CN117344203A - 一种抗拉强度800Mpa级热轧复相钢及其制造方法 - Google Patents

一种抗拉强度800Mpa级热轧复相钢及其制造方法 Download PDF

Info

Publication number
CN117344203A
CN117344203A CN202210745059.8A CN202210745059A CN117344203A CN 117344203 A CN117344203 A CN 117344203A CN 202210745059 A CN202210745059 A CN 202210745059A CN 117344203 A CN117344203 A CN 117344203A
Authority
CN
China
Prior art keywords
less
equal
percent
tensile strength
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210745059.8A
Other languages
English (en)
Inventor
刘春粟
杨龙
王东
张玉龙
朱晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN202210745059.8A priority Critical patent/CN117344203A/zh
Priority to PCT/CN2023/102609 priority patent/WO2024002043A1/zh
Publication of CN117344203A publication Critical patent/CN117344203A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种抗拉强度800Mpa级热轧复相钢及其制造方法,其特征在于,化学元素质量百分比为:C:0.04‑0.08%,Si:0.05‑0.45%,Mn:1.4‑1.8%,P≤0.02%,S≤0.005%,N≤0.005%,O≤0.0030%,Ca≤0.004%,Al:0.02‑0.1%,Ti:0.07‑0.13%,Cr:0.1‑0.7%,B:≤0.0035%,余量为Fe和其他不可避免的杂质。所述钢板最终显微组织为贝氏体,含有少量的马氏体和残余奥氏体,以及纳米级微合金析出强化的铁素体。其纵向屈服强度≥680MPa,抗拉强度≥780MPa,延伸率A50≥15%,[KV(20℃)‑KV(‑40℃)]/KV(20℃)≤0.35,且KV(‑40℃)/厚度≥10J/mm,冲孔扩孔率≥65%。所生产的热轧钢板,具有较高的抗断裂韧性性能,可用做汽车底盘以及结构件,满足汽车复杂零件翻边、冲压及汽车轻量化的技术要求。

Description

一种抗拉强度800Mpa级热轧复相钢及其制造方法
技术领域
本发明属于高强度热轧钢板领域,特别涉及一种抗拉强度达到800Mpa级、具有良好的扩孔性等成形特征、在使用过程具有抗断裂韧性的热轧复相钢钢板及其制造方法。
背景技术
轻量化已成为汽车行业发展的趋势,高强度钢板在汽车结构件中所占的比例也越来越大。在强度提高的同时,目前很多车型采用80kg级别的钢板生产汽车底盘件,如控制臂、横拉杆、弹簧座等。例如汽车底盘件如控制臂其在成型过程包括冲压,翻边,扩孔等;同时在使用过程对其抗断裂韧性有一定的要求。
专利文献1(CN103602895A)中公开了一种抗拉强度780MPa级高扩孔钢板及其制造方法,其Si含量为0.5-1.5%,含量较高,容易形成铁橄榄石(2FeO-SiO2)氧化铁皮的形成而难以去除,难以获得较高等级表面的带钢。同时由于钢板表面的红铁皮较难控制,导致在热轧测温过程中,难以准确测量,导致产品性能不稳定性。
专利文献2(CN108570604A)中公开了一种780MPa级热轧酸洗高扩孔钢及其生产方法,其成分Al含量为0.2-0.6%,含量较高,连铸过程容易氧化,同时其采用的是三段冷却方式,生产稳定性较低。
专利文献3(CN105483545A)中公开了一种800MPa级热轧高扩孔钢板及其制造方法,其成分含有0.2-1.0%Si,Si含量相对较高,表面容易形成红铁皮,不利于表面和卷取温度的控制。同时含有0.03-0.08Nb,Nb含量也相对较高,成本较高,且轧后需进行分段冷却,冷却工艺复杂。
专利文献4(CN104513930A)中公开了弯曲和扩孔性能良好的超高强热轧复相钢板和带钢及其制造方法,其重点公开了热轧酸洗板的性能设计和制造方法,化学成分没有考虑B元素的作用。
以上专利只考虑其在成形过程中的扩孔性能,没有考虑到在使用过程的抗断裂韧性的特性,基于此,本发明提出了一种新型的抗拉强度800MPa级热轧钢板及其制造方法。
发明内容
发明所要解决的问题
本发明的目的在于提出一种抗拉强度800MPa级热轧复相钢钢板及其制造方法,所述的热轧钢板除了具有较高扩孔率,高强度,高延伸率等特点外,还具有高的抗断裂韧性特点,可用做汽车车身结构件及其汽车底盘件,也可用于其他需要高强、减重、抗碰撞等应用领域,具有较高的安全性。
解决问题的技术方案
为了实现上述目的,本发明提出了一种抗拉强度800Mpa级热轧复相钢,其特征在于,以质量百分比计,除包含Fe和其他不可避免的杂质之外,还包含:C:0.04-0.08%,Si:0.05-0.45%,Mn:1.4-1.8%,N≤0.005%,O≤0.0030%,Ca≤0.004%,Al:0.02-0.1%,Ti:0.07-0.13%,Cr:0.1-0.7%,B:≤0.0035%。
进一步,所述抗拉强度800Mpa级热轧复相钢,其化学元素质量百分比为:C:0.04-0.08%,Si:0.05-0.45%,Mn:1.4-1.8%,N≤0.005%,O≤0.0030%,Ca≤0.004%,Al:0.02-0.1%,Ti:0.07-0.13%,Cr:0.1-0.7%,B:≤0.0035%,余量为Fe和其他不可避免的杂质。
进一步,所述钢板的化学成分:(1)0.1%≤Cr≤0.2%且0.0020%≤B≤0.0035%,或(2)0.2%<Cr≤0.35%且0.0010%≤B<0.002%,或(3)0.35%<Cr≤0.7%且B<0.0010%。
进一步,在所述钢板的其他不可避免的杂质中,P≤0.02%,S≤0.005%。
进一步,所述钢板的显微组织:贝氏体面积分数≥90%,马氏体和残余奥氏体面积分数≤5%,纳米级微合金析出强化的铁素体≤5%,且贝氏体晶粒尺寸≤5μm,马氏体与残余奥氏体晶粒尺寸≤2.5μm,纳米级微合金析出强化的铁素体晶粒尺寸≤7.5μm。
进一步,所述钢板的夹杂物的尺寸,TiN以及含CaO,Al2O3等复合型TiN尺寸≤8μm。
进一步,所述钢板具有良好的成形性能,其纵向屈服强度≥680MPa,抗拉强度≥780MPa,延伸率A50≥15%,冲孔扩孔率≥65%。
进一步,所述钢板具有良好的抗断裂性能,其[KV(20℃)-KV(-40℃)]/KV(20℃)≤0.35,且KV(-40℃)/厚度≥10J/mm。
本发明化学成分作用机理如下:
C:在本发明所述的热轧复相钢钢板中,考虑到碳含量的高低很大程度上决定了钢板的抗拉强度级别,碳用于固溶强化,以及与Ti等形成足够的析出强化相,以保证钢的强度;但碳的质量百分比较高会使碳化物颗粒粗大,同时容易形成过多的马氏体和残余奥氏体,不利于扩孔性能,为了保证钢种强度下即能高扩孔,又具备良好的成形和焊接性能,在本发明所述的技术方案中控制C的质量百分比为0.04-0.08%。
Si:在本发明所述的热轧复相钢钢板中,硅起到固溶强化作用,提高钢板的强度,同时添加硅可加大加工硬化速率和给定强度下的均匀延伸率和总延伸率,有助于改善钢板的延伸率。此外,硅还可以阻止碳化物的析出,减少珠光体相的出现。但是钢中含硅容易使钢板表面形成2FeO-SiO2氧化铁皮的表面缺陷,对表面质量有不良影响。基于此,本发明所述的技术方案中将硅的质量百分比控制为0.05-0.45%。
Al:在本发明所述的热轧复相钢钢板中,Al是钢的脱氧元素,减少钢中的氧化物夹杂、纯净钢质,有利于提高钢板的成形性能,但是铝的质量百分比较高,会产生氧化,进一步影响连铸生产。基于此,在本发明所述的的技术方案中将Al的质量百分比控制为0.02-0.1%。
Mn:在本发明所述的热轧复相钢钢板中,锰是固溶强化元素,锰的质量百分比较低,会导致强度不足,但是锰的质量百分比较高会导致钢板的塑性降低。锰同时推迟珠光体转变,提高钢的淬透性且降低贝氏体转变温度,使钢的组织亚结构细化,并保证获得板条亚结构组织,在保证产品抗拉强度的前提下,同时具有良好的成形性。但是过高的Mn含量会导致中心线偏析,这会在冲孔或者切割该钢板带材时促进分开,又损害了阔从成形性,基于此,在本发明所述的的技术方案中将Mn的质量百分比控制在1.4-1.7%。
Cr:在本发明所述的热轧复相钢钢板中,铬是抑制珠光体的产生,有利于贝氏体组织的形成元素,最终有利于强度和扩孔率的提升,铬含量较低时,对相变曲线曲线影响不显著,但Cr的质量百分比较高时,一方面导致成本较高,另一方面在容易产生较多的马氏体组织。基于此,在本发明所述的技术方案中将Cr的质量百分比控制在0.1-0.7%。
Ti:在本发明所述的热轧复相钢钢板中,钛是重要的细晶强化和析出强化元素之一,Ti在热轧过程中可以提高再结晶温度,细化晶粒尺寸。同时Ti与C的结合,有着很好的强化作用。但在Ti的质量百分比不宜太多,容易形成尺寸较大的TiN,对钢的冲击韧性不利。因此,在本发明所述的技术方案中,控制Ti的质量百分比为Ti:0.07-0.13%。
B:在本发明所述的热轧复相钢钢板中,硼有利于扩大贝氏体相区,保证钢板在轧后冷却中可以得到贝氏体组织,对钢材的强度和硬度提升明显,可以部分取代Cr的含量降低成本。但是过多的B元素会导致钢板中出现过多的大块状马氏体组织,导致钢材扩孔率延伸率下降。因此,在本发明所述的技术方案中将B的质量百分比控制为B:≤0.0035%。
O:在本发明所述的热轧复相钢钢板中,氧是炼钢过程中不可避免的元素,对本发明而言,钢中O的含量通过脱氧之后会有一定的残留,容易形成氧化物,夹杂物本身对钢板的性能不会造成明显不利影响,同时Al2O3容易成为TiN的形核,促进TiN的长大。因此,在本发明所述的技术方案中将O的质量百分比控制为O≤0.0030%。
Ca:在本发明所述的热轧复相钢钢板中,钙能够改善硫化物如MnS形态,使长条形的MnS等硫化物变为球形MnS,有利于改善夹杂物形态,进而减小长条形硫化物对扩孔成形性能的不利影响,但过多钙的加入会增加氧化钙的数量,对扩孔性能不利。因此,钢种钙的添加量通常≤0.004%。
N:在本发明所述的热轧复相钢钢板中,氮属于杂质元素,其含量越低越好,但是氮在炼钢过程中是不可避免的元素。虽然其含量较少,但是与强碳化物形成元素如Ti等结合,由于TiN呈方形,其尖角与基体之间存在很大的应力集中,TiN与基体之间的应力集中容易形成裂纹,对抗断裂韧性和扩孔性能也有较大的影响。因此,在本发明中,氮的含量应控制≤0.005%。
在本发明所述的在本发明所述的热轧复相钢钢板中,在其他不可避免的杂质中,P≤0.02%,S≤0.005%。
在成分设计上,Ti主要目的有以下三点细化晶粒的作用和一点析出强化的作用:(1)在板坯加热过程中,Ti的析出物阻止原始奥氏体晶粒的长大,(2)在热轧过程中,TiC有利于提高再结晶温度,进一步细化奥氏体晶粒;(3)已经析出的Ti(C,N)或者Ti(Cr)C有利于细化相变的贝氏体,以及少量马氏体晶粒;(4)在层流冷却过程,TiC或者Ti(Cr)C的纳米级析出起到强烈的析出强化效果;碳含量设计需要与Ti含量配合,保证Ti的充分析出,同时严格控制N含量≤0.005%,避免过多的N对Ti含量的消耗。
在成分设计上,进一步使Cr,B的含量满足一定的关系:(1)0.1%≤Cr≤0.2%且0.0020%≤B≤0.0035%,或(2)0.2%<Cr≤0.35%且0.0010%≤B<0.002%,或(3)0.35%<Cr≤0.7%且B<0.0010%。既加入适量的Cr和B元素是为了在热轧卷取过程中得到贝氏体组织,尺寸较少的马氏体和奥氏体岛,而不含影响扩孔性能得珠光体和块状的马氏体。
本发明所述的一种抗拉强度800MPa级热轧复相钢钢板的制造方法,具体的如下:
1)冶炼、连铸
按照上述化学成分进行冶炼和铸造;炼钢过程的过热度控制为15-60℃。
2)热轧
经过冶炼和连铸获得的板坯被加热至1200-1300℃并保温1-3小时;之后进行轧制,粗轧出口温度为1000-1080℃;终轧温度为840-950℃。控制总压下率≥80%,精轧总压下率≥50%;终轧道次的压下率≤15%,轧制速度为7-13m/s。
控制层流冷却的中间点温度和冷却速度,第一段平均冷速≥100℃/s,中间点温度为600-720℃,空冷时间5-10s,第二段的平均冷速≥30℃/s。
精轧后以不同的冷速将钢板水冷到430-550℃进行卷取。
3)轧后缓冷
热轧卷取之后,采用冷速≤100℃/h的冷速冷到室温。
4)酸洗
酸洗拉矫延伸率为0.2-2%;酸洗速度速度控制在60-150m/min,酸洗过程最后的一个酸洗酸槽温度控制80-90℃、铁离子浓度控制为30-40g/L。
本发明的制造工艺设计要点的理由如下:
上述步骤1中,大块、脆性、具有尖锐边角的TiN会成为潜在的裂纹源而大幅降低该类钢种的冲击韧性和扩孔性能。而且粗大的TiN颗粒会在一些夹杂物的诱导下形核长大,这些夹杂物一股是由炼钢过程不可避免的Al2O3,CaO,MgO等组成,并且炼钢的过热度影响较大,过热度越大越有利于夹杂物的控制,但是过热度越大,也有利于TiN的长大。因此在炼钢过程中严格控制Al,Ca等的含量的同时,严格控制过热度为15-60℃。
上述步骤2中,对于含Ti钢来说,板坯的加热温度对于性能尤其重要,Ti在连铸过程会有大量的大尺寸的Ti(C,N)析出,加热温度设定为≥1200℃,主要目的是板坯在加热过程中,Ti等合金元素尽可能固溶,为了是后续Ti等微合金在热轧卷取过程中的纳米级析出。而当温度超过1300℃时,会有晶粒粗化的趋势,不利于钢板的韧性;因此优选地将加热温度设置为1200-1300℃。
上述步骤2中,热轧过程的粗轧温度控制以及轧制速度对于Ti等微合金的影响较大,Ti在较低的粗轧温度和精轧过程中,会有Ti的碳化物以及碳氮化物的析出此过程的析出尺寸较大,不利于最终强度的提升,但是析出的TiC,Ti(Cr)N有利于奥氏体晶粒的细化,因此控制粗轧出口温度1000-1080℃。
上述步骤2中,Ti的析出温度最强烈的温度区间为600-750℃之间,实际的卷取温度比这个温度较低,为了更好的发挥TiC的纳米级析出强化作用,在层流冷却过程中采用两段式冷却,其中中间点温度为600-700℃,空冷时间5-10s,控制层流冷却第一段平均冷速≥100℃/s,第二段的平均冷速≥30℃/s。
上述步骤2中,由于本发明为了提高贝氏体强度,含有适量的Cr和B,既Cr和B满足以下关系:(1)0.1%≤Cr≤0.2%且0.0020%≤B≤0.0035%,或(2)0.2%<Cr≤0.35%且0.0010%≤B<0.002%,或(3)0.35%<Cr≤0.7%且B<0.0010%。由于Cr和B的添加,已经较好抑制了铁素体和珠光体的形成,但是也较为容易的形成块状的二次马氏体和残余奥氏体,因此热轧层流冷却过程对贝氏体相变的体积分数影响较大。在本发明中为了得到合适的贝氏体相变,和尺寸较小的马氏体奥氏体岛,需要严格控制相对较低的热轧卷取温度。卷取温度高,二次马氏体和残余奥氏体尺寸较大,不利于扩孔率的提升;卷取温度较低,并有可能出现一次马氏体组织,延伸率较低。因而,控制取温度为430-580℃之间。
上述步骤3中,卷取之后,采用冷速≤100℃/h的冷速冷到室温,有利于促进贝氏体进一步转变、马氏体的回火、以及微合金的进一步析出。有利于强度,扩孔率,延伸率的提升,以及冲击韧性的提升。
本发明的有益效果:
(1)本发明是一种低成本的设计和发明,采用成本较低微合金Ti元素,而非Nb和V等贵重微合金;本发明采用成本较低的Cr和B元素,而非Mo等贵重微合金;因此本发明的合金成本较低;
(2)本发明在采用精确的显微组织控制和夹杂物水平控制,配合合理的炼钢水平控制,可以在传统的热连轧产线,或者低碳的短流程产线上,生产出一种抗拉强度800MPa级热轧复相钢钢板;
(3)本发明的热轧复相钢钢板,具有高强度,高成形性,高韧性等特点,其纵向屈服强度≥680MPa,抗拉强度≥780MPa,延伸率A50≥15%,[KV(20℃)-KV(-40℃)]/KV(20℃)≤0.35,且KV(-40℃)/厚度≥10J/mm,冲孔扩孔率≥65%。可用做汽车车身结构件及其汽车底盘件,也可用于其他需要高强、减重等应用领域。
附图说明
【图1】为本发明实施例1钢的典型金相照片(95%贝氏体+3%马氏体和奥氏体+2%铁素体,贝氏体晶粒尺寸3.8μm,马氏体奥氏体岛晶粒尺寸1.5μm,铁素体晶粒尺寸3.5μm);
【图2】为本发明对比例22钢的典型金相照片(73%贝氏体+25%马氏体和奥氏体+2%铁素体,贝氏体晶粒尺寸3.8μm,马氏体奥氏体岛晶粒尺寸3.0μm,铁素体晶粒尺寸3.5μm);
【图3】为本发明对比例23钢的典型金相照片(TiN尺寸达到12μm,数量多且连续);
具体实施方式
下面结合实施例对本发明做进一步的说明。
将表1中所示的不同成分的钢经冶炼后按表2所示加热、热轧、或者酸洗工艺后得到厚度≤5.5mm的钢板。取沿纵向JIS 5#拉伸试样测定屈服及抗拉强度,力学性能测试按照GB/T228.1-2010标准执行。扩孔率采用扩孔试验测定,用凸模把中心带孔的试件压入凹模,使试件中心孔扩大,直到板孔边缘出现颈缩或贯穿裂纹为止。由于试件中心原始孔的制备方式对扩孔率测试结果存在较大影响,因此,分别采用冲孔和铰孔制备试件中心原始孔,后续试验及测试方法按ISO/DIS 16630标准中规定的扩孔率测试方法执行。冲击测试按照GB/T 229-2020金属材料夏比摆锤冲击试验方法标准执行,冲击试样厚度采用原始样板厚度。
表2的实施例1-4,8-10,15,18-22,采用了表1所示的成分配比,同时添加Ti以增加其再热轧过程的析出强化和细化晶粒效果,同时满足表2的热轧工艺,最终热轧复相钢钢板达到表3的显微组织和力学性能。其中实施例钢板的显微组织:贝氏体面积分数≥90%,马氏体和残余奥氏体面积分数≤5%,纳米级微合金析出强化的铁素体≤5%,且贝氏体晶粒尺寸≤5μm,马氏体与残余奥氏体晶粒尺寸≤2.5μm,纳米级微合金析出强化的铁素体晶粒尺寸≤7.5μm。实施例钢板的夹杂物的尺寸,TiN以及含CaO,Al2P3等复合型TiN尺寸≤8μm。实施例钢板具有良好的成形性能,其纵向屈服强度≥680MPa,抗拉强度≥780MPa,延伸率A50≥≥15%,冲孔扩孔率≥65%。实施例钢板具有良好的抗断裂性能,其[KV(20℃)-KV(-40℃)]/KV(20℃)≤0.35,且KV(-40℃)/厚度≥10J/mm。
与实施例1-4相比,对比例5采用了轧后快冷的方式,热轧卷取后的冷却速度过快,导致过冷奥氏体在卷取后发生了马氏体相变比例为13%,导致扩孔率较低。在冲击韧性方面,-40℃冲击韧性比室温下降较为明显,下降36%,同时KV(-40℃)/板厚=8.9J/μm,冲击韧性较低。对比例6-7采用不同的热轧卷取温度,其中对比例6采用了较低的卷取温度,其显微组织中一次马氏体含量达到70%,并最终导致抗拉强度较高,延伸率,扩孔率较低,并且KV(-40℃)/板厚=9.2J/μm,冲击韧性较低。对比例7采用了较高的卷取温度,其显微组织中铁素体含量较高并且晶粒较为粗大,铁素体面积分数达到30%,晶粒尺寸达到8.2μm,同时贝氏体的晶粒尺寸为7.5μm,相对较大,导致KV(-40℃)/板厚=8.2J/μm,冲击韧性较低。
与实施例8-10相比,对比例11由于中间点温度较低,导致层流冷却过程基本无铁素体相变,最终导致延伸率相对较低,为14.5%。对比例12由于精轧总压下率较低,再结晶不充分,导致贝氏体、铁素体晶粒粗大,其晶粒尺寸分别为6.0μm和8.5μm,导致屈服强度较低,扩孔率相对较低,同时晶粒粗大也导致了冲击韧性较低,KV(-40℃)/板厚=8.0J/μm。对比例13由于粗轧出口温度较低,以及精轧终轧温度较低,在轧制过程中,有尺寸较大,面积分数较多的铁素体相变产生,最终导致扩孔率和冲击韧性较低,扩孔率55%,KV(-40℃)/板厚=8.8J/μm。对比例14由于加热温度低,导致的Ti含量不充分固溶连铸过程粗大的Ti(C,N)的颗粒没有完全固溶,对强度的贡献较小,也表现出钢板的抗拉强度不足。对比例16和17由于冶炼和连铸过程的过热度未能控制在特定的范围内,导致形成了尺寸较大的TiN,也表现出对扩孔率的影响。
对比例23,由于Cr,B配比不合理,导致在贝氏体相变较低,马氏体和残余奥氏体相变比例较高,其对强度贡献较大,反而降低了延伸率、扩孔率、冲击韧性,其中[KV(20℃)-KV(-40℃)]/KV(20℃)=0.37,且KV(-40℃)/厚度=8.4J/mm。
对比例24,由于Al,Ca等元素较高,在冶炼过程先形成不可避免的夹杂物,而在凝固过程TiN又以Al2O3等质点作为形核点并长大,其中TiN尺寸达到12μm,TiN的数量多且连续,对扩孔率以及冲击韧性均有较大的影响,其中[KV(20℃)-KV(-40℃)]/KV(20℃)=0.42,且KV(-40℃)/厚度=7.4J/mm。
对比例25,由于C,Mn含量较高,淬透性较强,马氏体比例较高,为15%,导致最终的延伸率、扩孔率、冲击韧性较低。其中延伸率为14.0%,扩孔率51%,[KV(20℃)-KV(-40℃)]/KV(20℃)=0.39,且KV(-40℃)/厚度=8.9J/mm。
对比例26:是由于N含量较高,消耗了大量的Ti元素,导致大量块状TiN的析出,而大颗粒的TiN对强度的贡献较小,降低了钢板的强度,同时由于冲孔时,冲切边有大尺寸TiN引起的微裂纹,从而导致对冲孔扩孔率影响较大。
/>
/>

Claims (14)

1.一种抗拉强度800Mpa级热轧复相钢,其特征在于,以质量百分比计,除包含Fe和其他不可避免的杂质之外,还包含:C:0.04-0.08%,Si:0.05-0.45%,Mn:1.4-1.8%,N≤0.005%,O≤0.0030%,Ca≤0.004%,Al:0.02-0.1%,Ti:0.07-0.13%,Cr:0.1-0.7%,B:≤0.0035%。
2.一种抗拉强度800Mpa级热轧复相钢,其特征在于,其化学元素质量百分比为:C:0.04-0.08%,Si:0.05-0.45%,Mn:1.4-1.8%,N≤0.005%,O≤0.0030%,Ca≤0.004%,Al:0.02-0.1%,Ti:0.07-0.13%,Cr:0.1-0.7%,B:≤0.0035%,余量为Fe和其他不可避免的杂质。
3.根据权利要求1或2所述的抗拉强度800Mpa级热轧复相钢,其特征在于,所述的化学成分:(1)0.1%≤Cr≤0.2%且0.0020%≤B≤0.0035%,或(2)0.2%<Cr≤0.35%且0.0010%≤B<0.002%,或(3)0.35%<Cr≤0.7%且B<0.0010%。
4.根据权利要求1或2所述的抗拉强度800Mpa级热轧复相钢,其特征在于,在其他不可避免的杂质中,P≤0.02%,S≤0.005%。
5.根据权利要求1或2所述的抗拉强度800Mpa级热轧复相钢,其特征在于,其显微组织中贝氏体面积分数≥90%,马氏体和残余奥氏体面积分数≤5%,纳米级微合金析出强化的铁素体≤5%,且贝氏体晶粒尺寸≤5μm,马氏体与残余奥氏体晶粒尺寸≤2.5μm,纳米级微合金析出强化的铁素体晶粒尺寸≤7.5μm。
6.根据权利要求1或2所述的抗拉强度800Mpa级热轧复相钢,其特征在于,TiN以及含CaO,Al2O3的复合型TiN尺寸≤8μm。
7.根据权利要求1或2所述的抗拉强度800Mpa级热轧复相钢,其特征在于,纵向屈服强度≥680MPa,抗拉强度≥780MPa,延伸率A50≥15%,[KV(20℃)-KV(-40℃)]/KV(20℃)≤0.35,且KV(-40℃)/厚度≥10J/mm,冲孔扩孔率≥65%。
8.一种权利要求1-7中任一项所述的抗拉强度800Mpa级热轧复相钢的制造方法,其特征在于,包括以下步骤:(1)冶炼、连铸;(2)热轧;(3)酸洗。
9.根据权利要求8所述的抗拉强度800Mpa级热轧复相钢的制造方法,其特征在于,冶炼和连铸过程,过热度控制为15-60℃。
10.根据权利要求8所述的抗拉强度800Mpa级热轧复相钢的制造方法,其特征在于,热轧过程中加热温度1200-1300℃,粗轧出口温度为1000-1080℃;控制总压下率≥80%,精轧总压下率≥50%;终轧温度为840-950℃;轧制速度为7-13m/s。
11.根据权利要求8所述的抗拉强度800Mpa级热轧复相钢的制造方法,其特征在于,热轧过程中控制层流冷却的中间点温度和冷却速度,第一段平均冷速≥100℃/s,中间点温度为600-720℃,空冷时间5-10s,第二段的平均冷速≥30℃/s。
12.根据权利要求8所述的抗拉强度800Mpa级热轧复相钢的制造方法,其特征在于,热轧过程中卷取温度为430-550℃。
13.根据权利要求8所述的抗拉强度800Mpa级热轧复相钢的制造方法,其特征在于,卷取之后,采用冷速≤100℃/h的冷速冷到室温。
14.根据权利要求8所述的抗拉强度800Mpa级热轧复相钢的制造方法,其特征在于,酸洗过程中酸洗拉矫延伸率为0.2-1%;酸洗速度控制在60-150m/min,酸洗过程最后的一个酸洗酸槽温度控制为80-90℃、铁离子浓度控制为30-40g/L。
CN202210745059.8A 2022-06-27 2022-06-27 一种抗拉强度800Mpa级热轧复相钢及其制造方法 Pending CN117344203A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210745059.8A CN117344203A (zh) 2022-06-27 2022-06-27 一种抗拉强度800Mpa级热轧复相钢及其制造方法
PCT/CN2023/102609 WO2024002043A1 (zh) 2022-06-27 2023-06-27 一种抗拉强度800MPa级热轧复相钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210745059.8A CN117344203A (zh) 2022-06-27 2022-06-27 一种抗拉强度800Mpa级热轧复相钢及其制造方法

Publications (1)

Publication Number Publication Date
CN117344203A true CN117344203A (zh) 2024-01-05

Family

ID=89363663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210745059.8A Pending CN117344203A (zh) 2022-06-27 2022-06-27 一种抗拉强度800Mpa级热轧复相钢及其制造方法

Country Status (2)

Country Link
CN (1) CN117344203A (zh)
WO (1) WO2024002043A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104513930A (zh) * 2014-12-19 2015-04-15 宝山钢铁股份有限公司 弯曲和扩孔性能良好的超高强热轧复相钢板和钢带及其制造方法
WO2017111303A1 (ko) * 2015-12-23 2017-06-29 주식회사 포스코 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
CN106119702B (zh) * 2016-06-21 2018-10-02 宝山钢铁股份有限公司 一种980MPa级热轧高强度高扩孔钢及其制造方法
KR102098482B1 (ko) * 2018-07-25 2020-04-07 주식회사 포스코 내충돌 특성이 우수한 고강도 강판 및 이의 제조방법
CN112575267A (zh) * 2019-09-27 2021-03-30 宝山钢铁股份有限公司 一种高扩孔复相钢及其制造方法
CN113122769B (zh) * 2019-12-31 2022-06-28 宝山钢铁股份有限公司 低硅低碳当量吉帕级复相钢板/钢带及其制造方法
CN113122770B (zh) * 2019-12-31 2022-06-28 宝山钢铁股份有限公司 低碳低成本超高强复相钢板/钢带及其制造方法
CN113481436A (zh) * 2021-06-29 2021-10-08 鞍钢股份有限公司 一种800MPa级热轧复相钢及其生产方法

Also Published As

Publication number Publication date
WO2024002043A1 (zh) 2024-01-04

Similar Documents

Publication Publication Date Title
CN109536846B (zh) 屈服强度700MPa级高韧性热轧钢板及其制造方法
CN104694822A (zh) 一种屈服强度700MPa级高强度热轧钢板及其制造方法
CN106609335A (zh) 抗拉强度700MPa级高扩孔热轧钢板及其制造方法
CN112226673A (zh) 一种抗拉强度650MPa级热轧钢板及其制造方法
CN109957716A (zh) 一种高强度高扩孔性单一铁素体析出钢板及其制备方法
CN108611568A (zh) 抗拉强度400MPa级高扩孔热轧钢板及其制造方法
KR20230024905A (ko) 가소성이 우수한 초고강도 강 및 이의 제조 방법
CN114892080B (zh) 一种720MPa级析出强化型热轧贝氏体钢及其生产方法
CN114107789A (zh) 一种780MPa级高表面高性能稳定性超高扩孔钢及其制造方法
CN113122770B (zh) 低碳低成本超高强复相钢板/钢带及其制造方法
CN115702254A (zh) 由钢成分制造高强度钢管的方法及其部件
CN113122769B (zh) 低硅低碳当量吉帕级复相钢板/钢带及其制造方法
CN102953001B (zh) 一种抗拉强度900MPa以上冷轧钢板及制造方法
CN115679223B (zh) 一种高屈强比冷轧dh980钢及其制备方法
CN112575267A (zh) 一种高扩孔复相钢及其制造方法
CN107829026B (zh) 一种薄规格980MPa级双相钢及其加工方法
CN113373370B (zh) 一种1100MPa级桥壳钢及其制造方法
CN113528948A (zh) 一种用CSP生产抗拉强度为2000MPa级高塑韧性汽车结构件用钢及生产方法
CN117344203A (zh) 一种抗拉强度800Mpa级热轧复相钢及其制造方法
CN107829025B (zh) 一种薄规格具有良好扩孔性能的双相钢及其加工方法
CN114908289B (zh) 一种650MPa级析出强化型热轧贝氏体钢及其生产方法
CN114774788B (zh) 一种900MPa级高表面质量的酸洗汽车用钢及其制造方法和应用
CN114908290B (zh) 一种520MPa级析出强化型热轧贝氏体钢及其生产方法
CN114908291B (zh) 一种850MPa级析出强化型热轧贝氏体钢及其生产方法
CN112981258B (zh) 一种薄规格输气直缝焊管用x70m热轧钢板及制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination