CN117154037A - 原子层沉积涂层的后处理法制备含氯涂层用于正极的方法 - Google Patents

原子层沉积涂层的后处理法制备含氯涂层用于正极的方法 Download PDF

Info

Publication number
CN117154037A
CN117154037A CN202311007571.3A CN202311007571A CN117154037A CN 117154037 A CN117154037 A CN 117154037A CN 202311007571 A CN202311007571 A CN 202311007571A CN 117154037 A CN117154037 A CN 117154037A
Authority
CN
China
Prior art keywords
positive electrode
precursor
layer deposition
atomic layer
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202311007571.3A
Other languages
English (en)
Inventor
孙学良
孙一芃
赵阳
李喜飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Zhengneng New Materials Technology Co ltd
Original Assignee
Shaanxi Zhengneng New Materials Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Zhengneng New Materials Technology Co ltd filed Critical Shaanxi Zhengneng New Materials Technology Co ltd
Priority to CN202311007571.3A priority Critical patent/CN117154037A/zh
Publication of CN117154037A publication Critical patent/CN117154037A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,即含氯涂层包覆正极的后处理方法,含氯涂层是将经原子层沉积包覆的正极颗粒由气相或液相含氯物质后处理而获得的一种形如LiMxOyClz的包覆层,该涂层具有良好的离子传导率和化学稳定性,涂层厚度可以通过设定的原子层沉积循环周期进行精准控制,制备方法简单,重复性良好;改涂层的加入提高了正极界面稳定性,抑制了正极材料的降解,缓冲了正极颗粒的体积变化,使得本发明中的正极材料表现出了优异的循环稳定性和倍率性能。

Description

原子层沉积涂层的后处理法制备含氯涂层用于正极的方法
技术领域
本发明属于电池技术领域,涉及原子层沉积涂层的后处理法制备含氯涂层用于正极的方法。
背景技术
近年来,锂离子电池的技术在各类电子产品以及动力电车中得到了广泛的应用,发展势头迅猛。在影响电池性能的众多因素中,循环稳定性、降低技术成本、提高能量密度、实现长循环寿命、高安全性是目前关注的几大重点指标。为实现电池的优良性能,稳定、实用且可靠的电极材料的研究和开发引起了广泛的关注;
在正极材料方面,现阶段比较热门的正极材料包括钴酸锂,磷酸锂,层状高镍氧化物等,均已得到非常广泛的研究,可以发挥出较高的比容量以及较好的循环稳定性;然而,正极材料仍然面对很多待解决的基础问题,主要有界面副反应、体积变化、结构不稳定等方面,造成容量迅速衰减、安全隐患、低倍率性能等一系列巨大挑战;
针对目前正极材料的改性策略中,表面涂层改性策略由于方法简便易行,对性能提升显著而受到广泛关注。然而,准确控制包覆均匀程度,涂层厚度,以及对包覆材料的机械性能的调控一直是表面改性策略的巨大挑战。此外,由于包覆的涂层材料多以氧化物为主,它们的离子电导率通常很难达到较高量级(小于10-6S/cm),因此在正极界面的离子传导是一大挑战,涂层材料很难大幅提高正极材料的高倍率性能。近期,氯化物基固态电解质由于较高的离子导(大于10-3S/cm)和高氧化窗口(大于4.0V vs Li/Li+)而受到广泛关注,但是氯化物基电解质材料在正极表面的可控涂层确由于缺乏有效的表面化学策略而鲜有报道。因此,通过表面改性策略从而实现氯化物包覆在正极材料的可控包覆是当前正极材料改性策略发展的关键。
发明内容
本发明的目的是提供原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,解决正极材料充放电过程中表面副反应,容量保持率底,难以实现快速充放电的问题,以实现更高的循环容量保持率和倍率性能。
本发明所采用的技术方案是,原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,在正极材料表面形成一层具有较高离子导的保护层,形如LiMxOyClz,其中x>0,y>0,z>0,M包括Al、Si、P、Ti、Zn、Y、Zr、Nb、Mo、Hf、Ta、W元素中的任一种,所用于的正极形如LiaXbYcZdO2,其中a≥1,b>0,c≥0,d≥0,X、Y、Z为Mg、Al、Ti、Mn、Fe、Co、Ni、Zr、Nb、Ta中的一种或几种。
本发明的特点还在于:
含氯涂层的特点在于,涂层的组成成分是一种有较高离子电导率的离子导体,可以在稳定正极界面的同时促进锂离子在界面的传输,使得电极材料在高倍率下具有更好的性能,原子层沉积过程具体按以下步骤实施:
步骤1,使用正极颗粒粉末作为活性材料,使用金属筛网将正极材料的颗粒筛至均匀;
步骤2,将步骤1中得到的正极材料放入原子层沉积腔体中,腔体温度保持在180~300℃,以惰性气体作为载气,载气流量设定在5~100sccm;
步骤3,设定一种成分中含有锂元素的前驱体,即前驱体A,前驱体A的预热温度为50~185℃,脉冲时间0.1~2s,吹扫时间为10~30s;
设定一种有机金属化合物,即前驱体B,前驱体B的预热温度为15~185℃,脉冲时间0.1~2s,吹扫时间为10~30s;
设定前驱体C的预热温度为10~35℃,脉冲时间0.1~2s,吹扫时间为10~35s;
以前驱体A-前驱体C-前驱体B-前驱体C为一个循环周期,设定原子层沉积的循环周期为M;
步骤4,将经步骤3处理后的包覆的正极材料通过前驱体D在气相或液相中进行后处理,处理温度范围为15~300℃,处理时间为0.1~5000s,将处理过后的征集粉末置于真空烘箱中烘干;
其中前驱体A包括但不限于三甲基铝、正硅酸四乙酯、亚磷酸三甲酯、钛酸异丙酯、二乙基锌、三(甲基环戊二烯基)钇、叔丁醇锆、乙醇铌、四(二甲氨基)钼、叔丁醇铪、乙醇钽、六羰基钨中的一种或多种。
前驱体B包括但不限于叔丁醇锂、二(三甲基硅基)氨基锂、贝塔-二酮酸锂中的一种或多种;
前驱体C包括但不限于水、甲醇、乙醇、正丙醇、臭氧、等离子体水、等离子体氧中的一种或多种;
前驱体D包括但不限于氯化铝,氯化铌,氯化钽,氯化铪,氯化锌,氯化锆,氯化锂,二乙基氯化铝,二甲基氯化铝,一甲基氯化铝,三甲基氯化锡,二甲基二氯化锡,二氯化乙基铝,二氯乙烷中的一种或多种;
其中步骤2中惰性气体为氩气或氮气中的一种;
其中步骤3中设定的循环周期M为1~50圈中任意一个;
其中含氯涂层用于正极的方法具体按以下步骤实施:
将的正极材料与粘结剂和导电剂混合,制备成正极浆料涂于集流体上;
将制备的电极在真空箱中烘干,使用液态电解液组装电池;
其中活性材料在电极中所占质量比为70%~98%,粘结剂所占质量比为0.5%~10%,导电剂所占质量比为0.5%~10%;
其中正极材料中的活性硅的质量载量在2mg/cm2~20mg/cm2之间;
其中电极烘干温度为80~120℃之间;
其中液态电解液为酯类电解液或醚类电解液中的一种。
本发明的有益效果是:
本发明的原子层沉积涂层的后处理法制备含氯涂层用于正极的方法主要考察了通过原子层沉积后引入气相或液相后处理所制备的含氯涂层对正极的充放电性能的改善,重点是解决由于正极材料在充放电过程中由于表面副反应而带来的容量衰减等问题,发明的难点在于实现均匀可控的含氯薄膜在正极颗粒的包覆,本发明的创新点在于后处理的方式在原子层沉积的薄膜上形成了了形如Li-M-O-Cl的保护层,该表面改性可以通过调控原子层沉积的循环圈数从而精确调控涂层的厚度,进而实现对电化学性能的调控。由于氯化物基电解质的高离子电导率,所设计的保护层能够显著的改善正极材料在大充放电电流下的循环性能;此策略、制备方法备方法简洁易重复,精确可控,流程时间段,具有应用于大规模批量生产的潜力,所制备的正极材料的循环稳定性和倍率性能均得到了明显的提升。
附图说明
图1是本发明实施例1中经由AlCl3后处理的的Li-Al-O包覆的LiCoO2正极与未包覆的LiCoO2在1C倍率下的长循环性能图;
图2是本发明实施例1中经由AlCl3后处理的的Li-Al-O包覆的LiCoO2正极与未后处理的Li-Al-O包覆的LiCoO2在5C倍率下的循环性能图;
图3是本发明实施例2中分别经AlCl3后处理0.5s,1s,和2s的Li-Al-O包覆的LiCoO2在5C倍率下的循环性能图;
图4是本发明实施例3中由NbCl5后处理的原子层沉积一圈及两圈Li-Nb-O包覆的LiCoO2在0.5C倍率下的循环性能图;
图5是本发明实施例4中由TaCl5后处理的Li-Ta-O包覆的LiNi0.8Mn0.1Co0.1O2和未包覆的LiNi0.8Mn0.1Co0.1O2在0.5C电流下的循环性能图;
图6是本发明实施例5中未包覆、氧化物包覆以及氯化物包覆的LiCoO2正极在1C倍率下的长循环性能图;
图7是本发明实施例5中未包覆、氧化物包覆以及氯化物包覆的LiCoO2正极在5C倍率下的长循环性能图;
图8是本发明实施例5中未包覆、氧化物包覆以及氯化物包覆的LiCoO2正极在10C倍率下的长循环性能图;
图9是本发明实施例5中氧化物包覆以及氯化物包覆的LiCoO2正极在不同倍率下的性能图;
图10是本发明实施例6中不同后处理时间得到的氯化物包覆的LiCoO2正极在5C倍率下的长循环性能图;
图11是本发明实施例7中未包覆、氧化物包覆以及氯化物包覆的LiNi0.83Mn0.06Co0.11O2正极在5C倍率下的长循环性能图;
图12是本发明实施例7中未包覆、氧化物包覆以及氯化物包覆的LiNi0.83Mn0.06Co0.11O2正极在不同电流下的测试性能图;
图13是本发明实施例8中Li-Nb-O-Cl包覆的LiCoO2在4.0k放大倍数下的扫描电镜图;
图14是本发明实施例8中Li-Nb-O-Cl包覆的LiCoO2的能量色散X射线谱图;
图15是本发明实施例8中Li-Nb-O-Cl包覆的LiCoO2在截止电压为2.8-4.6V的循环性能图;
图16是本发明实施例9中Li-Ta-O-Cl和Li-Ta-O包覆的LiNi0.8Mn0.1Co0.1O2在5C电流下的循环性能图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明提供了原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,具体如下述实施例所示:
实施例1
本实施例为AlCl3后处理的的Li-Al-O包覆的LiCoO2正极制备方法,具体如下:
步骤1、将LiCoO2正极颗粒放入分子层沉积腔体中,腔体升温至250℃,设定载气为氩气,载气流量为20sccm,设定前驱体三甲基铝的预热温度为25℃,脉冲时间1s,吹扫时间为20s,设定前驱体叔丁醇锂的预热温度为175℃,脉冲时间1s,吹扫时间为20s,前驱体水的预热温度为20℃,脉冲时间1s,吹扫时间为22s;设定原子层沉积的循环周期为1次;将得到的包覆正极粉末在250℃下通入气相的AlCl3中处理1秒,后真空烘干;
步骤2、将步骤1中制备的LiCoO2颗粒与PVDF粘结剂,VGCF,C65按照质量比90:10:5:5制备浆料,制备正极极片,正极性材料的质量载量为5mg/cm2
步骤3、将制备的电极在真空箱中烘干,温度设定为110℃,使用碳酸脂类电解液组装电池;
电化学性能测试:将本实施例中得到的后处理的LiCoO2正极材料在扣式电池中进行电化学性能测试;如图1所示,在1C的电流下循环250次后,通过后处理的LiCoO2正极材料循环容量保持率显著提升;如图2所示,在5C的电流下循环500次后,通过后处理的LiCoO2正极材料相比未有后处理的LAO-LCO性能提升明显。
实施例2
本实施例为AlCl3不同处理时间下的Li-Al-O包覆的LiCoO2颗粒组成的正极制备方法,具体如下:
步骤1、将LiCoO2正极颗粒放入分子层沉积腔体中,腔体升温至250℃,设定载气为氩气,载气流量为20sccm,设定前驱体三甲基铝的预热温度为25℃,脉冲时间1s,吹扫时间为20s,设定前驱体叔丁醇锂的预热温度为175℃,脉冲时间1s,吹扫时间为20s,前驱体水的预热温度为20℃,脉冲时间1s,吹扫时间为22s;设定原子层沉积的循环周期为1次;将得到的包覆正极粉末分成三份,分别在在250℃下通入气相的AlCl3中处理0.5秒,1秒和2秒;
步骤2、将步骤1中制备的LiCoO2颗粒与PVDF粘结剂,VGCF,C65按照质量比90:10:5:5制备浆料,制备正极极片,正极性材料的质量载量为5mg/cm2
步骤3、将制备的电极在真空箱中烘干,温度设定为110℃,使用碳酸脂类电解液组装电池;
电化学性能测试:将本实施例中得到的后处理的LiCoO2正极材料在扣式电池中进行电化学性能测试;如图3所示,在5C的电流下循环500次后,通过AlCl3后处理1秒的LiCoO2正极样品表现出最佳的性能。
实施例3
本实施例为NbCl5不同处理时间下的Li-Nb-O包覆的LiCoO2颗粒组成的正极制备方法,具体如下:
步骤1、将LiCoO2正极颗粒放入分子层沉积腔体中,腔体升温至250℃,设定载气为氩气,载气流量为20sccm,设定前驱体五乙氧基铌的预热温度为180℃,脉冲时间1s,吹扫时间为20s,设定前驱体叔丁醇锂的预热温度为175℃,脉冲时间1s,吹扫时间为20s,前驱体水的预热温度为20℃,脉冲时间1s,吹扫时间为22s;设定原子层沉积的循环周期为1次;将得到的包覆正极粉末在250℃下通入气相的NbCl5中处理1秒,后真空烘干;
步骤2、将步骤1中制备的LiCoO2颗粒与PVDF粘结剂,VGCF,C65按照质量比90:10:5:5制备浆料,制备正极极片,正极性材料的质量载量为5mg/cm2
步骤3、将制备的电极在真空箱中烘干,温度设定为110℃,使用碳酸脂类电解液组装电池。
电化学性能测试:将本实施例中得到的后处理的LiCoO2正极材料在扣式电池中进行电化学性能测试;如图4所示,在0.5C的电流下循环300次后,通过后处理的LiCoO2正极材料循环容量保持率显著提升。
实施例4
本实施例为TaCl5不同处理时间下的Li-Ta-O包覆的LiNi0.8Mn0.1Co0.1O2颗粒组成的正极制备方法,具体如下:
步骤1、将LiNi0.8Mn0.1Co0.1O2正极颗粒放入分子层沉积腔体中,腔体升温至250℃,设定载气为氩气,载气流量为20sccm,设定前驱体五乙氧基钽的预热温度为175℃,脉冲时间1s,吹扫时间为20s,设定前驱体叔丁醇锂的预热温度为175℃,脉冲时间1s,吹扫时间为20s,前驱体水的预热温度为20℃,脉冲时间1s,吹扫时间为22s;设定原子层沉积的循环周期为1次;将得到的包覆正极粉末在250℃下通入气相的TaCl5中处理1秒,后真空烘干;
步骤2、将步骤1中制备的LiCoO2颗粒与PVDF粘结剂,VGCF,C65按照质量比90:10:5:5制备浆料,制备正极极片,正极性材料的质量载量为5mg/cm2
步骤3、将制备的电极在真空箱中烘干,温度设定为110℃,使用碳酸脂类电解液组装电池。
电化学性能测试:将本实施例中得到的后处理的LiNi0.8Mn0.1Co0.1O2正极材料在扣式电池中进行电化学性能测试;如图5所示,在0.5C的电流下循环300次后,通过后处理的LiNi0.8Mn0.1Co0.1O2正极材料体现出更高的容量。
实施例5
本实施例二氯乙烷处理的Li-Al-O包覆的LiCoO2颗粒组成的正极制备方法,具体如下:
步骤1、将LiCoO2正极颗粒放入分子层沉积腔体中,腔体升温至250℃,设定载气为氩气,载气流量为20sccm,设定前驱体三甲基铝的预热温度为25℃,脉冲时间1s,吹扫时间为20s,设定前驱体叔丁醇锂的预热温度为175℃,脉冲时间1s,吹扫时间为20s,前驱体水的预热温度为20℃,脉冲时间1s,吹扫时间为22s;设定原子层沉积的循环周期为2次;将得到的包覆正极粉末在二氯乙烷中处理15分钟,后真空烘干;
步骤2、将步骤1中制备的LiCoO2颗粒与PVDF粘结剂,VGCF,C65按照质量比90:10:5:5制备浆料,制备正极极片,正极性材料的质量载量为5mg/cm2
步骤3、将制备的电极在真空箱中烘干,温度设定为110℃,使用碳酸脂类电解液组装电池。
电化学性能测试:将本实施例中得到的复合涂层包覆以及未包覆的高镍正极材料在扣式电池中进行电化学性能测试;如图6所示,在1C的电流下循环500次后,包覆了氯化物的正极循环稳定性大幅提升。如图7所示,在5C的电流下循环500次后,包覆了氯化物的正极的容量保持率显著提升;如图8所示,在10C的电流下循环1000次后,包覆了氯化物的正极的容量显著提升;如图9所示,在电流为0.1C至10C的倍率性能测试下,氯化物包覆的正极材料发挥出更好的容量。综上所述,氯化物保护层在长循环和倍率性能上均显示出一定程度的提升。
实施例6
本实施例不同溶剂处理时间下的Li-Al-O-Cl包覆的LiCoO2颗粒组成的正极制备方法,具体如下:
步骤1、将LiCoO2正极颗粒放入分子层沉积腔体中,腔体升温至250℃,设定载气为氩气,载气流量为20sccm,设定前驱体三甲基铝的预热温度为25℃,脉冲时间1s,吹扫时间为20s,设定前驱体叔丁醇锂的预热温度为175℃,脉冲时间1s,吹扫时间为20s,前驱体水的预热温度为20℃,脉冲时间1s,吹扫时间为22s;设定原子层沉积的循环周期为2次。将得到的包覆正极粉末在二氯乙烷中处理时间分别为5分钟、15分钟、30分钟、60分钟、120分钟,后真空烘干;
步骤2、将步骤1中制备的LiCoO2颗粒与PVDF粘结剂,VGCF,C65按照质量比90:10:5:5制备浆料,制备正极极片,正极性材料的质量载量为5mg/cm2
步骤3、将制备的电极在真空箱中烘干,温度设定为110℃,使用碳酸脂类电解液组装电池。
电化学性能测试:将本实施例中得到的复合涂层包覆以及未包覆的高镍正极材料在扣式电池中进行电化学性能测试;如图10所示,在5C的电流下循环500次后,不同处理时间的正极材料体现出相似的优良循环性能。
实施例7
本实施例不同溶剂处理时间下的Li-Al-O-Cl包覆的LiNi0.83Mn0.06Co0.11O2颗粒组成的正极制备方法,具体如下:
步骤1、将LiNi0.83Mn0.06Co0.11O2正极颗粒放入分子层沉积腔体中,腔体升温至250℃,设定载气为氩气,载气流量为20sccm,设定前驱体三甲基铝的预热温度为25℃,脉冲时间1s,吹扫时间为20s,设定前驱体叔丁醇锂的预热温度为175℃,脉冲时间1s,吹扫时间为20s,前驱体水的预热温度为20℃,脉冲时间1s,吹扫时间为22s;设定原子层沉积的循环周期为2次;将得到的包覆正极粉末在二氯乙烷中处理时间为15分钟,后真空烘干;
步骤2、将步骤1中制备的LiNi0.83Mn0.06Co0.11O2颗粒与PVDF粘结剂,VGCF,C65按照质量比90:10:5:5制备浆料,制备正极极片,正极性材料的质量载量为5mg/cm2
步骤3、将制备的电极在真空箱中烘干,温度设定为110℃,使用碳酸脂类电解液组装电池。
电化学性能测试:将本实施例中得到的复合涂层包覆以及未包覆的高镍正极材料在扣式电池中进行电化学性能测试;如图11所示,在5C的电流下循环350次后,没有涂层的正极的容量保持率为,包覆了原子层沉积氧化物的正极的容量保持率为,包覆了氯化物的正极的容量保持率提高,循环稳定性大幅提升;如图12所示,在不同电流下的倍率性能也得到一定的提升。
实施例8
本实施例不同溶剂处理时间下的二氯乙烷处理的Li-Nb-O包覆的LiCoO2颗粒组成的正极制备方法,具体如下:
步骤1、将LiCoO2正极颗粒放入分子层沉积腔体中,腔体升温至250℃,设定载气为氩气,载气流量为20sccm,设定前驱体五乙氧基铌的预热温度为170℃,脉冲时间1s,吹扫时间为20s,设定前驱体叔丁醇锂的预热温度为175℃,脉冲时间1s,吹扫时间为20s,前驱体水的预热温度为18℃,脉冲时间1s,吹扫时间为22s;设定原子层沉积的循环周期为2次;将得到的包覆正极粉末在二氯乙烷中处理时间为15分钟,后真空烘干;
步骤2、将步骤1中制备的LiCoO2颗粒与PVDF粘结剂,VGCF,C65按照质量比90:10:5:5制备浆料,制备正极极片,正极性材料的质量载量为5mg/cm2
步骤3、将制备的电极在真空箱中烘干,温度设定为112℃,使用碳酸脂类电解液组装电池。
本实施例中包覆的正极颗粒在4k放大倍数下SEM测试结果如图13所示,可见正极颗粒在包覆后形貌仍保存完好;各元素的能量色散X射线谱如图14所示,可见含氯涂层包覆在正极颗粒的表面。
电化学性能测试:将本实施例中得到的复合涂层包覆以及未包覆的高镍正极材料在扣式电池中进行电化学性能测试。如图15所示,在2.8-4.6V的截止电压循环100次后,后处理对于循环稳定性的提升有帮助作用。
实施例9
本实施例不同溶剂处理时间下的Li-Ta-O-Cl包覆的LiNi0.83Mn0.06Co0.11O2颗粒组成的正极制备方法,具体如下:
步骤1、将LiNi0.80Mn0.10Co0.10O2正极颗粒放入分子层沉积腔体中,腔体升温至250℃,设定载气为氩气,载气流量为20sccm,设定前驱体五乙氧基钽的预热温度为170℃,脉冲时间1s,吹扫时间为20s,设定前驱体叔丁醇锂的预热温度为175℃,脉冲时间1s,吹扫时间为20s,前驱体水的预热温度为18℃,脉冲时间1s,吹扫时间为22s;设定原子层沉积的循环周期为2次;将得到的包覆正极粉末在二氯乙烷中处理时间为15分钟,后真空烘干;
步骤2、将步骤S1中制备的LiCoO2颗粒与PVDF粘结剂,VGCF,C65按照质量比90:10:5:5制备浆料,制备正极极片,正极性材料的质量载量为5mg/cm2
步骤3、将制备的电极在真空箱中烘干,温度设定为109℃,使用碳酸脂类电解液组装电池。
电化学性能测试:将本实施例中得到的复合涂层包覆以及未包覆的高镍正极材料在扣式电池中进行电化学性能测试;如图16所示,在5C大小的电流下循环500次后,包覆了氯化物的正极的容量保持率有所提升。

Claims (10)

1.原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,其特征在于,在正极材料表面形成一层具有较高离子导的保护层,形如LiMxOyClz,其中x>0,y>0,z>0,M包括Al、Si、P、Ti、Zn、Y、Zr、Nb、Mo、Hf、Ta、W元素中的任一种,所用于的正极形如LiaXbYcZdO2,其中a≥1,b>0,c≥0,d≥0,X、Y、Z为Mg、Al、Ti、Mn、Fe、Co、Ni、Zr、Nb、Ta中的一种或几种。
2.根据权利要求1所述的原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,其特征在于,原子层沉积过程具体按以下步骤实施:
步骤1,使用正极颗粒粉末作为活性材料,使用金属筛网将正极材料的颗粒筛至均匀;
步骤2,将步骤1中得到的正极材料放入原子层沉积腔体中,腔体温度保持在180~300℃,以惰性气体作为载气,载气流量设定在5~100sccm;
步骤3,设定一种成分中含有锂元素的前驱体,即前驱体A,前驱体A的预热温度为50~185℃,脉冲时间0.1~2s,吹扫时间为10~30s;
设定一种有机金属化合物,即前驱体B,前驱体B的预热温度为15~185℃,脉冲时间0.1~2s,吹扫时间为10~30s;
设定前驱体C的预热温度为10~35℃,脉冲时间0.1~2s,吹扫时间为10~35s;
以前驱体A-前驱体C-前驱体B-前驱体C为一个循环周期,设定原子层沉积的循环周期为M;
步骤4,将经步骤3处理后的包覆的正极材料通过前驱体D在气相或液相中进行后处理,处理温度范围为15~300℃,处理时间为0.1~5000s,将处理过后的征集粉末置于真空烘箱中烘干。
3.根据权利要求2所述的原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,其特征在于,所述前驱体A包括三甲基铝、正硅酸四乙酯、亚磷酸三甲酯、钛酸异丙酯、二乙基锌、三(甲基环戊二烯基)钇、叔丁醇锆、乙醇铌、四(二甲氨基)钼、叔丁醇铪、乙醇钽、六羰基钨中的一种或多种;
所述前驱体B包括叔丁醇锂、二(三甲基硅基)氨基锂、贝塔-二酮酸锂中的一种或多种;
所述前驱体C包括水、甲醇、乙醇、正丙醇、臭氧、等离子体水、等离子体氧中的一种或多种;
所述前驱体D包括氯化铝,氯化铌,氯化钽,氯化铪,氯化锌,氯化锆,氯化锂,二乙基氯化铝,二甲基氯化铝,一甲基氯化铝,三甲基氯化锡,二甲基二氯化锡,二氯化乙基铝,二氯乙烷中的一种或多种。
4.根据权利要求2所述的原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,其特征在于,所述步骤2中惰性气体为氩气或氮气中的一种。
5.根据权利要求2所述的原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,其特征在于,所述步骤3中设定的循环周期M为1~50圈中任意一个。
6.根据权利要求1~5任一所述的原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,其特征在于,所述含氯涂层用于正极的方法具体按以下步骤实施:
将的正极材料与粘结剂和导电剂混合,制备成正极浆料涂于集流体上;
将制备的电极在真空箱中烘干,使用液态电解液组装电池。
7.根据权利要求6所述的原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,其特征在于,所述活性材料在电极中所占质量比为70%~98%,粘结剂所占质量比为0.5%~10%,导电剂所占质量比为0.5%~10%。
8.根据权利要求6所述的原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,其特征在于,所述正极材料中的活性硅的质量载量在2mg/cm2~20mg/cm2之间。
9.根据权利要求6所述的原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,其特征在于,所述电极烘干温度为80~120℃之间。
10.根据权利要求6所述的原子层沉积涂层的后处理法制备含氯涂层用于正极的方法,其特征在于,所述液态电解液为酯类电解液或醚类电解液中的一种。
CN202311007571.3A 2023-08-10 2023-08-10 原子层沉积涂层的后处理法制备含氯涂层用于正极的方法 Pending CN117154037A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311007571.3A CN117154037A (zh) 2023-08-10 2023-08-10 原子层沉积涂层的后处理法制备含氯涂层用于正极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311007571.3A CN117154037A (zh) 2023-08-10 2023-08-10 原子层沉积涂层的后处理法制备含氯涂层用于正极的方法

Publications (1)

Publication Number Publication Date
CN117154037A true CN117154037A (zh) 2023-12-01

Family

ID=88911003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311007571.3A Pending CN117154037A (zh) 2023-08-10 2023-08-10 原子层沉积涂层的后处理法制备含氯涂层用于正极的方法

Country Status (1)

Country Link
CN (1) CN117154037A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN120089725A (zh) * 2025-04-30 2025-06-03 巴斯夫杉杉电池材料(宁乡)有限公司 一种氯化物包覆改性正极材料及其制备方法和硫化物全固态电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN120089725A (zh) * 2025-04-30 2025-06-03 巴斯夫杉杉电池材料(宁乡)有限公司 一种氯化物包覆改性正极材料及其制备方法和硫化物全固态电池

Similar Documents

Publication Publication Date Title
Kim et al. Unexpected high power performance of atomic layer deposition coated Li [Ni1/3Mn1/3Co1/3] O2 cathodes
Liu et al. Elegant design of electrode and electrode/electrolyte interface in lithium-ion batteries by atomic layer deposition
Lai et al. Optimized structure stability and electrochemical performance of LiNi0. 8Co0. 15Al0. 05O2 by sputtering nanoscale ZnO film
CN112670506B (zh) 快离子导体包覆的镍钴锰钽复合四元正极材料及其制备方法
Du et al. Study of effects on LiNi0. 8Co0. 15Al0. 05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries
CN111082025A (zh) 一种原子层沉积包覆高镍三元正极材料的制备方法
CN109192969B (zh) 一种三元镍钴锰复合材料、其制备方法与锂离子电池
KR101274829B1 (ko) 수명 특성이 개선된 이차 전지
CN110783538B (zh) 一种气相包覆金属氧化物的锂电池的三元正极材料及其制备方法
CN110492097A (zh) 一种ncm三元复合正极材料及其制备和应用
Wu et al. Simultaneously fabricating homogeneous nanostructured ionic and electronic pathways for layered lithium-rich oxides
CN117154037A (zh) 原子层沉积涂层的后处理法制备含氯涂层用于正极的方法
CN114613993B (zh) 一种原子层沉积构筑富锂正极材料表面双包覆层的方法
CN119400810A (zh) 一种金属锂负极高熵集流体及其制备方法和应用
García et al. controlled atomic layer deposition of aluminum oxide to improve the performance of lithium–sulfur batteries
CN113991088A (zh) 一种新型锂离子电池负极材料及其制备方法
Su et al. Improved electrochemical performance of LiNi 0. 5 Mn 0. 3 Co 0. 2 O2 electrodes coated by atomic-layer-deposited Ta2O5
CN117174854A (zh) 双层有机无机复合涂层包覆锂离子电池正极材料制备方法
CN106920961B (zh) 一种锂离子电池所用三元材料的改性方法
Liang et al. Synthesis and Electrochemical Characteristics of LiNi0. 5Mn1. 5O4 Coatings Prepared by Atmospheric Plasma Spray as Cathode Material for Lithium-Ion Batteries
JP2019149334A (ja) 負極集電体、負極及びリチウム二次電池
CN108448100A (zh) 一种表面化学修饰的磷酸铁锂及其应用
CN114583121A (zh) 阴离子掺杂改性锂离子电池正极材料及其制备方法和应用
CN114614008A (zh) 一种包覆型正极材料及其制备方法、正极片和二次电池
CN117438558B (zh) 一种硅碳负极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination