CN117265001A - 一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法 - Google Patents

一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法 Download PDF

Info

Publication number
CN117265001A
CN117265001A CN202311187037.5A CN202311187037A CN117265001A CN 117265001 A CN117265001 A CN 117265001A CN 202311187037 A CN202311187037 A CN 202311187037A CN 117265001 A CN117265001 A CN 117265001A
Authority
CN
China
Prior art keywords
lily
minjiang
genetic transformation
bulb
transgenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311187037.5A
Other languages
English (en)
Inventor
刘迪秋
邓婕
车晓莉
顾悦
甘昆发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202311187037.5A priority Critical patent/CN117265001A/zh
Publication of CN117265001A publication Critical patent/CN117265001A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • C12N15/821Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
    • C12N15/8212Colour markers, e.g. beta-glucoronidase [GUS], green fluorescent protein [GFP], carotenoid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法,为解决岷江百合遗传转化体系周期长、转化率低的问题,本发明在鳞茎芽点注射含有目的基因的农杆菌,筛选获得了稳定表达目的基因的岷江百合植株,成功构建周期短、效率高的遗传转化体系;转化步骤包括野生型岷江百合鳞茎的制备、包含目的基因农杆菌的活化、鳞茎芽点注射、转基因岷江百合植株培养、阳性转基因植株筛选;实验结果显示转基因岷江百合植株的生长状况与野生型岷江百合没有显著差异,实时荧光定量PCR、蛋白质免疫印迹、体式荧光显微镜、激光扫描共聚焦显微镜检测结果表明目的基因成功整合到岷江百合的基因组中且稳定表达;本发明方法可应用于基因功能验证以及转基因百合的培育。

Description

一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法
技术领域
本发明属于分子生物学以及基因工程技术领域,具体涉及一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法。
背景技术
百合是重要的花卉植物,全世界有100多种百合,其中原产于我国的百合就有47种,如川百合、岷江百合、湖北百合(李玉萍等.百合属植物资源的分布·利用价值及其开发前景展望.安徽农业科学,2010,38(07):3395-3396)。百合花姿多样、气味芬芳、花色多样,具有极高的观赏价值。因此,百合已成为位于世界五大切花(月季、香石竹、菊花、唐菖蒲、非洲菊)之后的一大切花。古代西方将百合花刻在寺庙的顶柱上象征着纯洁和高雅,古代的中国更认为百合是美好的象征。现如今,百合花寓意着吉祥、圣洁、团圆、喜庆、幸福、美满(杨晶等.百合的观赏价值研究.吉林农业,2011(09):171)。此外,百合还含有丰富的淀粉、糖、氨基酸、维生素B及矿物质等,具有重要的食用价值(李玉萍等.百合属植物资源的分布·利用价值及其开发前景展望.安徽农业科学,2010,38(07):3395-3396)。同时,百合中富含生物碱、有机酸、多糖、黄酮等多种活性成分,具有重要的药用价值。《中华人民共和国药典》(2020版)记载,卷丹百合、细叶百合中主要的药用活性成分是百合多糖。百合多糖具有养阴润肺,清心安神的功效,常用于治疗阴虚燥咳,劳嗽咳血,虚烦惊悸,失眠多梦,精神恍惚等症状(段芳瑶等.百合科植物的应用及价值.乡村科技,2020,11(35):52-53)。
为了获得花型特殊、花色特异、气味清香、耐寒、耐旱、抗病性较高的百合品种,目前常用的遗传育种方法包括无性繁殖、杂交育种、分子育种及诱变育种等(陈文波等.中国近期百合育种研究态势.凯里学院学报,2015,33(06):42-45)。虽然百合可以通过有性繁殖获得种子,但是从播种开始,经历发芽、成株再到开花的过程耗费时间较长。因此,百合多用无性繁殖的方法进行培育,如鳞茎的自然繁殖、仔球繁殖、鳞片扦插繁殖等(吴然等.兰州百合鳞片扦插繁殖技术研究.蔬菜,2022(04):21-24)。杂交育种多用于培育花色、花形或高抗性品种。异源三倍体百合Triumphator与龙牙百合杂交得到了既可食用也具有高观赏价值的品种百合(崔罗敏等.三倍体观赏百合与二倍体食用龙牙百合的杂交分析.西北植物学报,2021,41(06):971-976)。近年来,随着分子生物学的发展,分子育种也常用于百合品种的培育。利用基因枪法成功将脱氢抗坏血酸还原酶基因(DHAR)导入到兰州百合中,但是转化率仅有1.5%(师守国等.兰州百合基因枪转化方法的研究.西北植物学报,2010,30(04):677-682)。利用农杆菌介导成功向东方百合“西伯利亚”中导入EPSP基因,并对草甘膦产生抗性(张洁等.东方百合高效转基因体系构建及EPSP基因的导入.北方园艺,2023(04):46-53)。用60Co-γ射线辐射诱变卷丹百合,其株高、茎粗及鳞茎鲜重均发生降低,筛选后仅获得1株性状优良的卷丹百合变异株(朱校奇等.卷丹百合辐射诱变的生物学效应及变异研究初报.南方农业学报,2012,43(11):1638-1641)。
百合育种方式多种多样,但不同的育种方式均有其局限性。无性繁殖无法培育出性状发生改变的品种,杂交育种存在种间不亲和性,无法获得有活力的杂交后代;诱变育种具有不定向性,无法靶向产生变种。通过基因工程手段进行分子育种,可靶向产生变种,而且基因操作可靶向特定的目的基因(杨慧等.百合遗传育种研究进展.山东林业科技,2009,39(03):151-155)。转基因育种不存在种间不亲和性及不定向性,然而目前仍然没有建立起快速高效的百合遗传转化体系。现有的遗传转化体系存在转化效率低、周期长、操作复杂及再生率低等问题,导致分子育种无法广泛应用于百合的性状改良,也限制了百合的基础理论研究(易欢等.百合遗传转化技术研究进展.山东林业科技,2023,53(01):108-114)。基于农杆菌转化建立的药百合及东方百合杂交系与喇叭型百合杂交种‘Robina’的遗传转化体系,转化率仅为12.1%及11.6%(储俊等.农杆菌介导的药百合鳞片遗传转化体系的建立.草业学报,2011,20(06):164-169;刘爱玲等.蝴蝶兰F3’5’H基因转化OT杂种百合Robina的研究.西北植物学报,2016,36(05):874-880)。
岷江百合分布于四川岷江流域,生长在海拔800-2500米的山坡岩石、河岸边,不仅耐低温、干旱、盐碱,还高抗枯萎病、灰霉病、病毒病(Cui Q,Yan X,Gao X,Zhang DM,He HB,JiaGX.Analysis of WRKY transcription factors and characterization of twoBotrytis cinerea-responsive LrWRKY genes from Lilium regale.Plant Physiologyand Biochemistry,2018,127:525-536)。20世纪初,欧洲利用岷江百合进行杂交育种,培育出许多抗病新品种。针对岷江百合建立稳定、高效的遗传转化体系,有利于推动百合属植物的遗传育种研究。
发明内容
本发明提供一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法,以解决上述背景技术中提出的问题,该方法通过直接在岷江百合的鳞茎芽点注入携带目的基因的根癌农杆菌(Agrobacterium tumefaciens),从而将目的基因整合至岷江百合的基因组中,结合PCR、qRT-PCR及蛋白质免疫印迹等技术,筛选得到了含有并表达外源基因的转基因岷江百合植株。
为实现上述目的,本发明提供如下技术方案:
1)野生型岷江百合鳞茎的制备
岷江百合种子经75%乙醇清洗45s后用无菌水冲洗2-3次,再用0.1%的氯化汞溶液消毒5-8min,接着用无菌水清洗7-8次后,置于1/2MS培养基中于28℃培养箱中,暗培养30-40天后,将小鳞茎转移至光照培养箱(28℃,光照16h/d)中培养,60天后得到适于遗传转化的鳞茎;
2)根瘤农杆菌菌液的活化
将携带目的基因的植物表达载体的根瘤农杆菌EHA105菌液划线于含有20mg/L利福平和50mg/L卡那霉素的LB固体培养基中,于28℃培养两天;使用接种环刮取菌苔至含有30mg/mL乙酰丁香酮的MGL培养基中,震荡培养(200rpm,28℃)至OD600为0.8,获得菌液用于注射鳞茎;
所述携带目的基因的植物表达载体按常规方法制得并按常规方法转入根瘤农杆菌中获得农杆菌菌液;
所述携带目的基因的植物表达载体是带有红色荧光蛋白基因DsRed2的表达载体pCAMBIA2300-DsRed2;
3)岷江百合鳞茎芽点的注射
选取直径大小约为2-3cm的鳞茎,剥去外层鳞片直至露出中心芽点,使用1mL的注射器吸取步骤2)中的菌液,向芽点注射菌液至形成浸润圈,注射结束后,将鳞茎至于28℃的室内暗培养2天后,将其种于土壤(蛭石:珍珠岩:营养土为3:1:1)中,在温室中培养20-30天,筛选获得转基因岷江百合植株。
与现有技术相比,本发明的优点和技术效果如下:
1、本发明通过岷江百合的鳞茎芽点直接注入携带目标基因农杆菌的方法将目标基因转化至岷江百合的基因组中,结合PCR、qRT-PCR及蛋白质免疫印迹等技术,筛选得到了转基因岷江百合,转化株获得频率达到86%;解决了传统的百合遗传转化体系周期长、转化率低等问题,构建了周期短、效率高、稳定性好的遗传转化体系;
2、本发明提供了一种不需要经过组织培养的新型遗传转化技术,与常用百合转基因方法相比,具有三大优势:1)注射农杆菌后无需组织培养过程,周期较短;2)不需要基因枪等贵重仪器设备,成本低廉,一般实验室均可操作;3)材料制备方便,具有广阔的应用前景。
附图说明
图1是本发明中岷江百合注射法转基因的示意图;
图2是本发明中注射转化后岷江百合的生长状况;
图3是本发明中以转基因岷江百合叶片的总DNA为模板的PCR扩增结果,其中WT是以野生型岷江百合叶片的总DNA为模板的PCR反应;
图4是本发明中以转基因岷江百合(T-1/-2/-3/-5/-6/-7/-9/-10/-11/-19/-20/-21)叶片的cDNA为模板的qPCR检测结果,其中WT是以野生型岷江百合叶片的cDNA为模板的qPCR反应;
图5是本发明中转基因岷江百合(T-1/-5/-6/-19/-20/-21)叶片总蛋白的蛋白质免疫印迹结果,其中WT为野生型岷江百合叶片总蛋白的蛋白质印迹结果;
图6是本发明中转基因岷江百合(T-6)的根、茎、叶、鳞片在体式荧光显微镜下的观察结果,对照为野生型岷江百合(WT)根、茎、叶、鳞片的体式荧光显微镜观察结果(540nm激发光下DsRed2编码蛋白呈现橙黄色荧光),其中每个样品的第一列图片为荧光场,第二列图片为白场;
图7是本发明中转基因岷江百合(T-6)的根、茎、叶、鳞片在激光共聚焦显微镜下的观察结果,对照为野生型岷江百合(WT)根、茎、叶、鳞片的在激光共聚焦显微镜下的观察结果,其中每个样品的第一列图片为荧光场,第二列图片为白场,第三列图片为荧光场与白场的叠加。
具体实施方式
下面通过附图和实施例对本发明进一步说明,但本发明保护范围不局限于所述内容,本实施例中方法如无特殊说明的均按常规方法操作,所用试剂如无特殊说明的采用常规试剂或按常规方法配置的试剂。
实施例1:转基因岷江百合的制备
1、岷江百合种子经75%乙醇清洗45s后用无菌水冲洗3次,再用0.1%的氯化汞溶液消毒5-8min并使用无菌水清洗7-8次后,置于1/2MS培养基中,28℃暗培养至长出具有小鳞球的幼嫩植株后转移至光照培养箱(28℃,光照16h/d)中,培养60天后,得到可进行体外注射的鳞茎;
2、将含有pCAMBIA2300-DsRed2质粒(红色荧光蛋白DsRed2为检测转基因植株的报告基因)的EHA105农杆菌菌液划线于的LB固体培养基(含有20mg/L利福平和50mg/L卡那霉素)中,并置于28℃培养两天;使用接种环刮取菌苔,接种于含有30mg/mL乙酰丁香酮的MGL培养基中,在28℃、200rpm下培养4小时至OD600约为0.8,获得活化农杆菌菌液;
3、将岷江百合鳞茎剥去外层鳞片,露出芽点,一手固定鳞茎,另一手使用1mL注射器向芽点缓慢注入农杆菌菌液10μL直至在注射点周围形成浸润圈(注射部位如图1所示);注射结束后,将鳞茎至于28℃的室内暗培养2天,然后将其种植于土壤(蛭石:珍珠岩:营养土的重量比为3:1:1)中,28℃下继续培育至长出新叶,即可用于后续的检测与分析;转基因岷江百合的生长状态如图2所示。
实施例2:转基因岷江百合植株的PCR检测
实施例1岷江百合注射后4周左右,收集其重新发芽植株的叶片提取DNA,进行PCR检测,采用CTAB法提取转基因岷江百合叶片的DNA,以基因组DNA模板,设计一对特异性扩增DsRed2基因片段的引物进行PCR扩增。上游引物序列为:5'-ACAGAACTCGCCGTAAAGAC-3,下游引物为:5'-CCGTCCTCGAAGTTCATCAC-3',扩增片段长度为850bp,使用购买于北京金沙生物科技有限公司的2×GS Taq PCR Mix进行PCR反应。PCR反应体系(25μL)为岷江百合叶片基因组DNA 0.8μg、12.5μL 2×GS Taq PCR Mix、0.1μL上游引物(10μM)、0.1μL下游引物(10μM)、PCR-Grade水定容至25μL;PCR反应条件为94℃5min;94℃30s,56℃30s,72℃12s,32个循环;72℃10min。
以野生型岷江百合叶片的基因组DNA为模板进行的PCR扩增产物为阴性对照,进行1.2%的琼脂糖凝胶电泳以筛选得到阳性转基因岷江百合植株;转基因岷江百合(21株)的PCR扩增结果如图3所示,从转基因岷江百合中扩增得到DsRed2片段,共筛选获得18株阳性转基因岷江百合,转化率为86%。
实施例3:转基因岷江百合的qRT-PCR检测
挑选实施例2中筛选得到的阳性岷江百合植株(12株)的叶片提取总RNA并逆转录为cDNA,以cDNA为模板,设计特异性扩增DsRed2基因片段的引物,进行qRT-PCR检测。特异性扩增DsRed2的引物对为5'-CCAGTTCCAGTACGGCTCCAA-3'以及5'-AGGAGTCCTGGGTCACGGTC-3'。反应体系(20μL)为cDNA 100ng、10μLqPCR Master Mix、1μL上游引物(2μM)、1μL下游引物(2μM)、用PCR-Grade水定容至20μL。反应条件为95℃10min;95℃15s,60℃1min,40个循环;95℃15s;60℃15s;95℃15s。最后,使用-2-ΔΔCt法计算DsRed2的相对表达量。DsRed2的qRT-PCR检测结果表明(图4),DsRed2在12株转基因岷江百合中均有表达;其中,在T-19、T-6、T-21、T-5、T-1、T-20植株中表达量高,而在T-2、T-3、T-11、T-7中表达量较低;可见农杆菌注射岷江百合鳞茎的芽点产生的转基因岷江百合,能稳定表达外源基因。
实施例4:转基因岷江百合的蛋白质免疫印迹实验
使用购买自上海生工生物股份有限公司的植物总蛋白提取试剂盒提取其中6株转基因岷江百合(T-1、T-5、T-6、T-19、T-20、T-21)以及2株野生型岷江百合(WT-1、WT-2)叶片总蛋白,将总蛋白量定量至10μg/μL后进行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)。SDS-PAGE凝胶配置配方为5%浓缩胶(每1mL中含有0.68mL去离子水、0.17mL30%丙烯酰胺、0.13mL 1mol/L Tris-HCl、0.01mL 10% SDS、0.01mL 10%过硫酸铵、0.001mL四甲基乙二胺),12%分离胶(每5mL中含有1.6mL去离子水、2.0mL 30%丙烯酰胺、1.3mL1.5mol/L Tris-HCl、0.05mL 10% SDS、0.05mL 10%过硫酸铵、0.002mL四甲基乙二胺)。电泳条件为80V、40min;120V、80min。电泳结束后,进行转膜。使用0.45μm的PVDF膜,在400mA的条件下冰浴转膜60min。转膜结束后,以蛋白质marker的位置作为对照,在45kDa处将PVDF膜剪裁成上下两部分。使用由1×TBST溶液配制的5%的脱脂奶粉封闭60℃,80rpm封闭2h后,用1×TBST清洗2次,每次10min。清洗后,分子量大于45kDa的上半部分膜用于孵育内参蛋白的一抗(Affinity Bioscience公司的plant actin抗体)。分子量小于45kDa的下半部分膜用于孵育DsRed2蛋白的一抗(Affinity Bioscience公司的RFP-Tag抗体),28℃、80rpm孵育2h,然后用1×TBST清洗2次,每次10min;接着加入二抗(Bioss antibody公司的Goat Anti-Mouse IgG H&L/HRP),28℃、80rpm孵育1h;孵育结束后,用1×TBST清洗2次,每次10min;最后使用SuperKineTM超敏型ECL发光液(Abbkine Scientific)在Bio-Rad显影仪中进行显影。蛋白质印迹结果表明DsRed2蛋白在转基因岷江百合植株T-1、T-5、T-6、T-19、T-20、T-21的叶片中稳定表达(图5),且在野生型岷江百合中不存在DsRed2或与DsRed2类似的蛋白。上述结果显示DsRed2成功整合到岷江百合的基因组中,并转录、翻译成DsRed2蛋白。
实施例5:转基因岷江百合的荧光检测
收集T-6转基因岷江百合及野生型岷江百合(WT)的根、茎、叶、鳞片样品,用手术刀将根、叶片、茎段切为适于显微镜观察的样品,使用OLMPUS SZX16体式荧光显微镜(日本),在540nm激发光下观察不同部位的荧光情况,540nm激发光下DsRed2编码蛋白呈现橙黄色荧光;DsRed2在T-6的根、茎、叶及鳞片中均有表达,其在叶片及根部中亮黄色荧光最强(图6);激光共聚焦显微镜(560nm激发光下DsRed2编码蛋白呈现红色荧光)的观察结果进一步证实了DsRed2在T-6的根、茎、叶、鳞片中高水平表达(图7),荧光检测结果显示转基因岷江百合表达的DsRed2蛋白具有生物活性;
上述实施例的结果表明,通过向岷江百合芽点注射含有DsRed2的农杆菌菌液,成功获得了表达DsRed2的转基因岷江百合。其从注射农杆菌到获得转基因岷江百合植株仅耗时2-3个月,周期较短,且转化率高达86%,其中有66.67%的转基因植株可完整的合成外源基因所编码的蛋白质。在遗传转化过程中,不涉及材料的脱分化、再分化,操作过程简单,并且不需要使用基因枪等贵重实验器材,成本较低。转基因岷江百合植株中,不仅检测到外源基因DsRed2(红色荧光基因)的转录产物,而且还检测DsRed2蛋白质的积累以及特异的红色荧光。总而言之,本发明中基于芽点注射农杆菌的岷江百合遗传转化体系,周期短、效率高、操作简单且成本较低,可应用于基因功能验证以及转基因百合的培育。

Claims (5)

1.一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法,其特征在于,步骤如下:
1)采用岷江百合种子制备获得野生型岷江百合鳞茎;
2)农杆菌菌液的活化
将含携带目的基因的植物表达载体的农杆菌菌液划线于含有20mg/L利福平和50mg/L卡那霉素的LB固体培养基中,于28℃培养两天;使用接种环刮取菌苔至含30mg/mL乙酰丁香酮的MGL培养基中,28℃下震荡培养获得OD600为0.8的菌液;
3)岷江百合鳞茎芽点的注射
选取直径大小约为2-3cm的鳞茎,剥去外层鳞片直至露出中心芽点,使用注射器吸取步骤2)菌液,向芽点注射菌液至形成浸润圈,注射结束后,将鳞茎置于28℃下暗培养2天后,将其种于土壤中,在28℃温室中继续培养20-30天,筛选获得转基因岷江百合植株。
2.根据权利要求1所述的农杆菌注射鳞茎芽点的岷江百合遗传转化方法,其特征在于:岷江百合种子用75%乙醇清洗45s后用无菌水冲洗2-3次,再用0.1%的氯化汞溶液消毒5-8min,接着用无菌水清洗7-8次后,置于1/2MS培养基中于28℃下暗培养30-40天后将小鳞茎转移至光照培养箱中28℃下培养,60天后得到用于遗传转化的鳞茎。
3.根据权利要求1所述的农杆菌注射鳞茎芽点的岷江百合遗传转化方法,其特征在于:携带目的基因的植物表达载体是带有红色荧光蛋白基因DsRed2的表达载体pCAMBIA2300-DsRed2。
4.根据权利要求1所述的农杆菌注射鳞茎芽点的岷江百合遗传转化方法,其特征在于:土壤是蛭石、珍珠岩、营养土按质量比3:1:1的比例混合制得。
5.权利要求1所述的农杆菌注射鳞茎芽点的岷江百合遗传转化方法在岷江百合遗传育种中的应用。
CN202311187037.5A 2023-09-14 2023-09-14 一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法 Pending CN117265001A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311187037.5A CN117265001A (zh) 2023-09-14 2023-09-14 一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311187037.5A CN117265001A (zh) 2023-09-14 2023-09-14 一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法

Publications (1)

Publication Number Publication Date
CN117265001A true CN117265001A (zh) 2023-12-22

Family

ID=89207330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311187037.5A Pending CN117265001A (zh) 2023-09-14 2023-09-14 一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法

Country Status (1)

Country Link
CN (1) CN117265001A (zh)

Similar Documents

Publication Publication Date Title
CN110699361B (zh) 水稻抗盐胁迫相关基因Os16及其编码蛋白与应用
CN110117320A (zh) 棉花GhCAL-D07基因在促进植物开花中的应用
CN102485897A (zh) 利用棉花基因GbF3H改变花瓣颜色
CN114606245B (zh) 茶树CsVAAT3基因及其应用
CN104004781A (zh) 一种抗草甘膦转基因水稻的制备方法
CN110295183A (zh) 一种基于CsPrx25超量表达提高柑橘对溃疡病抗性的方法
CN109081865B (zh) 毛竹PeVQ28蛋白及其编码基因与应用
CN103333901A (zh) 一种杂交鹅掌楸LhWOX1基因及其应用
CN113403325B (zh) 茶树孤儿基因CsOG3及其在提高茶树耐寒性上的应用
CN105132457B (zh) 一种快速遗传转化苜蓿的方法
CN111876439B (zh) 一种农杆菌介导真空侵染木豆的高效遗传转化方法
CN108823240A (zh) 一种通过基因编辑创制抗番茄黄化曲叶病毒病番茄新种质的方法及其应用
CN1149918C (zh) 农杆菌介导植物萌发种子基因转化方法
CN110305894B (zh) 一种快速高效的楸遗传转化方法
CN110172088A (zh) 蜡梅转录因子基因CpSNAC1及其应用
CN117265001A (zh) 一种农杆菌注射鳞茎芽点的岷江百合遗传转化方法
CN113337534A (zh) 一种提高矮牵牛遗传转化效率的组培方法
CN108220303B (zh) 大豆bi-1基因及应用
CN116814651B (zh) 一种燕子花MYB4a转录因子在调控植物花柱伸长中的应用
CN114807175B (zh) 单糖转蛋白基因OsSTP15及其转运体和在提高水稻产量中的应用、扩增引物
CN117568289B (zh) 一种抗大豆胞囊线虫病的蛋白质及其编码基因与应用
CN118006674B (zh) RcWUS1基因在调节月季再生中的应用
CN116004646B (zh) 一种烟草NtSWEET11基因及其应用
CN111440805B (zh) Nf-yb9突变型基因及其蛋白和应用
CN102329817B (zh) 一种农杆菌介导的培育转基因吴屯杨植株的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination