法具体按以下步骤进行:
一、片状Al粉制备:对微米尺寸的球形Al粉进行球磨,将球磨后的粉末在氩气气氛下热处理去除硬脂酸,得到片状Al粉;
二、B4C/Al冷焊颗粒制备:将片状Al粉和纳米尺寸B4C粉末混合进行高能球磨,得到纳米B4C增强的冷焊Al颗粒;
三、B4C/Al冷焊颗粒浸渗铝液:将纳米B4C增强的冷焊Al颗粒装入钢模具中压制,得到预制体,对预制体进行保温处理;然后将铝液浇入装有预制体的钢模具中,施加压力进行浸渗,然后自然冷却至室温,脱模后得到纳米B4C不均匀分布的B4C/Al纳米复合材料铸锭;
四、B4C/Al纳米复合材料热挤压:将纳米B4C不均匀分布的B4C/Al纳米复合材料铸锭置于热挤压机中进行热挤压,得到非连续层状结构的B4C/Al纳米复合材料。
本实施方式中浸渗完之后进行挤压,混合的粉末形成硬层,浸渗进去的铝液形成软层。
具体实施方式三:本实施方式与具体实施方式二不同的是:步骤一所述微米尺寸的球形Al粉的粒径为1~100μm,材质为1xxx、2xxx、5xxx、6xxx、7xxx系铝合金或纯铝。其它与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式二不同的是:步骤一所述球磨工艺为:球料比大于5:1、球磨转速大于200rpm、球磨时间大于5h,使用硬脂酸作为过程控制剂,硬脂酸添加量按重量百分比为0.5~2%;所述热处理工艺为:在400℃下保温0.5h。其它与具体实施方式二相同。
具体实施方式五:本实施方式与具体实施方式二不同的是:步骤二所述纳米尺寸B4C粉末的粒径为50~300nm,所述纳米B4C增强的冷焊Al颗中纳米B4C的体积分数为1~8%。其它与具体实施方式二相同。
具体实施方式六:本实施方式与具体实施方式二不同的是:步骤二所述高能球磨工艺为:球料比大于20:1、球磨转速大于250rpm、球磨时间大于5h。其它与具体实施方式二相同。
具体实施方式七:本实施方式与具体实施方式二不同的是:步骤三所述压制工艺为:在50~100MPa的压强下保压15~20min;所述预制体的堆积密度为40%~80%;所述保温处理工艺为:在620~650℃下保温2~5h。其它与具体实施方式二相同。
具体实施方式八:本实施方式与具体实施方式二不同的是:步骤三所述铝液材质为1xxx、2xxx、5xxx、6xxx、7xxx系铝合金或纯铝;铝液与步骤一所述微米尺寸的球形Al粉为同一材质。其它与具体实施方式二相同。
具体实施方式九:本实施方式与具体实施方式八不同的是:步骤三所述铝液浸渗压力为150MPa~250MPa,保压时间为5~10min。其它与具体实施方式八相同。
具体实施方式十:本实施方式与具体实施方式二不同的是:步骤四所述热挤压工艺为:挤压比为8:1、10:1或13:1,挤压温度为350~550℃,挤出速率为0.2~0.5m/min。其它与具体实施方式二相同。
通过以下试验验证本发明的效果:
实施例1:一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法,其特征在于抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法具体按以下步骤进行:
一、片状Al粉制备:称取42.6g的10μm球形纯Al粉,加入0.426g硬脂酸进行球磨,球磨工艺为:球料比10:1,球磨转速200rpm,球磨时间为10h,将球磨后的粉末在氩气气氛下400℃保温0.5h除去硬脂酸,得到片状Al粉;
二、B4C/Al冷焊颗粒制备:将片状Al粉和2.1g粒径为200nm的B4C粉末混合进行高能球磨,得到纳米B4C增强的冷焊Al颗粒;高能球磨工艺为:球料比20:1,球磨转速300rpm,球磨时间为5h,保护气氛为氩气;
三、B4C/Al冷焊颗粒浸渗铝液:将纳米B4C增强的冷焊Al颗粒装入钢模具中施加70MPa的压力,保压15min成型,得到预制体,将预制体在640℃下保温3h;然后将纯铝液浇入装有预制体的钢模具中,施加250MPa的压力进行浸渗,保压10min,然后自然冷却至室温,脱模后得到纳米B4C不均匀分布的B4C/Al纳米复合材料铸锭;
四、B4C/Al纳米复合材料热挤压:将纳米B4C不均匀分布的B4C/Al纳米复合材料铸锭置于热挤压机中进行热挤压,得到非连续层状结构的B4C/Al纳米复合材料;热挤压工艺为:挤压比为10:1,挤压温度为500℃,挤出速率为0.25m/min。
图1为实施例1得到的非连续层状结构B4C/Al纳米复合材料的显微组织照片,能够看出明显的硬质层和软质层,二者呈交叠层状分布,且界面结合良好,无分层等缺陷。硬质层中纳米碳化硼颗粒分布均匀,且与基体结合良好。硬质层平均厚度为8.62μm,软质层平均厚度为2.31μm。
图2为实施例1得到的非连续层状结构B4C/Al纳米复合材料的S-N曲线,在146.7MPa的循环载荷下,疲劳寿命为208330,约为均匀分布的B4C/Al纳米复合材料疲劳寿命的100倍,疲劳极限为73.4MPa,比均匀分布的B4C/Al纳米复合材料高17.5MPa。
实施例2:一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法,其特征在于抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法具体按以下步骤进行:
一、片状Al粉制备:称取42.6g的40μm球形纯Al粉,加入0.426g硬脂酸进行球磨,球磨工艺为:球料比10:1,球磨转速200rpm,球磨时间为10h,将球磨后的粉末在氩气气氛下400℃保温0.5h除去硬脂酸,得到片状Al粉;
二、B4C/Al冷焊颗粒制备:将片状Al粉和2.1g粒径为200nm的B4C粉末混合进行高能球磨,得到纳米B4C增强的冷焊Al颗粒;高能球磨工艺为:球料比20:1,球磨转速300rpm,球磨时间为5h,保护气氛为氩气;
三、B4C/Al冷焊颗粒浸渗铝液:将纳米B4C增强的冷焊Al颗粒装入钢模具中施加50MPa的压力,保压15min成型,得到预制体,将预制体在640℃下保温3h;然后将纯铝液浇入装有预制体的钢模具中,施加250MPa的压力进行浸渗,保压10min,然后自然冷却至室温,脱模后得到纳米B4C不均匀分布的B4C/Al纳米复合材料铸锭;
四、B4C/Al纳米复合材料热挤压:将纳米B4C不均匀分布的B4C/Al纳米复合材料铸锭置于热挤压机中进行热挤压,得到非连续层状结构的B4C/Al纳米复合材料;热挤压工艺为:挤压比为10:1,挤压温度为500℃,挤出速率为0.25m/min。
图3为实施例2得到的非连续层状结构B4C/Al纳米复合材料的显微组织照片,能够看出明显的硬质层和软质层,二者呈交叠层状分布,且界面结合良好,无分层等缺陷。硬质层中纳米碳化硼颗粒分布均匀,且与基体结合良好。硬质层平均厚度为38.5μm,软质层平均厚度为44.6μm。
图4为实施例2得到的非连续层状结构B4C/Al纳米复合材料的S-N曲线,在146.7MPa的循环载荷下,疲劳寿命为57632,约为均匀分布的B4C/Al纳米复合材料疲劳寿命的28倍,疲劳极限为73.4MPa,比均匀分布的B4C/Al纳米复合材料高17.5MPa。

Claims (10)

1.抗疲劳非连续层状结构B4C/Al纳米复合材料,其特征在于抗疲劳非连续层状结构B4C/Al纳米复合材料内部为便质层和软质层交替排列,呈非连续层状结构;纳米B4C增强的Al基复合材料为硬质层、Al为软质层;所述硬质层厚度为5μm~40μm、软质层厚度为1μm~10μm;所述软质层占复合材料体积分数的20%~60%。
2.一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法,其特征在于抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法具体按以下步骤进行:
一、片状Al粉制备:对微米尺寸的球形Al粉进行球磨,将球磨后的粉末在氩气气氛下热处理去除硬脂酸,得到片状Al粉;
二、B4C/Al冷焊颗粒制备:将片状Al粉和纳米尺寸B4C粉末混合进行高能球磨,得到纳米B4C增强的冷焊Al颗粒;
三、B4C/Al冷焊颗粒浸渗铝液:将纳米B4C增强的冷焊Al颗粒装入钢模具中压制,得到预制体,对预制体进行保温处理;然后将铝液浇入装有预制体的钢模具中,施加压力进行浸渗,然后自然冷却至室温,脱模后得到纳米B4C不均匀分布的B4C/Al纳米复合材料铸锭;
四、B4C/Al纳米复合材料热挤压:将纳米B4C不均匀分布的B4C/Al纳米复合材料铸锭置于热挤压机中进行热挤压,得到非连续层状结构的B4C/Al纳米复合材料。
3.根据权利要求2所述的一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法,其特征在于步骤一所述微米尺寸的球形Al粉的粒径为1~100μm,材质为1xxx、2xxx、5xxx、6xxx、7xxx系铝合金或纯铝。
4.根据权利要求2所述的一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法,其特征在于步骤一所述球磨工艺为:球料比大于5:1、球磨转速大于200rpm、球磨时间大于5h,使用硬脂酸作为过程控制剂,硬脂酸添加量按重量百分比为0.5~2%;所述热处理工艺为:在400℃下保温0.5h。
5.根据权利要求2所述的一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法,其特征在于步骤二所述纳米尺寸B4C粉末的粒径为50~300nm,所述纳米B4C增强的冷焊Al颗中纳米B4C的体积分数为1~8%。
6.根据权利要求2所述的一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法,其特征在于步骤二所述高能球磨工艺为:球料比大于20:1、球磨转速大于250rpm、球磨时间大于5h。
7.根据权利要求2所述的一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法,其特征在于步骤三所述压制工艺为:在50~100MPa的压强下保压15~20min;所述预制体的堆积密度为40%~80%;所述保温处理工艺为:在620~650℃下保温2~5h。
8.根据权利要求2所述的一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法,其特征在于步骤三所述铝液材质为1xxx、2xxx、5xxx、6xxx、7xxx系铝合金或纯铝;铝液与步骤一所述微米尺寸的球形Al粉为同一材质。
9.根据权利要求8所述的一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法,其特征在于步骤三所述铝液浸渗压力为150MPa~250MPa,保压时间为5~10min。
10.根据权利要求2所述的一种抗疲劳非连续层状结构B4C/Al纳米复合材料的制备方法,其特征在于步骤四所述热挤压工艺为:挤压比为8:1、10:1或13:1,挤压温度为350~550℃,挤出速率为0.2~0.5m/min。
CN202311374286.5A 2023-10-23 2023-10-23 一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备方法 Pending CN117385236A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311374286.5A CN117385236A (zh) 2023-10-23 2023-10-23 一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311374286.5A CN117385236A (zh) 2023-10-23 2023-10-23 一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN117385236A true CN117385236A (zh) 2024-01-12

Family

ID=89438651

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311374286.5A Pending CN117385236A (zh) 2023-10-23 2023-10-23 一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN117385236A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117733143A (zh) * 2024-02-08 2024-03-22 合肥工业大学 一种B4C增强6082Al复合材料一体化制备工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117733143A (zh) * 2024-02-08 2024-03-22 合肥工业大学 一种B4C增强6082Al复合材料一体化制备工艺
CN117733143B (zh) * 2024-02-08 2024-04-19 合肥工业大学 一种B4C增强6082Al复合材料一体化制备工艺

Similar Documents

Publication Publication Date Title
Surappa Aluminium matrix composites: Challenges and opportunities
US20240060156A1 (en) Method for preparing nano-phase reinforced nickel-based high-temperature alloy using micron ceramic particles
CN111957967B (zh) 一种3d打印制备多尺度陶瓷相增强金属复合材料的方法
CN107805728B (zh) 一种具有多层次梯度结构的功能梯度铝基复合材料及其制备方法
Goh et al. Characterization of high performance Mg/MgO nanocomposites
CN103773997B (zh) 一种航空用仪表级碳化硅增强铝基复合材料及其制备方法
CN109321767B (zh) 一种复合强化法制备混杂颗粒增强铝基复合材料的方法
CN117385236A (zh) 一种抗疲劳非连续层状结构B4C/Al纳米复合材料及其制备方法
CN112267038B (zh) 一种BN纳米片/1060Al复合材料的制备方法
CN109112337B (zh) 石墨烯和碳化硅混杂增强铝基复合材料及其制备方法
US10851443B2 (en) Magnesium composite containing physically bonded magnesium particles
CN111235417A (zh) 一种基于激光选区熔化成形的高性能铝基复合材料及其制备方法
CN114350998A (zh) 一种高性能双相混杂增强铝基复合材料及其制备方法
CN101538672B (zh) 一种金属间化合物超细颗粒增强金属基复合材料
CN108315615B (zh) 一种稀土元素氧化物强化粉末冶金Al-Cu-Mg合金及其制备方法
CN111218587B (zh) 一种铝基复合材料及其制备方法
Chen et al. A review of novel ternary nano-layered MAX phases reinforced AZ91D magnesium composite
CN109576522B (zh) 一种碳化硅增强铝基复合材料及其制备方法
Birsen et al. Microstructure and wear characteristics of hybrid reinforced (ex-situ SiC–in-situ Mg2Si) Al matrix composites produced by vacuum infiltration method
CN114438385A (zh) 一种金属钛颗粒增强镁基复合材料的制备方法
Yu et al. Microstructure evolution and mechanical properties of copper coated graphene nanoflakes/pure titanium matrix composites
CN112296335B (zh) 一种激光选区熔化成形块体纳米孪晶铜基复合材料的方法
CN109338159B (zh) 一种高塑性钛基复合材料制备方法
CN113718185B (zh) 一种含Zr的TiB晶须增强钛基复合材料及其制备方法
CN114951664A (zh) 一种石墨烯与碳化硅混杂增强铝基复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination