CN117367326A - Anti-temperature-interference auto-collimation device and method based on local temperature control - Google Patents
Anti-temperature-interference auto-collimation device and method based on local temperature control Download PDFInfo
- Publication number
- CN117367326A CN117367326A CN202311379440.8A CN202311379440A CN117367326A CN 117367326 A CN117367326 A CN 117367326A CN 202311379440 A CN202311379440 A CN 202311379440A CN 117367326 A CN117367326 A CN 117367326A
- Authority
- CN
- China
- Prior art keywords
- temperature
- thermoelectric
- microprocessor
- objective lens
- collimation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000009529 body temperature measurement Methods 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000005057 refrigeration Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 19
- 238000001816 cooling Methods 0.000 description 13
- 238000010586 diagram Methods 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Temperature (AREA)
Abstract
Description
技术领域Technical field
本发明涉及一种抗温度干扰自准直装置及方法,具体涉及一种基于局部温度控制的抗温度干扰自准直装置及方法,属于精密测量技术领域。The invention relates to an anti-temperature interference self-collimation device and a method, in particular to an anti-temperature interference self-alignment device and method based on local temperature control, and belongs to the field of precision measurement technology.
背景技术Background technique
自准直装置是小角度测量的常用设备,在角度测量、平板的平面度测量、导轨的直线度测量、轴系的角晃动测量等领域应用广泛。高精度的自准直装置主要受限于使用环境,传统自准直装置的关键元器件容易受到工作环境温度变化的影响从而影响自准直装置的测量精度和测量稳定性。The autocollimation device is a commonly used device for small angle measurement. It is widely used in angle measurement, flatness measurement of flat plates, straightness measurement of guide rails, and angular shake measurement of shaft systems. High-precision auto-collimation devices are mainly limited by the use environment. The key components of traditional auto-collimation devices are easily affected by temperature changes in the working environment, thus affecting the measurement accuracy and measurement stability of the auto-collimation device.
发明内容Contents of the invention
本发明为解决传统自准直装置局部关键元器件容易受到工作环境温度变化的影响从而影响自准直装置的测量精度和测量稳定性的问题,进而提出一种基于局部温度控制的抗温度干扰自准直装置及方法,该方法在分光棱镜、准直物镜和CCD传感器上安装热电制冷器用于控制温度,同时使用多个温度传感器分别对这三种关键元器件的温度进行测量;微处理器将温度测量值与预设温度值进行比较,通过驱动电路控制热电制冷器对自准直仪局部关键元器件的温度实时进行闭环反馈控制,减小了工作环境温度变化对分光棱镜、准直物镜和CCD传感器的影响,从而提高自准直仪的抗温度干扰能力。实验表明,该方法能够将自准直仪局部关键元器件的温度波动控制在±0.1℃内,解决传统自准直仪局部关键元器件容易受到工作环境温度变化的影响从而影响自准直仪的测量精度和测量稳定性的问题,提高自准直装置的测量精度和测量稳定性。In order to solve the problem that local key components of traditional autocollimation devices are easily affected by temperature changes in the working environment, thereby affecting the measurement accuracy and measurement stability of the autocollimation device, the present invention further proposes an anti-temperature interference automatic autocollimation device based on local temperature control. A collimation device and method. In this method, a thermoelectric refrigerator is installed on a beam splitter prism, a collimation objective lens, and a CCD sensor to control the temperature. At the same time, multiple temperature sensors are used to measure the temperatures of these three key components respectively; the microprocessor will The temperature measurement value is compared with the preset temperature value, and the thermoelectric refrigerator is controlled by the drive circuit to perform real-time closed-loop feedback control on the temperature of local key components of the autocollimator, which reduces the impact of temperature changes in the working environment on the beam splitting prism, collimating objective lens and CCD sensor, thereby improving the autocollimator's ability to resist temperature interference. Experiments show that this method can control the temperature fluctuation of local key components of the autocollimator within ±0.1°C, solving the problem that local key components of traditional autocollimators are easily affected by temperature changes in the working environment, thereby affecting the performance of the autocollimator. Problems of measurement accuracy and measurement stability, improve the measurement accuracy and measurement stability of the autocollimation device.
本发明为解决上述问题采取的技术方案是:The technical solutions adopted by the present invention to solve the above problems are:
一种基于局部温度控制的抗温度干扰自准直装置,包括自准直本体,所述自准直本体内设有光源、分光棱镜、准直物镜固定件和CCD传感器,准直物镜固定件上安装有准直物镜,光源发出的光束依次穿过分光棱镜、准直物镜、分光棱镜和CCD传感器,分光棱镜、准直物镜固定件、和CCD传感器上均安装有热电制冷器和温度传感器,热电制冷器用于分别对分光棱镜、准直物镜和CCD传感器的温度进行控制,温度传感器用于分别对分光棱镜、准直物镜和CCD传感器的温度进行测量,热电制冷器和温度传感器分别与微处理器连接,热电制冷器通过驱动电路与微处理器连接,温度传感器通过采集电路与微处理器连接。An anti-temperature interference self-collimation device based on local temperature control, including a self-collimation body. The self-collimation body is provided with a light source, a beam splitting prism, a collimation objective lens fixture and a CCD sensor. The collimation objective lens fixture is mounted on the A collimating objective lens is installed, and the light beam emitted by the light source passes through the dichroic prism, collimating objective lens, dichroic prism and CCD sensor in sequence. The dichroic prism, collimating objective lens fixture, and CCD sensor are all equipped with thermoelectric coolers and temperature sensors. The thermoelectric The refrigerator is used to control the temperature of the beam splitting prism, the collimating objective lens and the CCD sensor respectively. The temperature sensor is used to measure the temperature of the beam splitting prism, the collimating objective lens and the CCD sensor respectively. The thermoelectric refrigerator and the temperature sensor are respectively connected with the microprocessor. Connection, the thermoelectric cooler is connected to the microprocessor through the driving circuit, and the temperature sensor is connected to the microprocessor through the acquisition circuit.
进一步的,热电制冷器外侧设有散热器。Furthermore, a radiator is provided outside the thermoelectric refrigerator.
进一步的,所述准直物镜固定件呈四边形或八边形。Further, the collimating objective lens fixing member is in a quadrilateral or octagonal shape.
进一步的,所述准直物镜固定件上的热电制冷器的数量为若干个,若干个热电制冷器沿以准直物镜的中心为圆心的同一圆周均匀分布在所述上准直物镜固定件上。Further, the number of thermoelectric refrigerators on the collimating objective lens holder is several, and several thermoelectric refrigerators are evenly distributed on the upper collimating objective lens holder along the same circle with the center of the collimating objective lens as the center. .
进一步的,分光棱镜上的热电制冷器的数量为若干个,若干个热电制冷器沿分光棱镜的周向均匀分布。Further, the number of thermoelectric refrigerators on the dichroic prism is several, and the several thermoelectric refrigerators are evenly distributed along the circumferential direction of the dichroic prism.
进一步的,分光棱镜、准直物镜固定件、和CCD传感器上的温度传感器分别为若干个,若干个温度传感器分别沿分光棱镜、准直物镜和CCD传感器的周向均匀分布。Further, there are several temperature sensors on the dichroic prism, the collimating objective lens holder, and the CCD sensor respectively, and the several temperature sensors are evenly distributed along the circumferential direction of the dichroic prism, the collimating objective lens, and the CCD sensor.
进一步的,所述温度传感器为红外测温传感器。Further, the temperature sensor is an infrared temperature sensor.
一种基于局部温度控制的抗温度干扰自准直方法,所述方法通过以下步骤实现:An anti-temperature interference autocollimation method based on local temperature control, which is implemented through the following steps:
S1:通过微处理器设定预设温度;S1: Set the preset temperature through the microprocessor;
S2:通过温度传感器进行温度测量;S2: Temperature measurement through temperature sensor;
S3:微处理器通过采集电路得到S2中的温度测量值;S3: The microprocessor obtains the temperature measurement value in S2 through the acquisition circuit;
S4:通过S3中得到的测量值分别记录和计算分光棱镜温度、CCD传感器温度和准直物镜温度;S4: Record and calculate the dichroic prism temperature, CCD sensor temperature and collimating objective lens temperature using the measured values obtained in S3;
S5:将S4中得到的分光棱镜温度与S1中预设温度作比较,计算温度差值的绝对值,并判断温度差值的绝对值大于0.1是否成立,若为是进入下一步,若为否则微处理器通过驱动电路控制热电制冷器停止工作;S5: Compare the temperature of the dichroic prism obtained in S4 with the preset temperature in S1, calculate the absolute value of the temperature difference, and determine whether the absolute value of the temperature difference is greater than 0.1. If yes, go to the next step. If not, go to the next step. The microprocessor controls the thermoelectric refrigerator to stop working through the drive circuit;
将S4中得到的CCD传感器温度与S1中预设温度作比较,计算温度差值的绝对值,并判断温度差值的绝对值大于0.1是否成立,若为是进入下一步,若为否则微处理器通过驱动电路控制热电制冷器停止工作;Compare the CCD sensor temperature obtained in S4 with the preset temperature in S1, calculate the absolute value of the temperature difference, and determine whether the absolute value of the temperature difference is greater than 0.1. If yes, go to the next step. If not, microprocessing The device controls the thermoelectric cooler to stop working through the drive circuit;
将S4中得到的准直物镜温度与S1中预设温度作比较,计算温度差值的绝对值,并判断温度差值的绝对值大于0.1是否成立,若为是进入下一步,若为否则微处理器通过驱动电路控制热电制冷器停止工作;Compare the collimating objective lens temperature obtained in S4 with the preset temperature in S1, calculate the absolute value of the temperature difference, and determine whether the absolute value of the temperature difference is greater than 0.1. If yes, proceed to the next step. If yes, otherwise slightly The processor controls the thermoelectric cooler to stop working through the drive circuit;
S6:将S4中得到的分光棱镜温度与S1中预设温度作比较,并判断分光棱镜温度大于预设温度是否成立,若为是则微处理器通过驱动电路控制热电制冷器进行制冷,若为否则微处理器通过驱动电路控制热电制冷器进行加热;S6: Compare the temperature of the dichroic prism obtained in S4 with the preset temperature in S1, and determine whether the temperature of the dichroic prism is greater than the preset temperature. If so, the microprocessor controls the thermoelectric refrigerator for cooling through the drive circuit. If so, Otherwise, the microprocessor controls the thermoelectric cooler for heating through the drive circuit;
将S4中得到的CCD传感器温度与S1中预设温度作比较,并判断CCD传感器温度大于预设温度是否成立,若为是则微处理器通过驱动电路控制热电制冷器进行制冷,若为否则微处理器通过驱动电路控制热电制冷器进行加热;Compare the CCD sensor temperature obtained in S4 with the preset temperature in S1, and determine whether the CCD sensor temperature is greater than the preset temperature. If yes, the microprocessor controls the thermoelectric refrigerator for cooling through the drive circuit. If not, the microprocessor The processor controls the thermoelectric cooler for heating through the drive circuit;
将S4中得到的准直物镜温度与S1中预设温度作比较,并判断准直物镜温度大于预设温度是否成立,若为是则微处理器通过驱动电路控制热电制冷器进行制冷,若为否则微处理器通过驱动电路控制热电制冷器进行加热;Compare the collimating objective lens temperature obtained in S4 with the preset temperature in S1, and determine whether the collimating objective lens temperature is greater than the preset temperature. If so, the microprocessor controls the thermoelectric refrigerator for cooling through the drive circuit. If so, Otherwise, the microprocessor controls the thermoelectric cooler for heating through the drive circuit;
S7:循环S2至S6,完成温度控制。S7: Loop from S2 to S6 to complete temperature control.
进一步的,当S3中的热电制冷器和温度传感器为多个时,对多个热电制冷器和温度传感器采用集中控制,S4中记录方法采用温度测量平均值。Furthermore, when there are multiple thermoelectric refrigerators and temperature sensors in S3, centralized control is adopted for the multiple thermoelectric refrigerators and temperature sensors, and the recording method in S4 adopts the average temperature measurement.
进一步的,当S3中的热电制冷器和温度传感器为多个时,对多个热电制冷器和温度传感器采用独立控制,S4中记录方法采用温度测量逐值记录。Furthermore, when there are multiple thermoelectric refrigerators and temperature sensors in S3, independent control is adopted for the multiple thermoelectric refrigerators and temperature sensors, and the recording method in S4 adopts temperature measurement and value-by-value recording.
本发明的有益效果是:The beneficial effects of the present invention are:
1.针对自准直仪测量精度及稳定性容易受到工作温度变化影响的问题;提出了一种基于局部温度控制的抗温度干扰自准直方法与装置;通过在分光棱镜、准直物镜和CCD传感器安装温度传感器和热电制冷器,微处理器采集温度测量值并通过热电制冷器控制局部元器件温度;最终使分光棱镜、准直物镜和CCD传感器的温度波动在±0.1℃以内,提高了自准直仪的抗温度干扰能力。1. Aiming at the problem that the measurement accuracy and stability of autocollimators are easily affected by changes in operating temperature; a temperature-resistant autocollimation method and device based on local temperature control is proposed; by using the spectroscopic prism, collimating objective lens and CCD The sensor is equipped with a temperature sensor and a thermoelectric refrigerator. The microprocessor collects the temperature measurement values and controls the temperature of local components through the thermoelectric refrigerator; ultimately, the temperature fluctuations of the beam splitter prism, collimating objective lens and CCD sensor are within ±0.1°C, which improves the accuracy of the sensor. The ability of the collimator to resist temperature interference.
2.针对自准直仪工作所处温度场不均匀的问题,通过对分光棱镜、准直物镜和CCD传感器的温度进行独立控制,实现对关键元器件的精确控温,使各元器件温度基本相同,进一步提高了自准直仪的抗温度干扰能力。2. In view of the problem of uneven temperature field in which the autocollimator works, by independently controlling the temperature of the beam splitter prism, collimating objective lens and CCD sensor, precise temperature control of key components is achieved, so that the temperature of each component is basically the same. Similarly, the anti-temperature interference ability of the autocollimator is further improved.
3.相对于传统自准直仪,在仪器外部加装了散热器,提高了仪器的温度控制效率。3. Compared with traditional autocollimators, a radiator is installed outside the instrument, which improves the temperature control efficiency of the instrument.
附图说明Description of the drawings
图1是本发明基于局部温度控制的抗温度干扰自准直装置的一种实施方式的主视图。Figure 1 is a front view of an embodiment of the anti-temperature interference auto-collimation device based on local temperature control of the present invention.
图2是图1实施方式的俯视图。FIG. 2 is a top view of the embodiment of FIG. 1 .
图3是图1实施方式的右视图。FIG. 3 is a right side view of the embodiment of FIG. 1 .
图4是本发明准直物镜固定件的一种实施方式的结构示意图。Figure 4 is a schematic structural diagram of an embodiment of the collimating objective lens fixing member of the present invention.
图5是本发明基于局部温度控制的抗温度干扰自准直装置的模型示意图。Figure 5 is a schematic model diagram of the temperature-interference-resistant auto-collimation device based on local temperature control of the present invention.
图6是本发明基于局部温度控制的抗温度干扰自准直方法的第一种实施方式示意图。Figure 6 is a schematic diagram of the first implementation of the anti-temperature interference auto-collimation method based on local temperature control of the present invention.
图7是本发明基于局部温度控制的抗温度干扰自准直方法的第二种实施方式示意图。Figure 7 is a schematic diagram of the second embodiment of the present invention's anti-temperature interference auto-collimation method based on local temperature control.
图中:1、光源;2、分光棱镜;3、准直物镜;4、CCD传感器;51、第一温度传感器;52、第二温度传感器;53、第三温度传感器;54、第四温度传感器;55、第五温度传感器;56、第六温度传感器;57、第七温度传感器;58、第八温度传感器;71、第一热电制冷器;72、第二热电制冷器;73、第三热电制冷器;74、第四热电制冷器;75、第五热电制冷器;76、第六热电制冷器;77、第七热电制冷器;91、第一散热器;92、第二散热器;93、第三散热器;94、第四散热器;95、第五散热器;96、第六散热器;97、第七散热器;10、微处理器;111、第一温度采集电路;112、第二温度采集电路;113、第三温度采集电路;121、第一驱动电路;122、第二驱动电路;123、第三驱动电路。In the picture: 1. Light source; 2. Beam splitting prism; 3. Collimating objective lens; 4. CCD sensor; 51. First temperature sensor; 52. Second temperature sensor; 53. Third temperature sensor; 54. Fourth temperature sensor ; 55. The fifth temperature sensor; 56. The sixth temperature sensor; 57. The seventh temperature sensor; 58. The eighth temperature sensor; 71. The first thermoelectric refrigerator; 72. The second thermoelectric refrigerator; 73. The third thermoelectric refrigerator Refrigerator; 74. The fourth thermoelectric refrigerator; 75. The fifth thermoelectric refrigerator; 76. The sixth thermoelectric refrigerator; 77. The seventh thermoelectric refrigerator; 91. The first radiator; 92. The second radiator; 93 , The third radiator; 94. The fourth radiator; 95. The fifth radiator; 96. The sixth radiator; 97. The seventh radiator; 10. Microprocessor; 111. The first temperature acquisition circuit; 112. The second temperature collection circuit; 113. The third temperature collection circuit; 121. The first driving circuit; 122. The second driving circuit; 123. The third driving circuit.
具体实施方式Detailed ways
下面,结合附图对本发明做出进一步的描述:Below, the present invention will be further described in conjunction with the accompanying drawings:
具体实施方式一:结合图1-7说明本实施方式,如图1-5所示,本实施方式所述一种基于局部温度控制的抗温度干扰自准直装置,包括自准直本体,所述自准直本体内设有光源1、分光棱镜2、准直物镜固定件和CCD传感器4,所述准直物镜固定件上安装有准直物镜3,光源1发出的光束依次穿过分光棱镜2、准直物镜3、分光棱镜2和CCD传感器4。分光棱镜2、准直物镜固定件、和CCD传感器4上均安装有热电制冷器和温度传感器,热电制冷器用于分别对分光棱镜2、准直物镜3和CCD传感器4的温度进行控制,优选的,所述准直物镜固定件上的热电制冷器的数量为若干个,若干个热电制冷器沿以准直物镜3的中心为圆心的同一圆周均匀分布在所述上准直物镜固定件上,分光棱镜2上的热电制冷器的数量为若干个,若干个热电制冷器沿分光棱镜2的周向均匀分布。多个热电制冷器可更加精准的控制局部元器件温度。温度传感器用于分别对分光棱镜2、准直物镜3和CCD传感器4的温度进行测量,优选的,分光棱镜2、准直物镜固定件、和CCD传感器4上的温度传感器分别为若干个,若干个温度传感器分别沿分光棱镜2、准直物镜3和CCD传感器4的周向均匀分布。同时使用多个温度传感器分别对这三种关键元器件的温度进行测量,可更加精准的测量分光棱镜2、准直物镜3和CCD传感器4的温度。热电制冷器和温度传感器分别与微处理器10连接,热电制冷器通过驱动电路与微处理器10连接,温度传感器通过采集电路与微处理器10连接。微处理器10采集温度传感器的温度测量值同时将温度测量值与预设温度值进行比较,并通过热电制冷器控制局部元器件温度,通过驱动电路控制热电制冷器对自准直装置局部关键元器件的温度实时进行闭环反馈控制。减小了工作环境温度变化对分光棱镜2、准直物镜3和CCD传感器4的影响,从而提高自准直装置的抗温度干扰能力。优选的,温度传感器为红外测温传感器,能够通过无接触测量直接测量元器件温度,控温更加精确。所述准直物镜固定件为呈四边形状与所述自准直本体相适形的环形框架,所述准直物镜固定件呈八边形状,便于热电制冷器和温度传感器的安装,使准直物镜3受热更加均匀。热电制冷器外侧加设有散热器,加快了温度散热速率,进一步提高了仪器的温度控制效率。Specific Embodiment 1: This embodiment will be described with reference to Figures 1-7. As shown in Figures 1-5, this embodiment describes an anti-temperature interference auto-collimation device based on local temperature control, including an auto-collimation body. The self-collimating body is provided with a light source 1, a dichroic prism 2, a collimating objective lens holder and a CCD sensor 4. A collimating objective lens 3 is installed on the collimating objective lens holder, and the light beam emitted by the light source 1 passes through the dichroic prism in turn. 2. Collimating objective lens 3, beam splitter prism 2 and CCD sensor 4. Thermoelectric coolers and temperature sensors are installed on the dichroic prism 2, the collimating objective lens holder, and the CCD sensor 4. The thermoelectric coolers are used to control the temperatures of the dichroic prism 2, the collimating objective lens 3, and the CCD sensor 4 respectively. Preferably , the number of thermoelectric refrigerators on the collimating objective lens holder is several, and several thermoelectric refrigerators are evenly distributed on the upper collimating objective lens holder along the same circle with the center of the collimating objective lens 3 as the center, The number of thermoelectric coolers on the dichroic prism 2 is several, and the several thermoelectric coolers are evenly distributed along the circumferential direction of the dichroic prism 2 . Multiple thermoelectric coolers can more accurately control the temperature of local components. The temperature sensor is used to measure the temperature of the dichroic prism 2, the collimating objective lens 3 and the CCD sensor 4 respectively. Preferably, there are several temperature sensors on the dichroic prism 2, the collimating objective lens holder and the CCD sensor 4 respectively. The temperature sensors are evenly distributed along the circumferential direction of the beam splitter prism 2, the collimating objective lens 3 and the CCD sensor 4 respectively. Using multiple temperature sensors to measure the temperatures of these three key components at the same time can more accurately measure the temperatures of the beam splitter prism 2, collimating objective lens 3 and CCD sensor 4. The thermoelectric refrigerator and the temperature sensor are respectively connected to the microprocessor 10. The thermoelectric refrigerator is connected to the microprocessor 10 through a driving circuit, and the temperature sensor is connected to the microprocessor 10 through a collection circuit. The microprocessor 10 collects the temperature measurement value of the temperature sensor and compares the temperature measurement value with the preset temperature value, controls the temperature of the local components through the thermoelectric refrigerator, and controls the thermoelectric refrigerator to control the local key components of the autocollimation device through the drive circuit. The temperature of the device is controlled by closed-loop feedback in real time. The impact of temperature changes in the working environment on the beam splitter prism 2, collimating objective lens 3 and CCD sensor 4 is reduced, thereby improving the anti-temperature interference capability of the autocollimation device. Preferably, the temperature sensor is an infrared temperature sensor, which can directly measure the temperature of components through non-contact measurement, making temperature control more accurate. The collimating objective lens fixing part is an annular frame with a four-sided shape that is compatible with the self-collimating body. The collimating objective lens fixing part is in an octagonal shape, which facilitates the installation of the thermoelectric cooler and the temperature sensor, making the collimation more efficient. The objective lens 3 is heated more evenly. A radiator is installed on the outside of the thermoelectric refrigerator, which speeds up the temperature dissipation rate and further improves the temperature control efficiency of the instrument.
一种基于局部温度控制的抗温度干扰自准直方法,所述方法通过以下步骤实现:An anti-temperature interference autocollimation method based on local temperature control, which is implemented through the following steps:
S1:通过微处理器10设定预设温度;S1: Set the preset temperature through the microprocessor 10;
S2:通过温度传感器进行温度测量;S2: Temperature measurement through temperature sensor;
S3:微处理器10通过采集电路得到S2中的温度测量值;S3: The microprocessor 10 obtains the temperature measurement value in S2 through the acquisition circuit;
S4:通过S3中得到的测量值分别记录和计算分光棱镜2温度、CCD传感器4温度和准直物镜3温度;S4: Record and calculate the temperature of the dichroic prism 2, the temperature of the CCD sensor 4 and the temperature of the collimating objective lens 3 respectively through the measurement values obtained in S3;
S5:将S4中得到的分光棱镜2温度与S1中预设温度作比较,计算温度差值的绝对值,并判断温度差值的绝对值大于0.1是否成立,若为是进入下一步,若为否则微处理器10通过驱动电路控制热电制冷器停止工作;S5: Compare the temperature of the dichroic prism 2 obtained in S4 with the preset temperature in S1, calculate the absolute value of the temperature difference, and determine whether the absolute value of the temperature difference is greater than 0.1. If yes, go to the next step. If yes, go to the next step. Otherwise, the microprocessor 10 controls the thermoelectric refrigerator to stop working through the drive circuit;
将S4中得到的CCD传感器4温度与S1中预设温度作比较,计算温度差值的绝对值,并判断温度差值的绝对值大于0.1是否成立,若为是进入下一步,若为否则微处理器10通过驱动电路控制热电制冷器停止工作;Compare the CCD sensor 4 temperature obtained in S4 with the preset temperature in S1, calculate the absolute value of the temperature difference, and determine whether the absolute value of the temperature difference is greater than 0.1. If yes, go to the next step. If yes, otherwise. The processor 10 controls the thermoelectric refrigerator to stop working through the drive circuit;
将S4中得到的准直物镜3温度与S1中预设温度作比较,计算温度差值的绝对值,并判断温度差值的绝对值大于0.1是否成立,若为是进入下一步,若为否则微处理器10通过驱动电路控制热电制冷器停止工作;Compare the temperature of the collimating objective lens 3 obtained in S4 with the preset temperature in S1, calculate the absolute value of the temperature difference, and determine whether the absolute value of the temperature difference is greater than 0.1. If yes, go to the next step. If not, go to the next step. The microprocessor 10 controls the thermoelectric refrigerator to stop working through the drive circuit;
S6:将S4中得到的分光棱镜2温度与S1中预设温度作比较,并判断分光棱镜2温度大于预设温度是否成立,若为是则微处理器10通过驱动电路控制热电制冷器进行制冷,若为否则微处理器10通过驱动电路控制热电制冷器进行加热;S6: Compare the temperature of the dichroic prism 2 obtained in S4 with the preset temperature in S1, and determine whether the temperature of the dichroic prism 2 is greater than the preset temperature. If yes, the microprocessor 10 controls the thermoelectric refrigerator through the drive circuit for cooling. , if not, the microprocessor 10 controls the thermoelectric cooler to heat through the driving circuit;
将S4中得到的CCD传感器4温度与S1中预设温度作比较,并判断CCD传感器4温度大于预设温度是否成立,若为是则微处理器10通过驱动电路控制热电制冷器进行制冷,若为否则微处理器10通过驱动电路控制热电制冷器进行加热;Compare the temperature of the CCD sensor 4 obtained in S4 with the preset temperature in S1, and determine whether the temperature of the CCD sensor 4 is greater than the preset temperature. If so, the microprocessor 10 controls the thermoelectric refrigerator to perform cooling through the drive circuit. If Otherwise, the microprocessor 10 controls the thermoelectric refrigerator to heat through the driving circuit;
将S4中得到的准直物镜3温度与S1中预设温度作比较,并判断准直物镜3温度大于预设温度是否成立,若为是则微处理器10通过驱动电路控制热电制冷器进行制冷,若为否则微处理器10通过驱动电路控制热电制冷器进行加热;Compare the temperature of the collimating objective lens 3 obtained in S4 with the preset temperature in S1, and determine whether the temperature of the collimating objective lens 3 is greater than the preset temperature. If so, the microprocessor 10 controls the thermoelectric refrigerator through the drive circuit for cooling. , if not, the microprocessor 10 controls the thermoelectric cooler to heat through the drive circuit;
S7:循环S2至S6,完成温度控制。S7: Loop from S2 to S6 to complete temperature control.
当S3中的热电制冷器和温度传感器为多个时,对多个热电制冷器和温度传感器可采用集中控制或独立控制,当为集中控制时,S4中记录方法采用温度测量平均值,便于减小温度测量误差;当为独立控制,S4中记录方法采用温度测量逐值记录,以使元器件受热更加均匀。When there are multiple thermoelectric coolers and temperature sensors in S3, centralized control or independent control can be used for multiple thermoelectric coolers and temperature sensors. When centralized control is used, the recording method in S4 uses the average temperature measurement to facilitate reduction. Small temperature measurement error; when it is independently controlled, the recording method in S4 adopts temperature measurement value-by-value recording to make the components heated more evenly.
具体的,分光棱镜2上设有第一温度传感器51及第二温度传感器52,用于测量分光棱镜2的温度值,分光棱镜2上设有第一热电制冷器71及第二热电制冷器72,用于控制分光棱镜2温度,第一热电制冷器71外侧安装有第一散热器91,第二热电制冷器72外侧安装有第二散热器92,用于加快温度散热速率;CCD传感器4上设有第三温度传感器53及第四温度传感器54,用于测量CCD传感器4的温度值,CCD传感器4上设有第三热电制冷器73,用于控制CCD传感器4温度,第三热电制冷器73外侧安装有第三散热器93,用于加快温度散热速率;准直物镜固定件上设有第五温度传感器55、第六温度传感器56、第七温度传感器57及第八温度传感器58,用于测量准直物镜3的温度值,准直物镜固定件上设有第四热电制冷器74、第五热电制冷器75、第六热电制冷器76及第七热电制冷器77控制准直物镜3温度,第四热电制冷器74外侧安装有第四散热器94,第五热电制冷器75外侧安装有第五散热器95,第六热电制冷器76外侧安装有第六散热器96,第七热电制冷器77外侧安装有第七散热器97,用于加快温度散热速率。Specifically, the dichroic prism 2 is provided with a first temperature sensor 51 and a second temperature sensor 52 for measuring the temperature value of the dichroic prism 2. The dichroic prism 2 is provided with a first thermoelectric cooler 71 and a second thermoelectric cooler 72. , used to control the temperature of the dichroic prism 2, a first radiator 91 is installed outside the first thermoelectric cooler 71, and a second radiator 92 is installed outside the second thermoelectric cooler 72 to speed up the temperature heat dissipation rate; on the CCD sensor 4 A third temperature sensor 53 and a fourth temperature sensor 54 are provided for measuring the temperature value of the CCD sensor 4. A third thermoelectric cooler 73 is provided on the CCD sensor 4 for controlling the temperature of the CCD sensor 4. The third thermoelectric cooler A third radiator 93 is installed on the outside of 73 for accelerating the temperature dissipation rate; a fifth temperature sensor 55, a sixth temperature sensor 56, a seventh temperature sensor 57 and an eighth temperature sensor 58 are provided on the collimating objective lens holder. To measure the temperature value of the collimating objective lens 3, a fourth thermoelectric cooler 74, a fifth thermoelectric cooler 75, a sixth thermoelectric cooler 76 and a seventh thermoelectric cooler 77 are provided on the collimating objective lens holder to control the collimating objective lens 3. temperature, the fourth radiator 94 is installed outside the fourth thermoelectric refrigerator 74, the fifth radiator 95 is installed outside the fifth thermoelectric refrigerator 75, the sixth radiator 96 is installed outside the sixth thermoelectric refrigerator 76, and the seventh thermoelectric refrigerator 76 is installed outside the fourth radiator 94. A seventh radiator 97 is installed outside the refrigerator 77 for accelerating the temperature heat dissipation rate.
第一温度采集电路111采集第一温度传感器51及第二温度传感器52的温度测量值传递给微处理器10,向第一驱动电路121发送反馈信号;第二温度采集电路112采集第三温度传感器53及第四温度传感器54的温度测量值传递给微处理器10,向第二驱动电路122发送反馈信号;第三温度采集电路113采集第五温度传感器55、第六温度传感器56、第七温度传感器57及第八温度传感器58的温度测量值传递给微处理器10,向第三驱动电路123发送反馈信号。第一驱动电路121控制第一热电制冷器71及第二热电制冷器72控制分光棱镜2温度;第二驱动电路122控制第三热电制冷器73控制CCD传感器4温度;第三驱动电路123控制第四热电制冷器74、第五热电制冷器75、第六热电制冷器76及第七热电制冷器77控制准直物镜3温度。The first temperature acquisition circuit 111 collects the temperature measurement values of the first temperature sensor 51 and the second temperature sensor 52 and transmits them to the microprocessor 10 and sends a feedback signal to the first drive circuit 121; the second temperature acquisition circuit 112 collects the third temperature sensor 53 and the temperature measurement values of the fourth temperature sensor 54 are transmitted to the microprocessor 10, and a feedback signal is sent to the second drive circuit 122; the third temperature acquisition circuit 113 collects the fifth temperature sensor 55, the sixth temperature sensor 56, the seventh temperature The temperature measurement values of the sensor 57 and the eighth temperature sensor 58 are transmitted to the microprocessor 10 and a feedback signal is sent to the third driving circuit 123 . The first driving circuit 121 controls the first thermoelectric refrigerator 71 and the second thermoelectric refrigerator 72 to control the temperature of the dichroic prism 2; the second driving circuit 122 controls the third thermoelectric refrigerator 73 to control the temperature of the CCD sensor 4; the third driving circuit 123 controls the temperature of the CCD sensor 4. The fourth thermoelectric cooler 74 , the fifth thermoelectric cooler 75 , the sixth thermoelectric cooler 76 and the seventh thermoelectric cooler 77 control the temperature of the collimating objective lens 3 .
在上述基于局部温度控制的抗温度干扰自准直装置上实现的基于局部温度控制的抗温度干扰自准直方法,如图6所示,采用温度测量平均值时具体步骤如下:The anti-temperature interference auto-collimation method based on local temperature control implemented on the above-mentioned anti-temperature interference auto-collimation device based on local temperature control is shown in Figure 6. The specific steps when using the temperature measurement average are as follows:
S1:通过微处理器10设定预设温度T0;S1: Set the preset temperature T0 through the microprocessor 10;
S2:第一温度传感器51、第二温度传感器52、第三温度传感器53、第四温度传感器54、第五温度传感器55、第六温度传感器56、第七温度传感器57、第八温度传感器58进行温度测量;S2: The first temperature sensor 51 , the second temperature sensor 52 , the third temperature sensor 53 , the fourth temperature sensor 54 , the fifth temperature sensor 55 , the sixth temperature sensor 56 , the seventh temperature sensor 57 , and the eighth temperature sensor 58 are performed. temperature measurement;
S3:微处理器10通过第一温度采集电路111、第二温度采集电路112、第三温度采集电路113得到温度测量值T1、T2、T3、T4、T5、T6、T7、T8;S3: The microprocessor 10 obtains the temperature measurement values T1, T2, T3, T4, T5, T6, T7, and T8 through the first temperature acquisition circuit 111, the second temperature acquisition circuit 112, and the third temperature acquisition circuit 113;
S4:记录和计算分光棱镜2温度Tt1=(T1+T2)/2、CCD传感器4温度Tt2=(T3+T4)/2、准直物镜3温度Tt3=(T5+T6+T7+T8)/4;S4: Record and calculate the temperature of beam splitter prism 2 Tt1=(T1+T2)/2, the temperature of CCD sensor 4 Tt2=(T3+T4)/2, the temperature of collimating objective lens 3 Tt3=(T5+T6+T7+T8)/ 4;
S5:将S4中得到的分光棱镜2温度Tt1与S1中预设温度T0作比较,计算温度差值的绝对值|Tt1-T0|,并判断|Tt1-T0|>0.1是否成立,若为是进入下一步,若为否则微处理器10通过驱动电路控制热电制冷器停止工作;S5: Compare the temperature Tt1 of the dichroic prism 2 obtained in S4 with the preset temperature T0 in S1, calculate the absolute value of the temperature difference |Tt1-T0|, and determine whether |Tt1-T0|>0.1 is true, and if so, Go to the next step, if not, the microprocessor 10 controls the thermoelectric refrigerator to stop working through the drive circuit;
将S4中得到的CCD传感器4温度Tt2与S1中预设温度T0作比较,计算温度差值的绝对值|Tt2-T0|,并判断|Tt2-T0|>0.1是否成立,若为是进入下一步,若为否则微处理器10通过驱动电路控制热电制冷器停止工作;Compare the CCD sensor 4 temperature Tt2 obtained in S4 with the preset temperature T0 in S1, calculate the absolute value of the temperature difference |Tt2-T0|, and determine whether |Tt2-T0|>0.1 is true. If so, proceed to the next step. Step, if otherwise, the microprocessor 10 controls the thermoelectric refrigerator to stop working through the drive circuit;
将S4中得到的准直物镜3温度Tt3与S1中预设温度T0作比较,计算温度差值的绝对值|Tt3-T0|,并判断|Tt3-T0|>0.1是否成立,若为是进入下一步,若为否则微处理器10通过驱动电路控制热电制冷器停止工作;Compare the temperature Tt3 of the collimating objective lens 3 obtained in S4 with the preset temperature T0 in S1, calculate the absolute value of the temperature difference |Tt3-T0|, and determine whether |Tt3-T0|>0.1 is true. If yes, enter Next, if not, the microprocessor 10 controls the thermoelectric refrigerator to stop working through the drive circuit;
S6:将S4中得到的分光棱镜2温度Tt1与S1中预设温度T0作比较,并判断Tt1>T0是否成立,若为是则微处理器10通过驱动电路控制热电制冷器进行制冷,若为否则微处理器10通过驱动电路控制热电制冷器进行加热;S6: Compare the temperature Tt1 of the dichroic prism 2 obtained in S4 with the preset temperature T0 in S1, and determine whether Tt1>T0 is true. If so, the microprocessor 10 controls the thermoelectric refrigerator for cooling through the drive circuit. If so, Otherwise, the microprocessor 10 controls the thermoelectric refrigerator to heat through the driving circuit;
将S4中得到的CCD传感器4温度Tt2与S1中预设温度T0作比较,并判断Tt2>T0是否成立,若为是则微处理器10通过驱动电路控制热电制冷器进行制冷,若为否则微处理器10通过驱动电路控制热电制冷器进行加热;Compare the temperature Tt2 of the CCD sensor 4 obtained in S4 with the preset temperature T0 in S1, and determine whether Tt2>T0 is true. If so, the microprocessor 10 controls the thermoelectric refrigerator to perform cooling through the drive circuit. If not, the microprocessor 10 controls the thermoelectric refrigerator for cooling. The processor 10 controls the thermoelectric refrigerator to perform heating through the drive circuit;
将S4中得到的准直物镜3温度Tt3与S1中预设温度T0作比较,并判断Tt3>T0是否成立,若为是则微处理器10通过驱动电路控制热电制冷器进行制冷,若为否则微处理器10通过驱动电路控制热电制冷器进行加热;Compare the temperature Tt3 of the collimating objective lens 3 obtained in S4 with the preset temperature T0 in S1, and determine whether Tt3>T0 is true. If so, the microprocessor 10 controls the thermoelectric refrigerator for cooling through the drive circuit. If not, The microprocessor 10 controls the thermoelectric refrigerator for heating through the drive circuit;
S7:循环S2至S6,完成自准直装置关键元器件的温度控制。S7: Loop from S2 to S6 to complete the temperature control of key components of the autocollimation device.
在上述基于局部温度控制的抗温度干扰自准直装置上实现的基于局部温度控制的抗温度干扰自准直方法,如图7所示,采用温度测量逐值比较时具体步骤如下:The anti-temperature interference auto-collimation method based on local temperature control implemented on the above-mentioned anti-temperature interference auto-collimation device based on local temperature control is shown in Figure 7. The specific steps for value-by-value comparison using temperature measurement are as follows:
S1:通过微处理器10设定预设温度T0;S1: Set the preset temperature T0 through the microprocessor 10;
S2:第一温度传感器51、第二温度传感器52、第三温度传感器53、第四温度传感器54、第五温度传感器55、第六温度传感器56、第七温度传感器57、第八温度传感器58进行温度测量;S2: The first temperature sensor 51 , the second temperature sensor 52 , the third temperature sensor 53 , the fourth temperature sensor 54 , the fifth temperature sensor 55 , the sixth temperature sensor 56 , the seventh temperature sensor 57 , and the eighth temperature sensor 58 are performed. temperature measurement;
S3:微处理器10通过第一温度采集电路111、第二温度采集电路112、第三温度采集电路113得到温度测量值T1、T2、T3、T4、T5、T6、T7、T8;S3: The microprocessor 10 obtains the temperature measurement values T1, T2, T3, T4, T5, T6, T7, and T8 through the first temperature acquisition circuit 111, the second temperature acquisition circuit 112, and the third temperature acquisition circuit 113;
S4:记录和计算分光棱镜2温度T1、T2,CCD传感器4温度T3、T4,准直物镜3温度T5、T6、T7、T8;S4: Record and calculate the temperatures T1 and T2 of the beam splitter prism 2, the temperatures T3 and T4 of the CCD sensor 4, and the temperatures T5, T6, T7, and T8 of the collimating objective lens 3;
S5:将S4中得到的分光棱镜2温度T1、T2与S1中预设温度T0作比较,计算温度差值的绝对值|T1-T0|、|T2-T0|,并分别判断|T1-T0|>0.1及|T2-T0|>0.1是否成立,若为是进入下一步,若为否则微处理器10通过驱动电路控制热电制冷器停止工作;S5: Compare the temperatures T1 and T2 of the dichroic prism 2 obtained in S4 with the preset temperature T0 in S1, calculate the absolute values of the temperature differences |T1-T0|, |T2-T0|, and judge |T1-T0 respectively. Whether |>0.1 and |T2-T0|>0.1 are established, if yes, go to the next step, if not, the microprocessor 10 controls the thermoelectric refrigerator to stop working through the drive circuit;
将S4中得到的CCD传感器4温度T3、T4与S1中预设温度T0作比较,计算温度差值的绝对值|T3-T0|、|T4-T0|,并分别判断|T3-T0|>0.1及|T4-T0|>0.1是否成立,若为是进入下一步,若为否则微处理器10通过驱动电路控制热电制冷器停止工作;Compare the CCD sensor 4 temperatures T3 and T4 obtained in S4 with the preset temperature T0 in S1, calculate the absolute values of the temperature differences |T3-T0|, |T4-T0|, and judge |T3-T0|> respectively. 0.1 and |T4-T0|>0.1 are established, if yes, go to the next step, if not, the microprocessor 10 controls the thermoelectric refrigerator to stop working through the drive circuit;
将S4中得到的准直物镜3温度T5、T6、T7、T8与S1中预设温度T0作比较,计算温度差值的绝对值|T5-T0|、|T6-T0|、|T7-T0|、|T8-T0|,并分别判断|T5-T0|>0.1、|T6-T0|>0.1、|T7-T0|>0.1及|T8-T0|>0.1是否成立,若为是进入下一步,若为否则微处理器10通过驱动电路控制热电制冷器停止工作;Compare the temperatures T5, T6, T7, and T8 of the collimating objective lens 3 obtained in S4 with the preset temperature T0 in S1, and calculate the absolute values of the temperature differences |T5-T0|, |T6-T0|, and |T7-T0 |, |T8-T0|, and judge whether |T5-T0|>0.1, |T6-T0|>0.1, |T7-T0|>0.1 and |T8-T0|>0.1 respectively. If yes, enter the next step. Step, if otherwise, the microprocessor 10 controls the thermoelectric refrigerator to stop working through the drive circuit;
S6:将S4中得到的分光棱镜2温度T1、T2与S1中预设温度T0作比较,并分别判断T1>T0及T2>T0是否成立,若为是则微处理器10通过驱动电路控制热电制冷器进行制冷,若为否则微处理器10通过驱动电路控制热电制冷器进行加热;S6: Compare the temperatures T1 and T2 of the dichroic prism 2 obtained in S4 with the preset temperature T0 in S1, and determine whether T1>T0 and T2>T0 are respectively established. If so, the microprocessor 10 controls the thermoelectric through the drive circuit. The refrigerator performs cooling, if not, the microprocessor 10 controls the thermoelectric refrigerator to perform heating through the drive circuit;
将S4中得到的CCD传感器4温度T3、T4与S1中预设温度T0作比较,并分别判断T3>T0及T4>T0是否成立,若为是则微处理器10通过驱动电路控制热电制冷器进行制冷,若为否则微处理器10通过驱动电路控制热电制冷器进行加热;Compare the temperatures T3 and T4 of the CCD sensor 4 obtained in S4 with the preset temperature T0 in S1, and determine whether T3>T0 and T4>T0 are respectively established. If so, the microprocessor 10 controls the thermoelectric refrigerator through the drive circuit. Carry out cooling, if not, the microprocessor 10 controls the thermoelectric refrigerator to heat through the driving circuit;
将S4中得到的准直物镜3温度T5、T6、T7、T8与S1中预设温度T0作比较,并分别判断T5>T0、T6>T0、T7>T0及T8>T0是否成立,若为是则微处理器10通过驱动电路控制热电制冷器进行制冷,若为否则微处理器10通过驱动电路控制热电制冷器进行加热;Compare the collimating objective lens 3 temperatures T5, T6, T7, and T8 obtained in S4 with the preset temperature T0 in S1, and determine whether T5>T0, T6>T0, T7>T0, and T8>T0 are true respectively. If so, If yes, the microprocessor 10 controls the thermoelectric refrigerator to perform cooling through the driving circuit; if not, the microprocessor 10 controls the thermoelectric refrigerator to perform heating through the driving circuit;
S7:循环S2至S6,完成自准直装置关键元器件的温度控制。S7: Loop from S2 to S6 to complete the temperature control of key components of the autocollimation device.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention in any form. Although the present invention has been disclosed above in preferred embodiments, they are not intended to limit the present invention. Anyone familiar with this field will Skilled persons can make some changes or modifications to equivalent embodiments with equivalent changes using the technical content disclosed above without departing from the scope of the technical solution of the present invention. The technical essence of the invention is within the spirit and principles of the invention, and any simple modifications, equivalent substitutions and improvements made to the above embodiments still fall within the protection scope of the technical solution of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311379440.8A CN117367326A (en) | 2023-10-24 | 2023-10-24 | Anti-temperature-interference auto-collimation device and method based on local temperature control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311379440.8A CN117367326A (en) | 2023-10-24 | 2023-10-24 | Anti-temperature-interference auto-collimation device and method based on local temperature control |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117367326A true CN117367326A (en) | 2024-01-09 |
Family
ID=89397873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311379440.8A Pending CN117367326A (en) | 2023-10-24 | 2023-10-24 | Anti-temperature-interference auto-collimation device and method based on local temperature control |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117367326A (en) |
-
2023
- 2023-10-24 CN CN202311379440.8A patent/CN117367326A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4709485A (en) | Shaft alignment method and apparatus | |
CN108981580B (en) | Device and method for on-line detection of crane track | |
CN101319884B (en) | Multi-light axis consistency test device based on multiband target plate and rotating reflection mirror | |
CN108344986B (en) | Automatic verification system and verification method for handheld laser range finder | |
CN101922923B (en) | Method for detecting perpendicularity and true position of normal axis | |
US6960052B2 (en) | Machine tool and method of adjusting the spindle of a machine tool | |
CN106840083A (en) | A kind of automatic longitude and latitude instrument apparatus of biparting shape rotary laser | |
WO2023138241A1 (en) | Machine tool rapid compensation system based on principle of laser interference, and compensation method thereof | |
US8845247B2 (en) | Thermal compensation system for a milling machine | |
CN117367326A (en) | Anti-temperature-interference auto-collimation device and method based on local temperature control | |
CN106643576A (en) | Non-concentricity measurement method and non-concentricity measurement device | |
JP4945412B2 (en) | Thickness measuring device | |
CN102944698B (en) | Sky-screen target light curtain parameter calibrating device and method | |
CN213179906U (en) | Detection apparatus for laser beam divergence angle | |
CN104501715A (en) | Laser centering instrument receiving system and method | |
CN102252634B (en) | Laser multiple degrees of freedom precision measurement system based on telescope system | |
CN117367325A (en) | Global temperature control-based anti-temperature interference auto-collimation device and method | |
CN102192682B (en) | Four-screen accuracy target structure assembling and parameter measuring method | |
CN109631767A (en) | Range unit and distance measuring method | |
CN108917659A (en) | Method for realizing rapid centering and alignment of coupler by adopting laser demarcation device | |
JPS6049849B2 (en) | Device for measuring surface temperature and emissivity of objects | |
CN110666592B (en) | Receiving-transmitting split five-degree-of-freedom measuring device and method with optical path drift compensation | |
CN117516464A (en) | Temperature interference resistant auto-collimation device and method based on partitioned temperature control | |
CN206990472U (en) | A kind of PRECISION-FORGED STRAIGHT BEVEL GEARS on-line measuring device | |
CN117490664A (en) | An anti-temperature interference auto-collimation device and method based on linked heating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |