CN117153245A - 预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法 - Google Patents

预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法 Download PDF

Info

Publication number
CN117153245A
CN117153245A CN202311350243.3A CN202311350243A CN117153245A CN 117153245 A CN117153245 A CN 117153245A CN 202311350243 A CN202311350243 A CN 202311350243A CN 117153245 A CN117153245 A CN 117153245A
Authority
CN
China
Prior art keywords
protein
binding
simulation
data
hace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311350243.3A
Other languages
English (en)
Other versions
CN117153245B (zh
Inventor
周吉阳
施超
王炎
高雨蒙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Center for Disease Control and Prevention
Original Assignee
Wuxi Center for Disease Control and Prevention
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Center for Disease Control and Prevention filed Critical Wuxi Center for Disease Control and Prevention
Priority to CN202311350243.3A priority Critical patent/CN117153245B/zh
Publication of CN117153245A publication Critical patent/CN117153245A/zh
Application granted granted Critical
Publication of CN117153245B publication Critical patent/CN117153245B/zh
Priority to GBGB2406242.4A priority patent/GB202406242D0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B15/00ICT specially adapted for analysing two-dimensional or three-dimensional molecular structures, e.g. structural or functional relations or structure alignment
    • G16B15/30Drug targeting using structural data; Docking or binding prediction
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Artificial Intelligence (AREA)
  • Bioethics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Evolutionary Computation (AREA)
  • Public Health (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明适用于生物分析检测技术领域,提供了一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法,所述方法基于蛋白结构数据的结合模拟进行分析以及比较实验数据;所述方法基于序列数据的蛋白结构模拟和结合模拟进行分析;所述方法基于突变位点的蛋白结构模拟和结合模拟进行分析。本发明基于PRODIGY可以通过多种数据类型较为准确地预测S蛋白RBD区域与hACE2受体的相互作用模式,可快速且有效地分析不同变异株的感染能力,为研究新型冠状病毒感染的疫苗和药物的开发提供可靠的工具支持。

Description

预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的 方法
技术领域
本发明属于生物分析检测技术领域,尤其涉及一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法。
背景技术
新型冠状病毒感染(Corona Virus Disease 2019,COVID-19)是一种由严重急性呼吸综合症冠状病毒2(Severe Acute Respiratory Syndrome Coronavirus 2,SARS-CoV-2)引起的病毒性呼吸道疾病。SARS-CoV-2的刺突(Spike,S)蛋白是该病毒进入宿主细胞的关键蛋白。与SARS病毒(SARS-CoV)不同的是,SARS-CoV-2的S蛋白RBD区域具有高度的亲和力,能够更加紧密地与人类细胞表面血管紧张素转换酶2(Human angiotensin-convertingenzyme 2,hACE2)受体结合。因此,分析S蛋白RBD区域与ACE2受体的相互作用机制对于疫苗和药物的开发具有重要意义。
分子动力学模拟是一种基于牛顿力学原理的计算方法,可以模拟分子的运动和相互作用,预测其在不同条件下的物理化学性质和反应行为。目前,分子动力学模拟已经成为研究生物大分子复合体的重要手段之一。分子动力学模拟可以通过计算得到生物大分子复合体的结构、能量和动力学行为等信息,为深入理解复合体的结构和功能提供了重要的理论支持。由于大分子-大分子复合体的结构和动力学行为更加复杂,因此大分子-大分子复合体的动力学模拟研究相对较少。
PRODIGY是一种基于分子动力学模拟的蛋白质-蛋白质和蛋白质-小分子相互作用预测工具。PRODIGY仅基于蛋白质-蛋白质复合体的结构属性对其结合亲和力进行描述,已有研究表明蛋白质-蛋白质复合体的接触界面与实验所得结合亲和力相关,结合该相关信息再加上非相互作用表面的属性,可作为相当优秀的预测因子用于分子动力学模拟。PRODIGY可以通过计算得到复合物的结合自由能,预测复合物的结合模式和稳定性。目前SARS-CoV-2相关研究中,PRODIGY主要用于分析S蛋白RBD区域与小分子抗体的相互作用,S蛋白RBD区域与hACE2受体相互作用的相关研究较少。本发明使用PRODIGY对S蛋白RBD区域与hACE2受体的结合模式进行了模拟和分析,并与已有实验数据进行比较,验证PRODIGY用于分析新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的可行性,提高相关研究的分析效率和疫苗药物的进一步开发。
发明内容
本发明的目的在于提供一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法,旨在解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法,包括:
所述方法基于蛋白结构数据的结合模拟进行分析以及比较实验数据;
所述方法基于序列数据的蛋白结构模拟和结合模拟进行分析;
所述方法基于突变位点的蛋白结构模拟和结合模拟进行分析。
进一步的,基于蛋白结构数据的结合模拟进行分析以及比较实验数据的步骤包括:
进行pcVOCs S蛋白-hACE2复合体的结合模拟分析:从RCSB PDB蛋白结构数据库中获取pcVOCs S蛋白-hACE2复合体的结构数据;使用PRODIGY对获取的结构数据进行分析,输入pcVOCs S蛋白-hACE2复合体中发生相互作用的2条蛋白链,记录结果;
将PRODIGY分析结果和已有实验数据进行比较:将已有实验数据同PRODIGY分析结果做一元线性回归分析。
进一步的,所述已有实验数据的获取方法为:
以SARS-CoV-2、hACE2、荧光共振能量转移和表面等离子体共振作为关键词进行检索,记录文献中使用的变异株、实验方法和实验结果数据。
进一步的,基于序列数据的蛋白结构模拟和结合模拟进行分析的步骤包括:
对本地SARS-CoV-2进行高通量测序,对获得的序列进行组装和谱系鉴定后,提取相应S蛋白RBD区域序列;
对S蛋白RBD区域序列使用基于同源建模技术的SWISS-MODEL在线工具预测蛋白三维结构,构建时选择相同的模板结构,从6M0J复合体中分解出hACE2蛋白的结构数据,使用ZDOCK Server进行刚性对接,获得pcVOCs S蛋白-hACE2复合体结构,使用PRODIGY对获取的结构数据进行分析,记录结果;
使用基于MM/GBSA的HawkDock Server工具对PRODIGY结果进行验证。
进一步的,所述使用PRODIGY对获取的结构数据进行分析步骤中,系统温度为25℃,使用PRODIGY对获取的结构数据进行分析后,记录结合自由能。
进一步的,基于突变位点的蛋白结构模拟和结合模拟进行分析的步骤包括:
通过逐个突变模拟方法分析单个突变位点对SARS-CoV-2与hACE2结合互作的影响,并利用SPR方法检测S蛋白与hACE2结合的亲和力大小,验证增强或降低S蛋白与hACE2结合亲和力的突变位点。
进一步的,所述SPR方法通过将受体分子键合在传感器表面,含配体的溶液流经传感器表面,配体结合受体导致传感器表面结合的分子质量增加,使得表面折射指数增加,通过反应曲线确定分子间相互作用的动力学常数。
与现有技术相比,本发明的有益效果是:
PRODIGY可以通过多种数据类型较为准确地预测S蛋白RBD区域与hACE2受体的相互作用模式,可快速且有效地分析不同变异株的感染能力,为研究新型冠状病毒感染的疫苗和药物的开发提供可靠的工具支持。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述。
本发明一个实施例提供的一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法,包括:
所述方法基于蛋白结构数据的结合模拟进行分析以及比较实验数据;
所述方法基于序列数据的蛋白结构模拟和结合模拟进行分析;
所述方法基于突变位点的蛋白结构模拟和结合模拟进行分析。
在本发明实施例中,本发明以之前传播的关注变异株(previously circulatingvariants of concern,pcVOCs)为研究对象。
作为本发明的一种优选实施例,基于蛋白结构数据的结合模拟进行分析以及比较实验数据的步骤包括:
进行pcVOCs S蛋白-hACE2复合体的结合模拟分析:从RCSB PDB(ResearchCollaboratory for Structural Bioinformatics Protein Data Bank)蛋白结构数据库中获取pcVOCs S蛋白-hACE2复合体的结构数据,尽量选取分辨率较高的结构数据;使用PRODIGY对获取的结构数据进行分析,输入pcVOCs S蛋白-hACE2复合体中发生主要相互作用的2条蛋白链,系统温度设为25℃,记录结合自由能(binding free energy,BFE)和其它相互作用信息;
将PRODIGY分析结果和已有实验数据进行比较:将已有实验数据同PRODIGY分析结果做一元线性回归分析。
在本发明实施例中,pcVOCs S蛋白-hACE2复合体的结合模拟分析结果如表1所示,其中Gamma变异株未找到已测定的相应符合体结构。
表1pcVOCs S蛋白-hACE2复合体结合模拟分析
pcVOCs 复合体ID 复合体结构 ΔG(kcal/mol)
NC 6M0J RBD单链+单ACE2 -11.9
B.1.1.7/Alpha 7EDJ S三聚体+三ACE2 -10.0
B.1.1.7/Alpha 7FEM S三聚体+单ACE2 -11.5
B.1.351/Beta 7V80 RBD单链+单ACE2 -10.2
B.1.351/Beta 7VX4 RBD单链+单ACE2 -12.4
P.1/Gamma - - -
B.1.617.2/Delta 7V8B RBD单链+单ACE2 -11.0
B.1.617.2/Delta 7TEW RBD单链+单ACE2 -11.6
B.1.617.2/Delta 7TEX S三聚体+单ACE2 -12.2
B.1.1.529/Omicron 7WBP RBD单链+单ACE2 -11.1
B.1.1.529/Omicron 7WBL RBD单链+单ACE2 -10.5
B.1.1.529/Omicron 7T9L RBD单链+单ACE2 -10.8
BA.1 7U0N RBD单链+单ACE2 -10.9
BA.2 7UFK RBD单链+单ACE2 -11.6
BA.2 8DM6 RBD单链+单ACE2 -10.7
XBB 8IOV RBD单链+单ACE2 -10.1
在已有研究中[Impact of the temperature on the interactions betweencommon variants of the SARS-CoV-2receptor binding domain and the human ACE2],温度为25℃的SPR数据如表2所示,主要通过解离常数KD反映分子间的亲和力大小,值越小亲和力越强。
表2SPR数据
在已有研究中[Proteomic Approach for Comparative Analysis of the SpikeProtein of SARS-CoV-2Omicron(B.1.1.529)Variant and Other Pango Lineages]使用打开状态的S蛋白三聚体利用PRODIGY作了结合能分析。
SPR:Omicron>Alpha>beta>NC>Delta;
SPRcell:Alpha>gamma>beta>NC>delta>Omicron;
HADDOCK+PRODIGY:Omicron(-11.8)>Alpha(-10.8)>beta(-10.5)>gamma(-9.5)>delta(-8.3);
模拟:Omicron(-11.8)>Alpha(-11.5)>Delta(-11.0)>beta(-10.2);
除Omicron的结合能力在不同资料中结论有所不同外,结论与已有报道基本一致。
作为本发明的一种优选实施例,所述已有实验数据的获取方法为:
以SARS-CoV-2、hACE2、荧光共振能量转移(Fluorescence Resonance EnergyTransfer,FRET)和表面等离子体共振(Surface Plasmon Resonance,SPR)作为关键词进行检索,记录文献中使用的变异株、实验方法和实验结果数据。
作为本发明的一种优选实施例,基于序列数据的蛋白结构模拟和结合模拟进行分析的步骤包括:
对本地SARS-CoV-2进行高通量测序,对获得的序列进行组装和谱系鉴定后,提取相应S蛋白RBD区域序列;
对S蛋白RBD区域序列使用基于同源建模技术的SWISS-MODEL在线工具预测蛋白三维结构,构建时选择相同的模板结构,从6M0J复合体中分解出hACE2蛋白的结构数据,使用ZDOCK Server进行刚性对接,获得pcVOCs S蛋白-hACE2复合体结构,使用PRODIGY对获取的结构数据进行分析,系统温度设为25℃,记录结合自由能(binding free energy,BFE)和其它相互作用信息;
使用基于MM/GBSA(Molecular Mechanics Generalized Born Surface Area,分子力学广义波恩表面积)的HawkDock Server工具对PRODIGY结果进行验证。
在本发明实施例中,结合自由能ΔG=分子力学能Emm(范德华力Evdw+静电相互作用Eele)+溶剂化自由能Gsolvation(Gpolar+Gnonpolar)-TSmm。
本地变异株的突变位点差异如表3所示:
表3本地变异株突变位点差异
本地变异株的S蛋白-hACE2复合体的结合模拟分析结果如表4所示:
表4本地变异株S蛋白-hACE2复合体结合模拟分析
对比BA.2.2和BA.2.12.1,L452Q导致结合能力上升,由疏水的亮氨酸转为亲水的谷氨酰胺,与相关报道一致。
在进化树上更远离祖先的BA.5.2相比BA.2.2结合能力有所下降,而二者在RBD区域上相差3个氨基酸。整体结果与HawkDock Server提供的MM/GBSA方法结果相吻合。
作为本发明的一种优选实施例,基于突变位点的蛋白结构模拟和结合模拟进行分析的步骤包括:
通过逐个突变模拟方法分析单个突变位点对SARS-CoV-2与hACE2结合互作的影响,并利用SPR方法检测S蛋白与hACE2结合的亲和力大小,验证增强或降低S蛋白与hACE2结合亲和力的突变位点;
所述SPR方法通过将受体分子键合在传感器表面,含配体的溶液流经传感器表面,配体结合受体导致传感器表面结合的分子质量增加,使得表面折射指数(RU)增加,通过反应曲线确定分子间相互作用的动力学常数。
在本发明实施例中,优选的,点突变结果如表5所示。
表5单个突变位点影响
毒株 Templates ΔG(kcal mol-1)
complex_BA.2.2 7lww.1.A -21.5
R493Q 7lww.1.A -21.5
L452R 7lww.1.A -14.9
F486V 7lww.1.A -18
L452R+F486V 7lww.1.A -17.8
F486V+R493Q 7lww.1.A -21.4
L452R+R493Q 7lww.1.A -16.8
complex_BA.5.2 7lww.1.A -18.8
从单位点突变结果与BA.2.2比较来看,L452R导致结合能力下降,F486V导致结合能力下降,R493Q对结合能力无影响。
从双位点突变结果与BA.5.2比较来看,L452R导致结合能力下降,F486V导致结合能力上升,R493Q导致结合能力上升。
文献中报道为L452R导致结合能力上升,F486V导致结合能力下降,R493Q导致结合能力上升。F486V通过改变构象提高了病毒的免疫逃避能力,但使得S蛋白和hace2的结合能力下降。
综上所述,本方法可以通过多种数据类型较为准确地预测S蛋白RBD区域与hACE2受体的相互作用模式,为研究新型冠状病毒感染的疫苗和药物的开发提供可靠的方法支持和技术指导。
以上仅是本发明的优选实施方式,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些均不会影响本发明实施的效果和专利的实用性。

Claims (7)

1.一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法,其特征在于,包括:
所述方法基于蛋白结构数据的结合模拟进行分析以及比较实验数据;
所述方法基于序列数据的蛋白结构模拟和结合模拟进行分析;
所述方法基于突变位点的蛋白结构模拟和结合模拟进行分析。
2.根据权利要求1所述的一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法,其特征在于,基于蛋白结构数据的结合模拟进行分析以及比较实验数据的步骤包括:
进行pcVOCs S蛋白-hACE2复合体的结合模拟分析:从RCSB PDB蛋白结构数据库中获取pcVOCs S蛋白-hACE2复合体的结构数据;使用PRODIGY对获取的结构数据进行分析,输入pcVOCs S蛋白-hACE2复合体中发生相互作用的2条蛋白链,记录结果;
将PRODIGY分析结果和已有实验数据进行比较:将已有实验数据同PRODIGY分析结果做一元线性回归分析。
3.根据权利要求2所述的一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法,其特征在于,所述已有实验数据的获取方法为:
以SARS-CoV-2、hACE2、荧光共振能量转移和表面等离子体共振作为关键词进行检索,记录文献中使用的变异株、实验方法和实验结果数据。
4.根据权利要求2所述的一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法,其特征在于,基于序列数据的蛋白结构模拟和结合模拟进行分析的步骤包括:
对本地SARS-CoV-2进行高通量测序,对获得的序列进行组装和谱系鉴定后,提取相应S蛋白RBD区域序列;
对S蛋白RBD区域序列使用基于同源建模技术的SWISS-MODEL在线工具预测蛋白三维结构,构建时选择相同的模板结构,从6M0J复合体中分解出hACE2蛋白的结构数据,使用ZDOCKServer进行刚性对接,获得pcVOCs S蛋白-hACE2复合体结构,使用PRODIGY对获取的结构数据进行分析,记录结果;
使用基于MM/GBSA的HawkDock Server工具对PRODIGY结果进行验证。
5.根据权利要求4所述的一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法,其特征在于,所述使用PRODIGY对获取的结构数据进行分析步骤中,系统温度为25℃,使用PRODIGY对获取的结构数据进行分析后,记录结合自由能。
6.根据权利要求1所述的一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法,其特征在于,基于突变位点的蛋白结构模拟和结合模拟进行分析的步骤包括:
通过逐个突变模拟方法分析单个突变位点对SARS-CoV-2与hACE2结合互作的影响,并利用SPR方法检测S蛋白与hACE2结合的亲和力大小,验证增强或降低S蛋白与hACE2结合亲和力的突变位点。
7.根据权利要求6所述的一种预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法,其特征在于,所述SPR方法通过将受体分子键合在传感器表面,含配体的溶液流经传感器表面,配体结合受体导致传感器表面结合的分子质量增加,使得表面折射指数增加,通过反应曲线确定分子间相互作用的动力学常数。
CN202311350243.3A 2023-10-18 2023-10-18 预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法 Active CN117153245B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202311350243.3A CN117153245B (zh) 2023-10-18 2023-10-18 预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法
GBGB2406242.4A GB202406242D0 (en) 2023-10-18 2024-05-03 Method for predicting interaction between rbd in s protein of severe acute respiratory syndrome coronavirus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311350243.3A CN117153245B (zh) 2023-10-18 2023-10-18 预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法

Publications (2)

Publication Number Publication Date
CN117153245A true CN117153245A (zh) 2023-12-01
CN117153245B CN117153245B (zh) 2024-03-19

Family

ID=88908307

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311350243.3A Active CN117153245B (zh) 2023-10-18 2023-10-18 预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法

Country Status (2)

Country Link
CN (1) CN117153245B (zh)
GB (1) GB202406242D0 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021227994A1 (zh) * 2020-05-09 2021-11-18 深圳安赛诊断技术有限公司 一种采用血管紧张素转化酶ii(ace2)检测冠状病毒的方法
US20210371822A1 (en) * 2020-05-27 2021-12-02 University Of Southern California Methods for expanding sars-cov2-antigen-specific t cells, compositions and uses related thereto
CN114252621A (zh) * 2020-09-23 2022-03-29 中国科学院大连化学物理研究所 一种基于rbd与ace2相互作用实时检测新型冠状病毒刺突蛋白的方法
US20220235119A1 (en) * 2020-07-14 2022-07-28 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Compositions and methods for treating a covid-19 infection
CN114921519A (zh) * 2022-03-18 2022-08-19 上海交通大学 抑制或阻断SARS-CoV-2感染的药物筛选模型及筛选方法
WO2022211558A1 (ko) * 2021-04-01 2022-10-06 (주)셀트리온 사스-코로나바이러스-2 스파이크 단백질의 에피토프에 결합하는 사스-코로나바이러스-2 중화 결합 분자
WO2022223617A1 (en) * 2021-04-20 2022-10-27 BioNTech SE Virus vaccine
CN115461068A (zh) * 2020-02-25 2022-12-09 利甘达尔股份有限公司 仿生病毒肽的鉴定及其用途
US20230087388A1 (en) * 2020-02-28 2023-03-23 Immunologik Gmbh Inhibitors of human deubiquitinases for the treatment of coronaviral infections
US20230227506A1 (en) * 2020-06-18 2023-07-20 The University Of Bristol Fatty Acid Complexes Of Coronavirus Spike Protein And Their Use
US20230227537A1 (en) * 2020-02-06 2023-07-20 Vib Vzw Corona virus binders

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230227537A1 (en) * 2020-02-06 2023-07-20 Vib Vzw Corona virus binders
CN115461068A (zh) * 2020-02-25 2022-12-09 利甘达尔股份有限公司 仿生病毒肽的鉴定及其用途
US20230242592A1 (en) * 2020-02-25 2023-08-03 Ligandal, Inc. Identification of biomimetic viral peptides and uses thereof
US20230087388A1 (en) * 2020-02-28 2023-03-23 Immunologik Gmbh Inhibitors of human deubiquitinases for the treatment of coronaviral infections
WO2021227994A1 (zh) * 2020-05-09 2021-11-18 深圳安赛诊断技术有限公司 一种采用血管紧张素转化酶ii(ace2)检测冠状病毒的方法
US20210371822A1 (en) * 2020-05-27 2021-12-02 University Of Southern California Methods for expanding sars-cov2-antigen-specific t cells, compositions and uses related thereto
US20230227506A1 (en) * 2020-06-18 2023-07-20 The University Of Bristol Fatty Acid Complexes Of Coronavirus Spike Protein And Their Use
US20220235119A1 (en) * 2020-07-14 2022-07-28 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Compositions and methods for treating a covid-19 infection
CN114252621A (zh) * 2020-09-23 2022-03-29 中国科学院大连化学物理研究所 一种基于rbd与ace2相互作用实时检测新型冠状病毒刺突蛋白的方法
WO2022211558A1 (ko) * 2021-04-01 2022-10-06 (주)셀트리온 사스-코로나바이러스-2 스파이크 단백질의 에피토프에 결합하는 사스-코로나바이러스-2 중화 결합 분자
WO2022223617A1 (en) * 2021-04-20 2022-10-27 BioNTech SE Virus vaccine
CN114921519A (zh) * 2022-03-18 2022-08-19 上海交通大学 抑制或阻断SARS-CoV-2感染的药物筛选模型及筛选方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CATHERINE FOREST-NAULT 等: "Impact of the temperature on the interactions betweencommon variants of the SARS-CoV-2receptor binding domain and the human ACE2", SCIENTIFIC REPORTS, vol. 12, pages 1 - 11 *
CHUNYAN YI 等: "Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies", CELLULAR & MOLECULAR IMMUNOLOGY, vol. 17, pages 621 - 630, XP037153223, DOI: 10.1038/s41423-020-0458-z *
JUN LAN 等: "Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor", NATURE, vol. 581, pages 215, XP037182122, DOI: 10.1038/s41586-020-2180-5 *
MUKUL JAIN 等: "Proteomic Approach for Comparative Analysis of the Spike Protein of SARS-CoV-2 Omicron (B.1.1.529) Variant and Other Pango Lineages", PROTEOMES, vol. 10, no. 4, pages 1 - 14 *
SHAMALI ABEYWARDHANA, 等: "In silico study of SARS-CoV-2 spike protein RBD and human ACE‐2 affinity dynamics across variants and Omicron subvariants", J MED VIROL, vol. 95, no. 1, pages 1 - 10 *
TUSHAR AHMED SHISHIR 等: "An in-silico study of the mutation-associated effects on the spike protein of SARS-CoV-2, Omicron variant", PLOS ONE, vol. 17, no. 4, pages 1 - 6 *
潘霞: "基于hACE2结合特征的新型冠状病毒S蛋白抑制剂筛选", 中国优秀硕士学位论文全文数据库 (医药卫生科技辑), no. 2022, pages 079 - 218 *
赵宝银 等: "新型冠状病毒S蛋白及其受体结合域突变最新研究进展", 中华医院感染学杂志, vol. 33, no. 14, pages 2210 - 2215 *

Also Published As

Publication number Publication date
CN117153245B (zh) 2024-03-19
GB202406242D0 (en) 2024-06-19

Similar Documents

Publication Publication Date Title
Pei et al. MUMMALS: multiple sequence alignment improved by using hidden Markov models with local structural information
Tian et al. EFICAz: a comprehensive approach for accurate genome-scale enzyme function inference
Maecker et al. New tools for classification and monitoring of autoimmune diseases
Kinoshita et al. Identification of the ligand binding sites on the molecular surface of proteins
CN111788633A (zh) 用于蛋白质鉴定的解码方法
Han et al. The human gut virome in hypertension
CN112154230A (zh) 用于蛋白质鉴定的方法和系统
Zhang et al. From fold predictions to function predictions: automation of functional site conservation analysis for functional genome predictions
Barone et al. Unsupervised machine learning reveals key immune cell subsets in COVID-19, rhinovirus infection, and cancer therapy
Alballa et al. TranCEP: Predicting the substrate class of transmembrane transport proteins using compositional, evolutionary, and positional information
Zhao et al. A novel procedure on next generation sequencing data analysis using text mining algorithm
Sasson et al. Functional annotation prediction: all for one and one for all
Li et al. Recovery of non-reference sequences missing from the human reference genome
Toyomane et al. Evaluation of CRISPR diversity in the human skin microbiome for personal identification
Scott et al. Genes and regulatory mechanisms associated with experimentally-induced bovine respiratory disease identified using supervised machine learning methodology
CN117153245B (zh) 预测新型冠状病毒S蛋白RBD区域与hACE2受体相互作用的方法
Beton et al. Integrating model simulation tools and cryo‐electron microscopy
Bianchessi et al. Molecular Tools to identify and characterize malignant Catarrhal Fever viruses (MCFV) of ruminants and Captive Artiodactyla
Manriquez-Sandoval et al. FLiPPR: A Processor for Limited Proteolysis (LiP) Mass Spectrometry Data Sets Built on FragPipe
Sandhya et al. Assessment of a rigorous transitive profile based search method to detect remotely similar proteins
Panchenko et al. Analysis of protein homology by assessing the (dis) similarity in protein loop regions
Martin-Gutierrez et al. Multi-omic biomarkers for patient stratification in sjogren’s syndrome—a review of the literature
Creager et al. RADx variant task force program for assessing the impact of variants on SARS-CoV-2 molecular and antigen tests
Walsh et al. Ab initio and homology based prediction of protein domains by recursive neural networks
Kunin et al. Clustering the annotation space of proteins

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant