CN117353154A - GaN-based optoelectronic devices - Google Patents
GaN-based optoelectronic devices Download PDFInfo
- Publication number
- CN117353154A CN117353154A CN202311277813.0A CN202311277813A CN117353154A CN 117353154 A CN117353154 A CN 117353154A CN 202311277813 A CN202311277813 A CN 202311277813A CN 117353154 A CN117353154 A CN 117353154A
- Authority
- CN
- China
- Prior art keywords
- layer
- doped zno
- gan
- zno layer
- doping
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005693 optoelectronics Effects 0.000 title claims abstract description 46
- 230000003287 optical effect Effects 0.000 claims abstract description 33
- 230000000903 blocking effect Effects 0.000 claims abstract description 13
- 230000000694 effects Effects 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 219
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 208
- 239000011787 zinc oxide Substances 0.000 description 104
- 229910002601 GaN Inorganic materials 0.000 description 87
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 66
- 239000010408 film Substances 0.000 description 38
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000000151 deposition Methods 0.000 description 12
- 238000004544 sputter deposition Methods 0.000 description 11
- 239000011701 zinc Substances 0.000 description 11
- 230000008021 deposition Effects 0.000 description 10
- 238000002834 transmittance Methods 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000004706 metal oxides Chemical class 0.000 description 8
- 229910052733 gallium Inorganic materials 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 238000001755 magnetron sputter deposition Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910007541 Zn O Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910018516 Al—O Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- PNHVEGMHOXTHMW-UHFFFAOYSA-N magnesium;zinc;oxygen(2-) Chemical compound [O-2].[O-2].[Mg+2].[Zn+2] PNHVEGMHOXTHMW-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/3013—AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0425—Electrodes, e.g. characterised by the structure
- H01S5/04252—Electrodes, e.g. characterised by the structure characterised by the material
- H01S5/04253—Electrodes, e.g. characterised by the structure characterised by the material having specific optical properties, e.g. transparent electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Led Devices (AREA)
Abstract
本发明公开了一种GaN基光电器件。GaN基光电器件包括沿选定方向依次层叠设置的第一光限制层、第一波导层、有源层、第二波导层、电子阻挡层、第二光限制层、欧姆接触层和掺杂ZnO层,所述掺杂ZnO层沿所述选定方向层叠设置在所述欧姆接触层上,所述掺杂ZnO层与所述欧姆接触层形成欧姆接触,并且,所述掺杂ZnO层还具有光学限制作用。本发明降低了光电器件的工作电压、增大了输出效率,提高了光电器件器件性能。
The invention discloses a GaN-based optoelectronic device. The GaN-based optoelectronic device includes a first optical confinement layer, a first waveguide layer, an active layer, a second waveguide layer, an electron blocking layer, a second optical confinement layer, an ohmic contact layer and doped ZnO that are stacked sequentially along a selected direction. layer, the doped ZnO layer is stacked on the ohmic contact layer along the selected direction, the doped ZnO layer forms an ohmic contact with the ohmic contact layer, and the doped ZnO layer also has Optical confinement effect. The invention reduces the operating voltage of the optoelectronic device, increases the output efficiency, and improves the performance of the optoelectronic device.
Description
技术领域Technical field
本发明特别涉及一种GaN基光电器件,属于半导体光电器件技术领域。The invention particularly relates to a GaN-based optoelectronic device, which belongs to the technical field of semiconductor optoelectronic devices.
背景技术Background technique
GaN基半导体是紫外、蓝光和绿光发光二极管(LED)和激光器(LD)的合适材料。最近一些年,GaN基材料的研究取得了很大的进展,使得基于氮化镓(GaN)的光电器件,如激光二极管,发光二极管,功率器件和紫色光电探测器等,器件性能得到很大程度的提升。特别是近年来,GaN基激光器已广泛应用于生化分析、全彩显示、激光加工、高密度存储、激光泵浦和激光光刻等领域。GaN-based semiconductors are suitable materials for ultraviolet, blue and green light-emitting diodes (LEDs) and lasers (LDs). In recent years, research on GaN-based materials has made great progress, resulting in the device performance of gallium nitride (GaN)-based optoelectronic devices, such as laser diodes, light-emitting diodes, power devices and purple photodetectors, etc. improvement. Especially in recent years, GaN-based lasers have been widely used in biochemical analysis, full-color display, laser processing, high-density storage, laser pumping and laser lithography.
传统半导体激光器,包括衬底、下光限制层、下波导层、量子阱有源区、波导层、上光限制层以及金属接触层等结构。上光限制层采用氮化铝镓(AlGaN)或氮化铝镓/氮化镓超晶格将光限制在量子阱有源区,接触金属采用钯/铂/金(Pd/Pt/Au)或钛/金(Ti/Au)等金属组合与p型GaN形成欧姆接触。Traditional semiconductor lasers include structures such as a substrate, a lower light confinement layer, a lower waveguide layer, a quantum well active area, a waveguide layer, an upper light confinement layer, and a metal contact layer. The upper light confinement layer uses aluminum gallium nitride (AlGaN) or aluminum gallium nitride/gallium nitride superlattice to confine light in the quantum well active area, and the contact metal uses palladium/platinum/gold (Pd/Pt/Au) or Metal combinations such as titanium/gold (Ti/Au) form ohmic contacts with p-type GaN.
为了满足广泛应用的要求,GaN激光器需要更高的输出功率、更低的电阻和更好的热稳定性。有许多因素会影响激光器件的性能,例如材料质量、欧姆接触、解理、刻面涂层等。在这些因素中,p型AlGaN限制层的光学损耗和p型欧姆接触可以说是非常重要的问题。GaN蓝绿光激光器一般采用p型氮化铝镓或氮化铝镓/氮化镓超晶格作为上光限制层。然而,存在几个问题:(1)p型氮化铝镓或者P型氮化铝镓/氮化镓超晶格上光限制层生长过程中会产生张应力,导致外延片开裂。这一特性限制了氮化铝镓层生长的组分与厚度,限制了激光器的结构设计。(2)p型氮化铝镓或者p型氮化铝镓/氮化镓超晶格上光限制层的生长温度通常在900℃以上,高于量子阱有源区的生长温度,会造成量子阱退化,影响激光器的性能。(3)p型氮化铝镓或者p型氮化铝镓/氮化镓超晶格上光限制层的电阻率高,是氮化镓基激光器串联电阻的主要来源,使得激光器的工作电压很高。(4)p型AlGaN层空穴浓度低,方块电阻较大,导致p-侧空穴注入面积很小,单位面积电流密度很大,大电流注入下会严重发热,不利于器件寿命和可靠性,无法获得高输出功率。因此有必要解决GaN基LD的这些问题,需要找到既能够限制光场,获得稳定的振荡,同时能够减少电阻和稳定的p型GaN欧姆触点的方法,以提高蓝绿光LD的发光效率。To meet the requirements of a wide range of applications, GaN lasers require higher output power, lower resistance and better thermal stability. There are many factors that affect the performance of laser devices, such as material quality, ohmic contact, cleavage, facet coatings, etc. Among these factors, the optical loss of the p-type AlGaN confinement layer and the p-type ohmic contact can be said to be very important issues. GaN blue-green lasers generally use p-type aluminum gallium nitride or aluminum gallium nitride/gallium nitride superlattice as the upper light confinement layer. However, there are several problems: (1) Tensile stress will be generated during the growth of the light confinement layer on p-type aluminum gallium nitride or p-type aluminum gallium nitride/gallium nitride superlattice, resulting in cracking of the epitaxial wafer. This characteristic limits the composition and thickness of the aluminum gallium nitride layer growth, limiting the structural design of the laser. (2) The growth temperature of the light confinement layer on p-type aluminum gallium nitride or p-type aluminum gallium nitride/gallium nitride superlattice is usually above 900°C, which is higher than the growth temperature of the quantum well active region, which will cause quantum Well degradation affects laser performance. (3) The resistivity of the light confinement layer on the p-type aluminum gallium nitride or p-type aluminum gallium nitride/gallium nitride superlattice is high, which is the main source of series resistance of the gallium nitride-based laser, making the operating voltage of the laser very high. high. (4) The hole concentration of the p-type AlGaN layer is low and the sheet resistance is large, resulting in a small hole injection area on the p-side and a large current density per unit area. Severe heating will occur under large current injection, which is detrimental to device life and reliability. , unable to obtain high output power. Therefore, it is necessary to solve these problems of GaN-based LDs. It is necessary to find a method that can limit the light field, obtain stable oscillation, and at the same time reduce resistance and stabilize p-type GaN ohmic contacts to improve the luminous efficiency of blue-green LDs.
现有的研究中常用透明导电氧化物(TCO)中的掺锡氧化铟(ITO)代替AlGaN层或AlGaN/GaN超晶格层,但是ITO存在局限性以及不足之处:ITO薄膜表面功函数在4.6-4.9eV间,在光电器件中作为阳极电极材料功函数相对较低,作为阴极功函数又偏高,与功能层之间存在载流子能级差,产生势垒,导致载流子注入效率低,影响器件的性能;在OLED中,ITO电极中In在有机功能层的扩散,也影响器件的使用寿命;ITO薄膜在太阳能电池应用中,表面粗糙度和面电阻性能较差,仍需要进一步改善提高;ITO薄膜中的铟元素因为地球储藏低,提纯难度大,目前随着大量市场需求和使用,价格一再攀升居高不下,同时同时In已然成为稀缺材料,面临枯竭的情况。In existing research, tin-doped indium oxide (ITO) in transparent conductive oxide (TCO) is commonly used to replace the AlGaN layer or AlGaN/GaN superlattice layer. However, ITO has limitations and shortcomings: the surface work function of the ITO film is in Between 4.6-4.9eV, in optoelectronic devices, the work function of the anode electrode material is relatively low, and the work function of the cathode is relatively high. There is a carrier energy level difference between the material and the functional layer, creating a potential barrier, resulting in carrier injection efficiency. Low, affecting the performance of the device; in OLED, the diffusion of In in the ITO electrode in the organic functional layer also affects the service life of the device; in solar cell applications, the surface roughness and surface resistance of ITO films are poor, and further work is still needed. Improvement; the indium element in ITO films is difficult to purify due to low earth reserves. Currently, with the massive market demand and use, the price has been rising repeatedly. At the same time, In has become a scarce material and is facing depletion.
目前,折叠手机屏幕成为热点,对柔性易弯曲的TCO薄膜有很高的要求,ITO薄膜不耐弯折,存在明显得不足。要制备高性能的ITO薄膜,对制备条件要求很高,ITO薄膜对靶材依赖大,高质量的靶材对原材料以及溅射靶制备工艺要求非常高,而且靶材寿命和致密度是很关键因素。At present, folding mobile phone screens has become a hot topic, and there are high requirements for flexible and bendable TCO films. ITO films are not resistant to bending and have obvious shortcomings. To prepare high-performance ITO films, the preparation conditions are very demanding. ITO films are highly dependent on target materials. High-quality targets have very high requirements on raw materials and sputtering target preparation processes, and target life and density are critical. factor.
发明内容Contents of the invention
本发明的主要目的在于提供一种GaN基光电器件,从而克服现有技术中的不足。The main purpose of the present invention is to provide a GaN-based optoelectronic device to overcome the shortcomings of the existing technology.
为实现前述发明目的,本发明采用的技术方案包括:In order to achieve the foregoing invention objectives, the technical solutions adopted by the present invention include:
本发明提供了一种GaN基光电器件,包括沿选定方向依次层叠设置的第一光限制层、第一波导层、有源层、第二波导层、电子阻挡层、第二光限制层和欧姆接触层,以及,还包括:The invention provides a GaN-based optoelectronic device, which includes a first light confinement layer, a first waveguide layer, an active layer, a second waveguide layer, an electron blocking layer, a second light confinement layer and a first light confinement layer, which are sequentially stacked along a selected direction. The ohmic contact layer, as well, also includes:
掺杂ZnO层,所述掺杂ZnO层沿所述选定方向层叠设置在所述欧姆接触层上,所述掺杂ZnO层与所述欧姆接触层形成欧姆接触,并且,所述掺杂ZnO层还具有光学限制作用。a doped ZnO layer, the doped ZnO layer is stacked on the ohmic contact layer along the selected direction, the doped ZnO layer forms an ohmic contact with the ohmic contact layer, and the doped ZnO layer The layer also has an optical confinement effect.
本发明采用掺杂ZnO层与铝镓氮层协同作为光学限制层的光场限制作用比单独铝镓氮厚层作为光学限制层的强,光学损耗更低,光场更好的限制在量子阱。The present invention uses a doped ZnO layer and an aluminum gallium nitride layer to synergize as the optical confinement layer. The light field confinement effect is stronger than that of a thick aluminum gallium nitride layer alone as the optical confinement layer. The optical loss is lower, and the light field is better confined in the quantum well. .
进一步的,所述掺杂ZnO层所含掺杂元素包括Al元素、Ga元素、In元素、Mg元素、Mn元素、B元素中的至少一种,并且,所述掺杂ZnO层中的掺杂元素和Zn元素的质量百分数之比为(2wt%~10wt%)∶(98wt%~90wt%)。Further, the doping elements contained in the doped ZnO layer include at least one of Al element, Ga element, In element, Mg element, Mn element, and B element, and the doping in the doped ZnO layer The ratio of the mass percentage of the element and the Zn element is (2wt%~10wt%): (98wt%~90wt%).
进一步的,本案发明人研究发现,Ga等掺杂元素的比例过多会导致薄膜(即掺杂ZnO层)的透过率降低,同时会导致薄膜的吸收系数升高,造成光电器件(LD)的光学损耗增加,而若Ga等掺杂元素的原子比例过低又会导致薄膜的电阻率升高,导致光电器件的串联电阻升高,因此选择合适的Zn:Ga等掺杂元素的比例是作为LD限制层的关键。本案发明人研究发现,Ga等元素掺杂的量影响薄膜的载流子浓度和迁移率,进而影响薄膜的电阻率,Ga等元素的掺杂量升高,电阻率会先降低后升高,载流子浓度高有利于形成好的欧姆接触。由于Ga等元素的散射作用,导致薄膜的透过率和吸收系数会发生变化,Ga等元素的掺杂量影响着薄膜的吸收系数,适当的Ga等元素的掺杂量有利于激光器的功率的提升。Further, the inventor of this case has found that too much of Ga and other doping elements will cause the transmittance of the thin film (i.e., the doped ZnO layer) to decrease, and at the same time cause the absorption coefficient of the thin film to increase, causing photoelectric devices (LD) The optical loss increases, and if the atomic ratio of doping elements such as Ga is too low, the resistivity of the film will increase, resulting in an increase in the series resistance of the optoelectronic device. Therefore, choosing the appropriate ratio of Zn:Ga and other doping elements is As the key to the LD confinement layer. The inventor of this case found that the doping amount of Ga and other elements affects the carrier concentration and mobility of the film, which in turn affects the resistivity of the film. As the doping amount of Ga and other elements increases, the resistivity will first decrease and then increase. High carrier concentration is conducive to the formation of good ohmic contact. Due to the scattering effect of Ga and other elements, the transmittance and absorption coefficient of the film will change. The doping amount of Ga and other elements affects the absorption coefficient of the film. The appropriate doping amount of Ga and other elements is beneficial to the power of the laser. promote.
进一步的,所述掺杂ZnO层中的掺杂元素的质量百分数是沿所述选定方向渐变或突变的。Further, the mass percentage of the doping element in the doped ZnO layer gradually changes or changes suddenly along the selected direction.
进一步的,所述掺杂ZnO层中的掺杂元素的质量百分数为2wt%~8wt%。Further, the mass percentage of the doping element in the doped ZnO layer is 2wt% to 8wt%.
进一步的,所述掺杂ZnO层包括沿所述选定方向层叠设置的至少两个子层,至少两个子层中的掺杂元素的种类和质量百分数中的至少一者不同。Further, the doped ZnO layer includes at least two sub-layers stacked along the selected direction, and at least one of the type and mass percentage of the doping elements in the at least two sub-layers is different.
进一步的,所述掺杂ZnO层包括沿所述选定方向依次层叠设置在所述欧姆接触层上的第一掺杂ZnO层和第二掺杂ZnO层或三层及以上掺杂ZnO层,所述各层间掺杂ZnO层中所含的掺杂元素相同或不同,所述各层间掺杂ZnO层中所含的掺杂元素的质量百分数不同。Further, the doped ZnO layer includes a first doped ZnO layer and a second doped ZnO layer or three or more doped ZnO layers sequentially stacked on the ohmic contact layer along the selected direction, The doping elements contained in each interlayer doped ZnO layer are the same or different, and the mass percentages of the doping elements contained in each interlayer doped ZnO layer are different.
进一步的,所述第一掺杂ZnO层中所含掺杂元素的质量百分数大于所述第二掺杂ZnO层中所含掺杂元素的质量百分数。Further, the mass percentage of the doping element contained in the first doped ZnO layer is greater than the mass percentage of the doping element contained in the second doped ZnO layer.
进一步的,所述第一掺杂ZnO层中所含掺杂元素的质量百分数为8wt%,所述第二掺杂ZnO层中所含掺杂元素的质量百分数为2wt%。Further, the mass percentage of the doping elements contained in the first doped ZnO layer is 8 wt%, and the mass percentage of the doping elements contained in the second doped ZnO layer is 2 wt%.
进一步的,所述掺杂ZnO层内的掺杂元素的质量百分数沿远离所述欧姆接触层的方向由8wt%梯度递减至2wt%。Further, the mass percentage of the doping element in the doped ZnO layer gradually decreases from 8 wt% to 2 wt% in a direction away from the ohmic contact layer.
进一步的,所述掺杂ZnO层内的掺杂元素的质量百分数的变化梯度为8wt%~2wt%。Further, the gradient of the mass percentage of the doping element in the doped ZnO layer is 8 wt% to 2 wt%.
进一步的,所述掺杂ZnO层所含掺杂元素为Al元素,所述掺杂ZnO层中的Zn元素与Al元素的质量百分数之比为(98wt%~92wt%)∶(2wt%~8wt%);Further, the doping element contained in the doped ZnO layer is Al element, and the mass percentage ratio of the Zn element to the Al element in the doped ZnO layer is (98wt% ~ 92wt%): (2wt% ~ 8wt %);
或者,所述掺杂ZnO层所含掺杂元素为Ga元素,所述掺杂ZnO层中的Zn元素与Ga元素的质量百分数之比为(92wt%~98wt%)∶(8wt%~2wt%);Alternatively, the doping element contained in the doped ZnO layer is Ga element, and the mass percentage ratio of the Zn element to the Ga element in the doped ZnO layer is (92wt%~98wt%): (8wt%~2wt% );
或者,所述掺杂ZnO层所含掺杂元素为In元素,所述掺杂ZnO层中的Zn元素与In元素的质量百分数为(90wt%~98wt%)∶(10wt%~2wt%);Alternatively, the doping element contained in the doped ZnO layer is In element, and the mass percentage of Zn element and In element in the doped ZnO layer is (90wt%~98wt%): (10wt%~2wt%);
或者,所述掺杂ZnO层所含掺杂元素为Mg元素,所述掺杂ZnO层中的Zn元素与In元素的质量百分数为(90wt%~98wt%)∶(10wt%~2wt%);Alternatively, the doping element contained in the doped ZnO layer is Mg element, and the mass percentage of Zn element and In element in the doped ZnO layer is (90wt%~98wt%): (10wt%~2wt%);
或者,所述掺杂ZnO层所含掺杂元素为Ga元素和In元素,所述掺杂ZnO层中的Zn元素与Ga元素、In的质量百分数为(90wt%~98wt%)∶(10wt%~1wt%)∶(10wt%~1wt%)。Alternatively, the doping elements contained in the doped ZnO layer are Ga element and In element, and the mass percentage of the Zn element, Ga element, and In in the doped ZnO layer is (90wt%~98wt%): (10wt% ~1wt%): (10wt%~1wt%).
本发明中的掺杂ZnO层(以GZO为例)是在生长欧姆接触层(p-GaN(20nm左右)+p-InGaN(3-10nm左右))的光学限制层上面的。The doped ZnO layer (taking GZO as an example) in the present invention is on the optical confinement layer of the grown ohmic contact layer (p-GaN (about 20nm) + p-InGaN (about 3-10nm)).
示例性的,掺杂层GZO可以分为2个元素掺杂含量不同的子层,第一层使用Ga掺杂浓度较高的层(例如Ga:5wt%)的GZO,厚度大概为100nm,第二层使用Ga掺杂浓度比较低的层(例如Ga:2wt%)的GZO,厚度大概为100nm。第一层使用高的掺杂浓度是为了更好的形成欧姆接触,第二层使用低的掺杂浓度为了获得更好的光学特性。在制作时,可以采用磁控溅射或电子束蒸发的方法进行沉积薄膜,使用两个不同掺杂浓度的靶材分别沉积获得。For example, the doped layer GZO can be divided into two sub-layers with different element doping contents. The first layer uses GZO with a higher Ga doping concentration (for example, Ga: 5wt%), and the thickness is about 100nm. The second layer uses GZO with a relatively low Ga doping concentration (for example, Ga: 2wt%), and the thickness is about 100nm. The first layer uses a high doping concentration to form a better ohmic contact, and the second layer uses a low doping concentration to obtain better optical properties. During production, magnetron sputtering or electron beam evaporation can be used to deposit thin films, using two targets with different doping concentrations to deposit them respectively.
掺杂层GZO中的Ga元素可以是梯度变化的,Ga元素的浓度(即质量百分数,下同)可以从8wt%到2wt%逐渐渐变。具体可以采用磁控溅射或电子束蒸发的方法进行沉积薄膜,使用两个不同掺杂浓度的靶材(例如Ga:8wt%和Ga:2wt%)共沉积,两块靶材同时溅射,通过调整两块靶材的溅射功率,达到掺杂浓度梯度变化的效果。The Ga element in the doped layer GZO can change in a gradient, and the concentration of the Ga element (ie, mass percentage, the same below) can gradually change from 8wt% to 2wt%. Specifically, magnetron sputtering or electron beam evaporation can be used to deposit the film, using two targets with different doping concentrations (for example, Ga: 8wt% and Ga: 2wt%) to co-deposit, and the two targets are sputtered at the same time. By adjusting the sputtering power of the two targets, the effect of doping concentration gradient change is achieved.
其他掺杂元素可以参考上述方案采用相同的方式沉积获得。Other doping elements can be deposited in the same manner with reference to the above scheme.
在另一些具体的实施方案中,可以以两种以上导电氧化物层组合作为掺杂ZnO层,即掺杂ZnO层可以包括多个元素掺杂种类不同的子层,例如,第一层为50nm的ITO(95wt%In2O3和5wt%SnO2或者90wt%In2O3和10wt%SnO2),第二层为厚度为100~300nm的GZO或AZO(其他掺杂ZnO层等),或者,第一层为厚度50nm的ITO(95wt%In2O3和5wt%SnO2或者90wt%In2O3和10wt%SnO2),第二层为厚度为50nm的GZO,第三层为厚度为100~300nm的AZO(其他掺杂ZnO层等)。In other specific embodiments, two or more conductive oxide layers can be combined as the doped ZnO layer, that is, the doped ZnO layer can include multiple sub-layers with different element doping types. For example, the first layer is 50nm. ITO (95wt% In 2 O 3 and 5wt% SnO 2 or 90wt% In 2 O 3 and 10wt% SnO 2 ), the second layer is GZO or AZO (other doped ZnO layers, etc.) with a thickness of 100~300nm, Alternatively, the first layer is ITO (95wt% In 2 O 3 and 5wt% SnO 2 or 90wt% In 2 O 3 and 10wt% SnO 2 ) with a thickness of 50nm, the second layer is GZO with a thickness of 50nm, and the third layer is AZO (other doped ZnO layers, etc.) with a thickness of 100~300nm.
在另一些具体的实施方案中,可以以两种掺杂ZnO层组合作为掺杂ZnO层,具体的,第一层为厚度为50nm的GZO(Zn:95wt%和Ga:5wt%)层,第二层为厚度为150~300nm的掺杂ZnO层(例如AZO),掺杂浓度2wt%~5wt%。In other specific embodiments, a combination of two doped ZnO layers can be used as the doped ZnO layer. Specifically, the first layer is a GZO (Zn: 95wt% and Ga: 5wt%) layer with a thickness of 50nm, and the second layer is a GZO (Zn: 95wt% and Ga: 5wt%) layer with a thickness of 50nm. The second layer is a doped ZnO layer (such as AZO) with a thickness of 150-300 nm and a doping concentration of 2wt%-5wt%.
进一步的,所述第二光限制层与所述掺杂ZnO层的厚度之比为(2~5)∶(1~3)。Further, the thickness ratio of the second light confinement layer to the doped ZnO layer is (2˜5):(1˜3).
进一步的,所述第二光限制层的厚度为200~400nm。Further, the thickness of the second light confinement layer is 200-400 nm.
进一步的,所述掺杂ZnO层的厚度为100~300nm。Further, the thickness of the doped ZnO layer is 100-300 nm.
进一步的,所述电子阻挡层、第二光限制层和所述欧姆接触层均为第一导电类型,所述掺杂ZnO层和所述第一光限制层为第二导电类型,所述第一导电类型为P型,所述第二导电类型为N型。Further, the electron blocking layer, the second light confinement layer and the ohmic contact layer are all of the first conductivity type, the doped ZnO layer and the first light confinement layer are of the second conductivity type, and the third One conductivity type is P type, and the second conductivity type is N type.
进一步的,所述第一光限制层、所述第一波导层、所述有源层、所述第二波导层、所述电子阻挡层和所述欧姆接触层的材质均为GaN基半导体材料。Further, the first light confinement layer, the first waveguide layer, the active layer, the second waveguide layer, the electron blocking layer and the ohmic contact layer are all made of GaN-based semiconductor materials. .
进一步的,所述第二光限制层包括p-AlxGa1-xN层或p-AlxGa1-xN/GaN超晶格。Further, the second light confinement layer includes a p-AlxGa 1-x N layer or a p-Al x Ga 1-x N/GaN superlattice.
在一较为具体的实施方案中,所述的GaN基光电器件包括沿选定方向依次层叠设置的n-AlxGa1-xN光限制层、n-InGaN波导层、InxGa1-xN/GaN量子阱有源层、不掺杂的u-InxGa1-xN波导层,p-AlxGa1-xN电子阻挡层,p-AlxGa1-xN/GaN超晶格光限制层、p-GaN欧姆接触层和掺杂ZnO层。In a more specific embodiment, the GaN-based optoelectronic device includes an n-Al x Ga 1-x N optical confinement layer, an n-InGaN waveguide layer, and In N/GaN quantum well active layer, undoped u-In x Ga 1-x N waveguide layer, p-Al x Ga 1-x N electron blocking layer, p-Al x Ga 1-x N/GaN super Lattice light confinement layer, p-GaN ohmic contact layer and doped ZnO layer.
进一步的,所述第一光限制层设置在缓冲层上,所述缓冲层设置在衬底上。Further, the first light confinement layer is disposed on the buffer layer, and the buffer layer is disposed on the substrate.
进一步的,所述第一光限制层可以是n-AlxGa1-xN限制层,n-AlxGa1-xN限制层的厚度为800nm~1500nm,Al组分的含量为5%~10%,其电子浓度在1017cm-3到1020cm-3之间。Further, the first light confinement layer may be an n-Al x Ga 1-x N confinement layer. The thickness of the n-Al x Ga 1-x N confinement layer is 800 nm to 1500 nm, and the content of the Al component is 5%. ~10%, and its electron concentration is between 10 17 cm -3 and 10 20 cm -3 .
进一步的,所述第一波导层可以是n-InxGa1-xN波导层,n-InxGa1-xN波导层的厚度为30nm~150nm,In组分的含量为3%~6%,其电子浓度在1017cm-3到1020cm-3之间。Further, the first waveguide layer may be an n-In x Ga 1-x N waveguide layer, the thickness of the n-In x Ga 1-x N waveguide layer is 30 nm to 150 nm, and the content of the In component is 3% to 6%, its electron concentration is between 10 17 cm -3 and 10 20 cm -3 .
进一步的,所述有源层可以包括1~6个周期的不掺杂的InxGa1-xN/GaN量子阱,InxGa1-xN量子阱的厚度为1nm~6nm,In组分含量为10%~35%,GaN量子垒的厚度为2nm~20nm。Further, the active layer may include 1 to 6 periods of undoped In x Ga 1-x N/GaN quantum wells, the thickness of the In x Ga 1-x N quantum wells is 1 nm to 6 nm, and the In group The content is 10% to 35%, and the thickness of the GaN quantum barrier is 2nm to 20nm.
进一步的,所述第二波导层可以是不掺杂的u-InxGa1-xN波导层,不掺杂的u-InxGa1-xN波导层的厚度为30nm~150nm,In组分含量为2%~6%。Further, the second waveguide layer may be an undoped u-In x Ga1- x N waveguide layer. The thickness of the undoped u-In x Ga1- x N waveguide layer is 30 nm to 150 nm, and the In component is The content is 2% to 6%.
进一步的,所述电子阻挡层可以是p-AlxGa1-xN电子阻挡层,p-AlxGa1-xN电子阻挡层的厚度为10nm~40nm,Al的组分含量约为10%~30%,其空穴浓度在1017cm-3到1020cm-3之间。Further, the electron blocking layer may be a p - Al % to 30%, and its hole concentration is between 10 17 cm -3 and 10 20 cm -3 .
进一步的,所述第二光限制层包括层叠设置的p-AlxGa1-xN/GaN超晶格层或p-AlxGa1-xN光限制层,p-AlxGa1-xN/GaN超晶格层包括10~500个周期,其空穴浓度在1017cm-3到1020cm-3之间,Al的组分含量为10%~30%。Further, the second optical confinement layer includes a stacked p-Al x Ga 1-x N/GaN superlattice layer or a p-Al x Ga 1-x N optical confinement layer, p-Al x Ga 1- The x N/GaN superlattice layer includes 10 to 500 periods, its hole concentration is between 10 17 cm -3 and 10 20 cm -3 , and the Al component content is 10% to 30%.
进一步的,所述欧姆接触层9采用10nm~30nm厚度的重掺杂GaN:Mg层,Mg掺杂浓度为1019cm-3到1021cm-3之间。Further, the ohmic contact layer 9 uses a heavily doped GaN:Mg layer with a thickness of 10 nm to 30 nm, and the Mg doping concentration is between 10 19 cm -3 and 10 21 cm -3 .
在一些较为典型的实施方案中,所述的GaN基光电器件包括沿选定方向依次层叠设置的n-AlxGa1-xN光限制层、n-InGaN波导层、InxGa1-xN/GaN量子阱有源层、不掺杂的u-InxGa1-xN波导层,p-AlxGa1-xN电子阻挡层,p-AlxGa1-xN/GaN超晶格光限制层、p-GaN欧姆接触层。In some more typical implementations, the GaN - based optoelectronic device includes n-Al x Ga 1-x N optical confinement layer, n-InGaN waveguide layer, In N/GaN quantum well active layer, undoped u-In x Ga 1-x N waveguide layer, p-Al x Ga 1-x N electron blocking layer, p-Al x Ga 1-x N/GaN super Lattice light confinement layer, p-GaN ohmic contact layer.
进一步的,所述第一光限制层设置在缓冲层上,所述缓冲层设置在衬底上。Further, the first light confinement layer is disposed on the buffer layer, and the buffer layer is disposed on the substrate.
进一步的,所述衬底和缓冲层的材质均是GaN基半导体材料,进一步的,所述衬底可以是n-GaN衬底,所述缓冲层可以是n-GaN缓冲层,所述n-GaN缓冲层的厚度为0nm~3000nm,其电子浓度在1017cm-3到1020cm-3之间。Further, the materials of the substrate and the buffer layer are both GaN-based semiconductor materials. Further, the substrate can be an n-GaN substrate, the buffer layer can be an n-GaN buffer layer, and the n- The thickness of the GaN buffer layer is 0nm to 3000nm, and its electron concentration is between 10 17 cm -3 and 10 20 cm -3 .
进一步的,所述衬底的材质还可以是蓝宝石(Al2O3)、碳化硅(SiC)、金刚石(diamond)或者硅(Si)、石英、PET、PC等。Furthermore, the material of the substrate may also be sapphire (Al 2 O 3 ), silicon carbide (SiC), diamond or silicon (Si), quartz, PET, PC, etc.
进一步的,所述GaN基光电器件包括LED、太阳能电池、探测器、显示屏等。Further, the GaN-based optoelectronic devices include LEDs, solar cells, detectors, display screens, etc.
与现有技术相比,本发明的优点包括:Compared with the existing technology, the advantages of the present invention include:
本发明减少了传统p型AlGaN或AlGaN/GaN超晶格光限制层的厚度,并采用掺杂ZnO透明导电氧化物替代部分光限制层以及电极层,从而降低了光电器件的工作电压、增大了输出效率,提高了光电器件器件性能。The present invention reduces the thickness of the traditional p-type AlGaN or AlGaN/GaN superlattice light confinement layer, and uses doped ZnO transparent conductive oxide to replace part of the light confinement layer and electrode layer, thereby reducing the operating voltage of the optoelectronic device and increasing the The output efficiency is improved and the performance of the optoelectronic device is improved.
本发明通过薄膜沉积的工艺参数的优化,提高了薄膜的载流子浓度和迁移率,得到低的电阻率,同时提高薄膜的透过率,降低吸收系数,提升光电器件的性能。By optimizing the process parameters of film deposition, the present invention improves the carrier concentration and mobility of the film, obtains low resistivity, increases the transmittance of the film, reduces the absorption coefficient, and improves the performance of the optoelectronic device.
附图说明Description of drawings
图1是本发明一典型实施案例中提供的GaN基激光器的结构示意图。Figure 1 is a schematic structural diagram of a GaN-based laser provided in a typical implementation case of the present invention.
具体实施方式Detailed ways
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将结合附图以及具体实施案例对该技术方案、其实施过程及原理等作进一步的解释说明,除非特别说明的之外,本发明实施例所采用的半导体成膜工艺等均是本领域技术人员已知的。In view of the deficiencies in the prior art, the inventor of this case was able to propose the technical solution of the present invention after long-term research and extensive practice. The technical solution, its implementation process and principles will be further explained below with reference to the accompanying drawings and specific implementation cases. Unless otherwise specified, the semiconductor film forming processes used in the embodiments of the present invention are all technologies in the art. Personnel known.
高效InGaN激光二极管(LD)的开发被认为是激光显示和激光通信等领域最重要的课题之一。透明导电氧化物TCO,如氧化铟锡ITO,在可见光区具有高透明度,低的折射率和吸收系数以及与GaN的较小晶格失配使其能够作为LD中的光限制层。尽管ITO已被广泛用作LD的光学限制层,具有限制光场,降低光学损耗的作用,但由于地球上铟的稀缺性以及价格的上涨,寻找替代品非常重要。The development of efficient InGaN laser diodes (LD) is considered one of the most important topics in the fields of laser display and laser communications. Transparent conductive oxide TCOs, such as indium tin oxide ITO, have high transparency in the visible light region, low refractive index and absorption coefficient, and small lattice mismatch with GaN, making them capable of serving as light confinement layers in LDs. Although ITO has been widely used as the optical confinement layer of LD, which has the function of limiting the light field and reducing optical loss, due to the scarcity of indium on the earth and the increase in price, it is very important to find alternatives.
ZnO基TCO(透明导电氧化物)是一种的宽带隙材料,它更是一种可人体食用的无毒材料。它具有与ITO相似的电学和光学透射性能,例如使用掺镓的ZnO可以获得在可见光区域具有低电阻率和高透射率的薄膜,在GaN、Ga2O3基材料及器件中使用有着下面的优势:1)Ga-O的共价键长与Zn-O共价键长/>也很接近,ZnO的晶体结构中引入Ga产生晶格畸变最小,也势必更加稳定,衬底材料GaN和掺杂GZO中的Ga相同,在制备TCO/GaN异质结构时,使用GZO薄膜利于降低TCO与GaN基材料之间的晶格失配引入的缺陷。2)GaN中Ga在温度的作用下易向外扩散,进入ZnO有助于提高导电特性,进一步降低串联电阻。3)与ITO材料相比,掺杂ZnO的折射系数更低,利于减少光损耗。单独使用ITO一方面成本比较高,另一方面ITO不仅与GaN晶格失配较大,易产生缺陷,而且ITO的折射系数和吸收系数大于掺杂ZnO,导致光学损耗加大,这些均不利于器件的性能,降低使用寿命。ZnO-based TCO (transparent conductive oxide) is a wide band gap material, and it is also a non-toxic material that can be eaten by the human body. It has similar electrical and optical transmission properties to ITO. For example, using gallium-doped ZnO can obtain a thin film with low resistivity and high transmittance in the visible light region. It has the following advantages when used in GaN and Ga 2 O 3 -based materials and devices. Advantages: 1) Covalent bond length of Ga-O Covalent bond length with Zn-O/> It is also very close. The introduction of Ga into the crystal structure of ZnO produces minimal lattice distortion and is bound to be more stable. The GaN in the substrate material is the same as the Ga in doped GZO. When preparing a TCO/GaN heterostructure, the use of a GZO film is beneficial to reducing the Defects introduced by lattice mismatch between TCO and GaN-based materials. 2) Ga in GaN easily diffuses outward under the influence of temperature, and entering ZnO helps to improve the conductive properties and further reduce the series resistance. 3) Compared with ITO materials, the refractive index of doped ZnO is lower, which is beneficial to reducing light loss. On the one hand, the cost of using ITO alone is relatively high. On the other hand, ITO not only has a large lattice mismatch with GaN and is prone to defects, but the refractive index and absorption coefficient of ITO are greater than those of doped ZnO, resulting in increased optical losses. These are not conducive to device performance and reduce service life.
本发明在生长完成光电器件外延片之后,在欧姆接触层上沉积ZnO:Ga透明导电氧化物薄膜作为掺杂ZnO层,该掺杂ZnO层同时作为欧姆接触层的一部分以及第二光限制层的一部分。在沉积ZnO:Ga时,可以通过超高真空管道将生长设备与沉积设备连接,将样品传入沉积设备沉积GZO,或者使用plasma设备(例如,N2等离子体)对样品表面进行处理,传入沉积设备沉积GZO,或者使用湿法清洗(包括有机清洗和无机清洗)的方法处理表面,传入沉积设备沉积GZO。沉积薄膜结束之后,对样品进行退火处理,选择合适的气氛,温度和时间。In the present invention, after the growth of the epitaxial wafer of the optoelectronic device is completed, a ZnO:Ga transparent conductive oxide film is deposited on the ohmic contact layer as a doped ZnO layer. The doped ZnO layer simultaneously serves as a part of the ohmic contact layer and the second light confinement layer. part. When depositing ZnO:Ga, the growth equipment can be connected to the deposition equipment through an ultra-high vacuum pipeline, and the sample can be transferred into the deposition equipment to deposit GZO, or plasma equipment (for example, N plasma ) can be used to process the sample surface, and the sample can be transferred into the deposition equipment. Deposition equipment deposits GZO, or uses wet cleaning (including organic cleaning and inorganic cleaning) to treat the surface and transfer it to the deposition equipment to deposit GZO. After the film is deposited, the sample is annealed and the appropriate atmosphere, temperature and time are selected.
具体的,在沉积过程中,ZnO∶Ga2O3=95∶5(质量百分数比),如果Ga原子比例过多会导致薄膜的透过率降低,同时会导致薄膜的吸收系数升高,造成LD的光学损耗增加。Ga原子比例过低会导致薄膜电阻率升高,导致光电器件串联电阻升高,因此选择合适的Zn:Ga的比例是作为LD限制层的关键。在工艺制备过程中环境中氧气有着同一效应,其的含量和配比不仅改变着光学的透射和折射参数,调整着光学性能,而且影响着薄膜的电学特性,例如过高的氧气导致电阻率升高,提高了器件的使用功率,导致器件寿命降低的风险增强。Specifically, during the deposition process, ZnO:Ga 2 O 3 =95:5 (mass percentage ratio). If the ratio of Ga atoms is too high, the transmittance of the film will decrease, and the absorption coefficient of the film will increase, causing The optical loss of LD increases. Too low a Ga atomic ratio will cause the film resistivity to increase, resulting in an increase in the series resistance of the optoelectronic device. Therefore, choosing the appropriate Zn:Ga ratio is the key to serving as the LD confinement layer. Oxygen in the environment during the process preparation has the same effect. Its content and ratio not only change the optical transmission and refraction parameters, adjust the optical properties, but also affect the electrical properties of the film. For example, excessive oxygen causes the resistivity to rise. High, which increases the power usage of the device and increases the risk of reduced device life.
具体的,In2O3具有较高透过率(可见光区透过率>80%),载流子浓度1021cm-3量级,霍尔迁移率10-100cm2/Vs,较低电阻率10-4Ω·cm量级,带隙大约在3.5-4.3eV间,功函数约为4.6-4.9eV,ZnO室温下禁带宽度为3.4eV,可见光平均透过率大约90%,电阻率10-4Ωcm,霍尔迁移率约40cm2/Vs。ZnO:Ga薄膜更容易与LD的InGaN接触层形成欧姆接触,降低TCO与GaN基材料之间的晶格失配引入的缺陷,与ITO材料相比,掺杂ZnO的折射系数更低,利于减少光损耗,降低阈值电压。Specifically, In 2 O 3 has high transmittance (visible light region transmittance > 80%), carrier concentration of 10 21 cm -3 , Hall mobility 10-100cm 2 /Vs, and low resistance. The rate is on the order of 10 -4 Ω·cm, the band gap is about 3.5-4.3eV, the work function is about 4.6-4.9eV, the bandgap width of ZnO at room temperature is 3.4eV, the average visible light transmittance is about 90%, and the resistivity 10 -4 Ωcm, Hall mobility is about 40cm 2 /Vs. The ZnO:Ga film is more likely to form ohmic contact with the InGaN contact layer of the LD, reducing defects introduced by the lattice mismatch between TCO and GaN-based materials. Compared with ITO materials, the refractive index of doped ZnO is lower, which is beneficial to reducing Optical loss reduces the threshold voltage.
本发明中的掺杂ZnO层也可以采用磁控溅射方法溅射镀膜获得,具体的磁控溅射方法溅射镀膜的参数为:本底真空一般在10-8torr,超高的真空环境可以保证溅射过程中薄膜的纯净,不会被掺杂H2O和O2等杂质。溅射压强选择合适的压强,压强太低会导致溅射速率降低,压强太高会导致薄膜晶粒过大。溅射模式采用优化的RF模式和DC模式,RF模式对衬底的溅射损伤较小,但是生长速率会比较慢,虽然使用DC模式对衬底的溅射损伤较大,可是生长速率更快。溅射功率需要选择适当的功率,功率过高会导致溅射损伤较大而功率过低效率低下。衬底温度一般选择合适的温度,可以增加溅射粒子的迁移,温度升高会致使沉积速率降慢,也会造成样品表面氧化。沉积厚度一般选择合适的厚度(例如200nm左右),厚度太薄和太厚都会无法对光场形成很好的限制。LD表面沉积GZO薄膜之后,选择合适的退火温度,气氛和时间(例如,退火温度为300℃,退火时间为5min),温度太低无法是Zn扩散到InGaN内部,提高载流子浓度,温度太高,导致Ga2O3和ZnGaO氧化物的形成,导致界面处形成额外势垒,不利于欧姆接触的形成。The doped ZnO layer in the present invention can also be obtained by sputtering coating using the magnetron sputtering method. The specific parameters of the sputtering coating using the magnetron sputtering method are: the background vacuum is generally 10 -8 torr, and the ultra-high vacuum environment It can ensure that the film is pure during the sputtering process and will not be doped with impurities such as H 2 O and O 2 . Choose an appropriate sputtering pressure. If the pressure is too low, the sputtering rate will decrease. If the pressure is too high, the film grains will be too large. The sputtering mode uses optimized RF mode and DC mode. The RF mode causes less sputtering damage to the substrate, but the growth rate will be slower. Although the DC mode causes greater sputtering damage to the substrate, the growth rate is faster. . The sputtering power needs to be selected appropriately. If the power is too high, it will cause greater sputtering damage, while if the power is too low, the efficiency will be low. Generally, choosing a suitable temperature for the substrate temperature can increase the migration of sputtered particles. An increase in temperature will slow down the deposition rate and also cause oxidation of the sample surface. The deposition thickness is generally chosen to be a suitable thickness (for example, about 200nm). If the thickness is too thin or too thick, it will not be able to form a good restriction on the light field. After depositing the GZO film on the LD surface, select the appropriate annealing temperature, atmosphere and time (for example, the annealing temperature is 300°C and the annealing time is 5 minutes). The temperature is too low to allow Zn to diffuse into the interior of InGaN and increase the carrier concentration. The temperature is too low. High, leading to the formation of Ga 2 O 3 and ZnGaO oxides, resulting in the formation of additional barriers at the interface, which is not conducive to the formation of ohmic contacts.
TCO薄膜的电阻率、反射率和透过率可以通过调节生长参数改变,掺杂Ga比例和调节通入氧气的量比可以调整薄膜的电阻率(包括载流子浓度和迁移率)以及折射系数和吸收系数。改变衬底温度可以改变薄膜晶粒的大小、载流子浓度和迁移率以及电接触点的性能。The resistivity, reflectivity and transmittance of the TCO film can be changed by adjusting the growth parameters. The doping Ga ratio and adjusting the amount of oxygen can adjust the resistivity (including carrier concentration and mobility) and refractive index of the film. and absorption coefficient. Changing the substrate temperature can change the size of the film grains, carrier concentration and mobility, and the performance of the electrical contacts.
实施例1Example 1
请参阅图1,一种GaN基光电器件,包括沿选定方向依次层叠设置的n-GaN衬底10、n-GaN缓冲层、n-AlxGa1-xN光限制层20、n-InGaN波导层30、InxGa1-xN/GaN量子阱有源层40、不掺杂的u-InxGa1-xN波导层50、p-AlxGa1-xN电子阻挡层60、p-AlxGa1-xN光限制层70和p-GaN/InGaN欧姆接触层80和掺杂ZnO层90。Please refer to Figure 1. A GaN-based optoelectronic device includes an n-GaN substrate 10, an n-GaN buffer layer, an n-Al x Ga 1-x N optical confinement layer 20, and n- InGaN waveguide layer 30, In x Ga 1-x N/GaN quantum well active layer 40, undoped u-In x Ga 1-x N waveguide layer 50, p-Al x Ga 1-x N electron blocking layer 60. p-Al x Ga 1-x N optical confinement layer 70 and p-GaN/InGaN ohmic contact layer 80 and doped ZnO layer 90 .
在本实施例中,所述n-GaN缓冲层的厚度为1000nm,其电子浓度为1018cm-3,n-AlxGa1-xN限制层20的厚度为800nm,Al组分的含量为5%,其电子浓度为1029cm-3,n-InxGa1-xN波导层30的厚度为50nm,In组分的含量为4%,其电子浓度为1018cm-3,有源层40可以包括5个周期的不掺杂的InxGa1-xN/GaN量子阱,InxGa1-xN量子阱的厚度为4nm,In组分含量为25%,GaN量子垒的厚度为2nm,不掺杂的u-InxGa1-xN波导层50的厚度为40nm,In组分含量为2%,p-AlxGa1-xN电子阻挡层60的厚度为10nm nm,Al的组分含量约为10%,其空穴浓度为1017cm-3,p-AlxGa1-xN光限制层70的厚度为200nm,p-GaN/InGaN欧姆接触层80中p-GaN层的厚度为10nm~30nm,Mg掺杂浓度为1020cm-3,p-InGaN接触层厚度为3~10nm,Mg掺杂浓度为1020cm-3。In this embodiment, the thickness of the n-GaN buffer layer is 1000 nm, its electron concentration is 10 18 cm -3 , the thickness of the n-Al x Ga 1-x N confinement layer 20 is 800 nm, and the content of the Al component is 5%, its electron concentration is 10 29 cm -3 , the thickness of the n-In x Ga 1-x N waveguide layer 30 is 50 nm, the content of the In component is 4%, and its electron concentration is 10 18 cm -3 , The active layer 40 may include 5 periods of undoped In x Ga 1 -x N/GaN quantum wells. The thickness of the In The thickness of the barrier is 2nm, the thickness of the undoped u- InxGa1 - xN waveguide layer 50 is 40nm, the In component content is 2%, and the thickness of the p- AlxGa1 -xN electron blocking layer 60 is 10nm nm, the composition content of Al is about 10%, its hole concentration is 10 17 cm -3 , the thickness of the p-Al x Ga 1-x N optical confinement layer 70 is 200 nm, and the p-GaN/InGaN ohmic contact layer The thickness of the p-GaN layer in 80 is 10nm~30nm, the Mg doping concentration is 10 20 cm -3 , the thickness of the p-InGaN contact layer is 3~10nm, and the Mg doping concentration is 10 20 cm -3 .
在本实施例中,掺杂ZnO层的厚度为100nm,掺杂ZnO层的掺杂元素为Ga,Ga的质量百分数为5wt%。In this embodiment, the thickness of the doped ZnO layer is 100 nm, the doping element of the doped ZnO layer is Ga, and the mass percentage of Ga is 5 wt%.
实施例2Example 2
请参阅图1,实施例2中的一种GaN基光电器件的结构与实施例1基本相同,不同之处在于:在本实施例中,掺杂ZnO层的厚度为250nm。Please refer to Figure 1. The structure of a GaN-based optoelectronic device in Embodiment 2 is basically the same as that in Embodiment 1. The difference is that in this embodiment, the thickness of the doped ZnO layer is 250 nm.
实施例3Example 3
请参阅图1,实施例3中的一种GaN基光电器件的结构与实施例1基本相同,不同之处在于:在本实施例中,掺杂ZnO层的厚度为300nm。Please refer to Figure 1. The structure of a GaN-based optoelectronic device in Embodiment 3 is basically the same as that in Embodiment 1. The difference is that in this embodiment, the thickness of the doped ZnO layer is 300 nm.
实施例4Example 4
请参阅图1,实施例4中的一种GaN基光电器件的结构与实施例1基本相同,不同之处在于:Please refer to Figure 1. The structure of a GaN-based optoelectronic device in Embodiment 4 is basically the same as that in Embodiment 1, except that:
在本实施例中,掺杂ZnO层中的掺杂元素为Al,Al元素的质量百分数为5wt%。In this embodiment, the doping element in the doped ZnO layer is Al, and the mass percentage of the Al element is 5 wt%.
实施例5Example 5
请参阅图1,实施例5中的一种GaN基光电器件的结构与实施例1基本相同,不同之处在于:Please refer to Figure 1. The structure of a GaN-based optoelectronic device in Embodiment 5 is basically the same as that in Embodiment 1, except that:
在本实施例中,掺杂ZnO层的掺杂元素为Al,Al元素的质量百分数为2wt%。In this embodiment, the doping element of the ZnO layer is Al, and the mass percentage of the Al element is 2 wt%.
实施例6Example 6
请参阅图1,实施例6中的一种GaN基光电器件的结构与实施例1基本相同,不同之处在于:Please refer to Figure 1. The structure of a GaN-based optoelectronic device in Embodiment 6 is basically the same as that in Embodiment 1, except that:
在本实施例中,掺杂ZnO层的掺杂元素为Ga和Al,Ga元素的质量百分数为3wt%,Al元素的质量百分数为2wt%。In this embodiment, the doping elements of the doped ZnO layer are Ga and Al, the mass percentage of the Ga element is 3 wt%, and the mass percentage of the Al element is 2 wt%.
实施例7Example 7
请参阅图1,实施例7中的一种GaN基光电器件的结构与实施例1基本相同,不同之处在于:Please refer to Figure 1. The structure of a GaN-based optoelectronic device in Embodiment 7 is basically the same as that in Embodiment 1, except that:
在本实施例中,掺杂ZnO层的掺杂元素为Al,Al元素的质量百分数沿远离欧姆接触层的方向由5wt%梯度降低至2wt%。In this embodiment, the doping element of the ZnO layer is Al, and the mass percentage of the Al element gradually decreases from 5 wt% to 2 wt% in the direction away from the ohmic contact layer.
实施例8Example 8
请参阅图1,实施例8中的一种GaN基光电器件的结构与实施例1基本相同,不同之处在于:Please refer to Figure 1. The structure of a GaN-based optoelectronic device in Embodiment 8 is basically the same as that in Embodiment 1, except that:
在本实施例中,掺杂ZnO层包括依次层叠在欧姆接触层上第一掺杂ZnO层和第二掺杂ZnO层,第一掺杂ZnO层的厚度为50nm,第一掺杂ZnO层中的掺杂元素为Al,Al元素的质量百分数为5wt%,第二掺杂ZnO层的厚度为50nm,第二掺杂ZnO层中的掺杂元素为Al,Al元素的质量百分数为2wt%。In this embodiment, the doped ZnO layer includes a first doped ZnO layer and a second doped ZnO layer sequentially stacked on the ohmic contact layer. The thickness of the first doped ZnO layer is 50 nm. The doping element is Al, and the mass percentage of the Al element is 5 wt%. The thickness of the second doped ZnO layer is 50 nm. The doping element in the second doped ZnO layer is Al, and the mass percentage of the Al element is 2 wt%.
对比例1Comparative example 1
请参阅图1,对比例1中的一种GaN基光电器件的结构与实施例1基本相同,不同之处在于:Please refer to Figure 1. The structure of a GaN-based optoelectronic device in Comparative Example 1 is basically the same as that in Embodiment 1, except that:
在本对比例中,掺杂ZnO层的掺杂元素为Ga,Ga元素的质量百分数为10wt%。In this comparative example, the doping element of the ZnO layer is Ga, and the mass percentage of the Ga element is 10 wt%.
对比例2Comparative example 2
请参阅图l,对比例2中的一种GaN基光电器件的结构与实施例1基本相同,不同之处在于:Please refer to Figure 1. The structure of a GaN-based optoelectronic device in Comparative Example 2 is basically the same as that in Embodiment 1, except that:
在本对比例中,掺杂ZnO层的所含掺杂元素为Ga,Ga元素的质量百分数为1wt%。In this comparative example, the doping element contained in the doped ZnO layer is Ga, and the mass percentage of the Ga element is 1 wt%.
对比例3Comparative example 3
请参阅图1,对比例5中的一种GaN基光电器件的结构与实施例1基本相同,不同之处在于:在本对比例中,将ITO替换掺杂ZnO层。Please refer to Figure 1. The structure of a GaN-based optoelectronic device in Comparative Example 5 is basically the same as that in Embodiment 1. The difference is that in this comparative example, ITO is used to replace the doped ZnO layer.
本发明采用基于ZnO的掺杂ZnO作为TCO薄膜替代部分AlGaN层或AlGaN/GaN超晶格层,并与AlGaN层或AlGaN/GaN超晶格共同形成光限制层,掺杂ZnO可以是ZnO:Al(AZO),ZnO:Mn(MZO)、ZnO:F(FZO)、ZnO:B(BZO)、ZnO:Ga(GZO)、ZnO:In(IZO),ZnO:In/Ga(IGZO)、ZnO:Al/Ga(AGZO)、ZnO:Ga/Mn(MGZO)等。The present invention uses ZnO-based doped ZnO as a TCO film to replace part of the AlGaN layer or AlGaN/GaN superlattice layer, and forms a light confinement layer together with the AlGaN layer or AlGaN/GaN superlattice. The doped ZnO can be ZnO:Al (AZO), ZnO:Mn(MZO), ZnO:F(FZO), ZnO:B(BZO), ZnO:Ga(GZO), ZnO:In(IZO), ZnO:In/Ga(IGZO), ZnO: Al/Ga(AGZO), ZnO:Ga/Mn(MGZO), etc.
由于ZnO和GaN均是具有相同的纤锌矿晶体结构,仅具有约1.8%的小晶格失配,因此掺杂ZnO与GaN基的AlGaN层或AlGaN/GaN超晶格层之间的晶格失配小,以此形成的GaN基光电器件的稳定性和可靠性更高。ZnO具有相当高的透明度(通常在可见光范围内超过90%),可以有效的降低光学损耗,通过调节掺杂元素的比例可以调节自身的光学参数和电学特性,掺杂ZnO薄膜的电阻率(通常约为2×10-4Ω·cm)更低,同时还可以与p型欧姆接触层形成良好的欧姆接触。Since both ZnO and GaN have the same wurtzite crystal structure with only a small lattice mismatch of about 1.8%, doping the lattice between ZnO and the GaN-based AlGaN layer or AlGaN/GaN superlattice layer The mismatch is small, and the GaN-based optoelectronic devices formed by this have higher stability and reliability. ZnO has a very high transparency (usually more than 90% in the visible light range), which can effectively reduce optical losses. By adjusting the proportion of doping elements, its own optical parameters and electrical properties can be adjusted. The resistivity of the doped ZnO film (usually (approximately 2×10 -4 Ω·cm) is lower, and it can also form good ohmic contact with the p-type ohmic contact layer.
本发明通过调节掺杂ZnO中的掺杂元素比例、调节制备参数,可以得到更高的载流子迁移率和光学参数。The present invention can obtain higher carrier mobility and optical parameters by adjusting the proportion of doping elements in doped ZnO and adjusting the preparation parameters.
本发明所采用的GZO(Ga掺杂ZnO透明导电薄膜)中的Ga-O键与Al-O和In-O相比,Ga-O共价键长/>非常接近Zn-O键长/>即使在Ga浓度非常高的情况下,也可以最大限度地减少ZnO晶格的变形,并且,由于镓与铝相比具有更大的电负性,因此GZO更稳定。The Ga-O bond and Al-O in the GZO (Ga-doped ZnO transparent conductive film) used in the present invention and In-O Compared to Ga-O covalent bond length/> Very close to the Zn-O bond length/> Deformation of the ZnO lattice is minimized even at very high Ga concentrations, and, because gallium has greater electronegativity compared to aluminum, GZO is more stable.
本发明减少了传统p型AlGaN或AlGaN/GaN超晶格光限制层的厚度,并采用掺杂ZnO透明导电氧化物替代部分光限制层以及电极层,从而降低了光电器件的工作电压、增大了输出效率,提高了光电器件器件性能。The present invention reduces the thickness of the traditional p-type AlGaN or AlGaN/GaN superlattice light confinement layer, and uses doped ZnO transparent conductive oxide to replace part of the light confinement layer and electrode layer, thereby reducing the operating voltage of the optoelectronic device and increasing the The output efficiency is improved and the performance of the optoelectronic device is improved.
本发明通过薄膜沉积的工艺参数的优化,提高了薄膜的载流子浓度和迁移率,降低电阻率,同时提高薄膜的透过率,降低光吸收损耗,提升光电器件的性能。By optimizing the process parameters of thin film deposition, the present invention improves the carrier concentration and mobility of the thin film, reduces the resistivity, simultaneously increases the transmittance of the thin film, reduces the light absorption loss, and improves the performance of the optoelectronic device.
本发明可以使用磁控溅射、电子束蒸发、原子层沉积和脉冲激光沉积等方式但不限于上述各种方式。The present invention can use magnetron sputtering, electron beam evaporation, atomic layer deposition, pulse laser deposition and other methods but is not limited to the above methods.
本发明选取合适的透明导电氧化物,最终效果是透明导电氧化物与p型GaN的欧姆接触特性尽可能的低,以及透明导电氧化物的吸收系数尽可能的小,来提高光电器件器件性能的方式。可以采用一种参数沉积薄膜,获得均匀的薄膜;或者采用不同的沉积条件组合,形成多层不同性能的薄膜组合;所述金属氧化物为不同元素掺杂的ZnO薄膜,可以选择一种或多种元素掺杂到ZnO中,例如氧化铝锌(AZO)、氧化镓锌(GZO)、氧化铟锌(IZO)、氧化镁锌(MZO)、铟镓锌氧化物(IGZO)等。The present invention selects a suitable transparent conductive oxide. The final effect is that the ohmic contact characteristics of the transparent conductive oxide and p-type GaN are as low as possible, and the absorption coefficient of the transparent conductive oxide is as small as possible, thereby improving the performance of the optoelectronic device. Way. One parameter can be used to deposit the film to obtain a uniform film; or different combinations of deposition conditions can be used to form a multi-layer film combination with different properties; the metal oxide is a ZnO film doped with different elements, and one or more can be selected. Various elements are doped into ZnO, such as aluminum zinc oxide (AZO), gallium zinc oxide (GZO), indium zinc oxide (IZO), magnesium zinc oxide (MZO), indium gallium zinc oxide (IGZO), etc.
应当理解为,本发明中的掺杂ZnO透明导电氧化物层可以是一种二元金属氧化物,也可以是一种三元金属氧化物,也可以是两种以上的二元金属氧化物,也可以是两种以上的三元金属氧化物,还可以是一种以上的二元金属氧化物和一种以上的三元金属氧化物共同形成,并且包括金属氧化物生长形成的组分突变或者组分渐变的结构。It should be understood that the doped ZnO transparent conductive oxide layer in the present invention can be a binary metal oxide, a ternary metal oxide, or two or more binary metal oxides. It can also be two or more ternary metal oxides, or it can be formed together by more than one binary metal oxide and more than one ternary metal oxide, and includes component mutations formed by the growth of metal oxides or Structure with gradients of components.
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。It should be understood that the above embodiments are only to illustrate the technical concepts and characteristics of the present invention. Their purpose is to enable those familiar with the technology to understand the content of the present invention and implement it accordingly, and cannot limit the scope of protection of the present invention. All equivalent changes or modifications made based on the spirit and essence of the present invention should be included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311277813.0A CN117353154A (en) | 2023-09-28 | 2023-09-28 | GaN-based optoelectronic devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311277813.0A CN117353154A (en) | 2023-09-28 | 2023-09-28 | GaN-based optoelectronic devices |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117353154A true CN117353154A (en) | 2024-01-05 |
Family
ID=89360467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311277813.0A Pending CN117353154A (en) | 2023-09-28 | 2023-09-28 | GaN-based optoelectronic devices |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117353154A (en) |
-
2023
- 2023-09-28 CN CN202311277813.0A patent/CN117353154A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Transparent conducting oxides for electrode applications in light emitting and absorbing devices | |
CN102791475B (en) | Lamilated body and manufacture method thereof and use its function element | |
CN1917246B (en) | Nitride-based white light emitting device and manufacturing method thereof | |
CN100550446C (en) | With the light-emitting device of conductive nano rod as transparency electrode | |
CN102017200B (en) | Light-emitting element and a production method therefor | |
CN108091736A (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
WO2009142246A1 (en) | Semiconductor light emitting element, method for manufacturing semiconductor light emitting element, and lamp | |
CN112885937B (en) | Preparation method of P electrode of vertical structure light-emitting diode chip | |
KR100794304B1 (en) | Optical element and its manufacturing method | |
CN107068822A (en) | A kind of smooth extraction efficiency high LED epitaxial structure and its growing method | |
WO2020067235A1 (en) | Oxide multilayer body and method for producing same | |
CN116825913A (en) | A kind of light-emitting diode epitaxial wafer and preparation method, LED | |
CN116130572A (en) | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode | |
KR101030823B1 (en) | Transparent thin film, light emitting device comprising same and manufacturing method thereof | |
CN110364598B (en) | Light-emitting diode epitaxial wafer and method of making the same | |
CN109103312B (en) | Gallium nitride-based light emitting diode epitaxial wafer and manufacturing method thereof | |
Liu et al. | InGaN based light emitting diodes utilizing Ga doped ZnO as a highly transparent contact to p‐GaN | |
CN116682909B (en) | LED epitaxial wafer, preparation method and LED chip | |
CN117353154A (en) | GaN-based optoelectronic devices | |
WO2013066088A1 (en) | Transparent thin film, light-emitting device comprising same and method for manufacturing same | |
CN117650211A (en) | Ultraviolet light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode | |
CN117080866A (en) | Laser, laser preparation method and system based on vacuum interconnection | |
CN103346230A (en) | Copper sulfide/oxide zinc radical composite transparent electrode light-emitting diode and preparation method thereof | |
CN211017113U (en) | Structure for enhancing L ED luminous efficiency by using double-layer surface plasmon | |
Wang et al. | Improving in light power of AlGaN-based UV-LED with ITO/Ag/Ga₂O₃ as transparent conductive electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |