CN117105665B - 一种核防护用高抗热震性碳化硼陶瓷制备方法 - Google Patents

一种核防护用高抗热震性碳化硼陶瓷制备方法 Download PDF

Info

Publication number
CN117105665B
CN117105665B CN202311054023.6A CN202311054023A CN117105665B CN 117105665 B CN117105665 B CN 117105665B CN 202311054023 A CN202311054023 A CN 202311054023A CN 117105665 B CN117105665 B CN 117105665B
Authority
CN
China
Prior art keywords
boron carbide
powder
ceramic
thermal shock
shock resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311054023.6A
Other languages
English (en)
Other versions
CN117105665A (zh
Inventor
史彦民
徐正平
龙成勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North Yangzhou Sanshan Industrial Ceramics Co ltd
Original Assignee
North Yangzhou Sanshan Industrial Ceramics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Yangzhou Sanshan Industrial Ceramics Co ltd filed Critical North Yangzhou Sanshan Industrial Ceramics Co ltd
Priority to CN202311054023.6A priority Critical patent/CN117105665B/zh
Publication of CN117105665A publication Critical patent/CN117105665A/zh
Application granted granted Critical
Publication of CN117105665B publication Critical patent/CN117105665B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/06Ceramics; Glasses; Refractories
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明属于新材料制备技术领域,公开了一种核防护用高抗热震性碳化硼陶瓷制备方法。本发明所述的方法在不大幅度降低陶瓷中硼含量和保证陶瓷纯度的前提下,通过在陶瓷内部引入高分散纤维和进行陶瓷梯度结构设计,提高陶瓷的抗热震性,保证陶瓷的使用可靠性。本发明所述方法制备得到的碳化硼陶瓷可满足核工业领域使用的安全化要求。

Description

一种核防护用高抗热震性碳化硼陶瓷制备方法
技术领域
本申请涉及新材料技术领域,具体涉及一种核防护用高抗热震性碳化硼陶瓷制备方法。
背景技术
核反应堆小型化是核工业的重要发展方向之一。碳化硼具有中子吸收截面积大、吸收能谱宽、抗腐蚀性强,并且吸收中子后无强的二次射线产生,易于防护。因此,碳化硼作为中子屏蔽吸收材料广泛的应用于核领域。
碳化硼用于核工业领域主要应用形式包括:碳化硼颗粒、碳化硼-树脂复合材料、碳化硼-铝基复合材料以及碳化硼陶瓷。其中碳化硼陶瓷具有硼含量高、耐高温、耐腐蚀等优点,广泛用于核反应堆堆芯核反应控制棒及内部屏蔽层等关键核心部位。
碳化硼陶瓷具有硼含量高(陶瓷中硼质量分数约为78%)等优点,其是实现核屏蔽层小型化的关键材料。硼含量高,单位吸收体积的条件下,屏蔽尺寸可以更小。由于碳化硼陶瓷本身脆性较大,易发生脆性断裂,在热震条件下,其结构强度会大幅下降,发生剥落或断裂。陶瓷尺寸越大越容易产生热震剥落及断裂。因此,提升陶瓷抗热震性是保证碳化硼陶瓷在核工业领域安全应用的重要技术支撑。
发明内容
发明目的:在不大幅度降低陶瓷中硼含量和保证陶瓷纯度的前提下,本发明提供一种高抗热震性碳化硼陶瓷制备方法,通过在陶瓷内部引入高分散纤维和进行陶瓷梯度结构设计,提高陶瓷的抗热震性,保证陶瓷的使用可靠性。可满足核工业领域应用的安全化要求。
技术方案:本发明所述的一种核防护用高抗热震性碳化硼陶瓷制备方法,包括如下步骤:
步骤1,按重量份计:将碳化硼粉60-70份、碳化硼微粉25-35份、晶须型多壁碳纳米管1-5份、外加助剂14-24份、水80-100份加入球磨机中,研磨20-24h,得到均匀的陶瓷浆料,然后采用喷雾造粒工艺得到球形碳化硼造粒粉;
步骤2,将短切碳纤维分散溶剂25-35份与分散剂0.05-0.1份混合搅拌10-15min,使之均匀混合,然后将短切碳纤维0.1-0.5份置于其中,超声振动分散10-15min,使短切碳纤维均匀的分散于混合溶剂之中,最后边搅拌边将碳化硼造粒粉99-100份倒入其中,使造粒粉与碳纤维均匀混合,干燥,将干燥好的复合粉体倒入锥形混料器中,将团聚体打散,并过30目筛,得到复合造粒粉;
步骤3,将第一步的造粒粉和第二步制备的复合造粒粉依次倒入到模具中,然后一起压制,得到具有梯度结构的碳化硼陶瓷生坯,生坯密度控制在1.85-1.9g/cm3,然后干燥,将烘干好的生坯置于真空烧结炉进行高温烧结,烧结,最终得到碳化硼陶瓷。
具体的,步骤1中所述的碳化硼粉,平均粒径d50=15-20μm,所述的碳化硼微粉,平均粒径d50=0.8-1.2μm。
具体的,步骤1中所述的晶须型多壁碳纳米管以浆料的形式引入,多壁碳纳米管经高速剪切分散处理,已经由团聚体转变为单分散性碳纳米管。本步骤中关键材料为晶须型多壁碳纳米管,普通炭纳米管多为缠绕型,即便通过研磨分散,碳纳米管也极难分散成单分散碳纳米管,并且碳纳米管结构破坏严重。本发明采用晶须型多壁碳纳米管,其在显微结构上为长棒状,其极易分散成单一碳管。
具体的,步骤1中所述的外加助剂包括:水溶性酚醛树脂10-15份,聚乙烯醇3-5份,分散剂0.5-1份,丙三醇1-3份。
具体的,步骤2中所述的短切碳纤维为2-5mm。
具体的,步骤2中的碳纤维分散溶剂为工业酒精,分散剂为苯乙烯-马来酸酐树脂(型号SMA2000)。这是保证短切碳纤维能够均匀分散,不团聚的最佳组合体系。通过在酒精中加入一定量的氨水,使SMA树脂溶于酒精溶剂之中,形成稳定且粘度极低的溶液。其中SMA树脂为本发明中极为关键的一种专用分散剂,其主要作用是一方面促进短切碳纤维束在酒精中的分散,更为关键的是SMA树脂干燥后在造粒粉颗粒表面形成一层黏膜,将分散的单根碳纤维固定于造粒粉颗粒表面。防止后期处理过程中碳纤维二次团聚,保证碳纤维能够均匀的分散于陶瓷造粒粉中,避免因碳纤维团聚导致成型陶瓷内部形成的大的缺陷。
具体的,步骤2中,所述的干燥,置于20-35℃真空干燥箱中干燥3h-5h,使混合造粒粉的水控制在0.8-1.2%。
具体的,步骤3中,造粒粉和复合造粒粉的加入量,根据不同的梯度结构设计,确定两者的用量。造粒粉与复合造粒粉质量比为1:10-10:1。
具体的,步骤3中,所述的干燥,将压制好的生坯置于120℃烘箱中,干燥12-15h。
具体的,步骤3中,所述的烧结,温度为2250-2280℃,保温2-4h。
有益效果:本发明所述高抗热震碳化硼陶瓷为一种微观与宏观双层级纤维增强结构来提高陶瓷抗热震性。其中微观纤维增强采用多壁碳纳米管与碳化硼微粉进行交叉混合;宏观纤维增强采用碳纤维与碳化硼造粒粉进行交叉混合。陶瓷内部裂纹尖端区域增强是提高陶瓷抗热震性的重要手段之一,陶瓷的热震破坏通常表现为热冲击条件下陶瓷的瞬时断裂和循环热冲击条件下,陶瓷的开裂、剥落直至最终断裂。通过在陶瓷内部引入增强纤维,当裂纹扩展至纤维处时,通过纤维的摩擦桥接作用能够很好的抑制或阻止裂纹的扩展,从而保证陶瓷拥有良好的抗热震性。本发明中采用微观与宏观裂纹增强结构,一方面多壁炭纳米管能够有效阻止微裂纹(微米级)的产生与扩展;另一方面,当宏观大裂纹(毫米级)产生时炭纤维通过桥接作用能够有效保证碳化硼陶瓷的整体性,使陶瓷不至于碎裂成小块。
本发明所述高抗热震性碳化硼陶瓷,其关键技术之一是实现短切碳纤维(2-5mm)与碳化硼造粒粉的均匀分散。重点在于实现碳纤维分散的基础之上,不能破坏短切碳纤维的表面结构以及碳化硼造粒粉的球状结构,否则会严重恶化碳纤维的力学性能和影响碳化硼造粒粉的成型性能。短切碳纤维由碳纤维长丝经切割机短切而成,其容易团聚很难分散。
本发明所述高抗热震性碳化硼陶瓷,其特点之一是陶瓷为梯度结构,工作面采用微观与宏观纤维增强双层级结构,非工作表面为微观纤维增强结构。采用梯度结构主要原因是碳纤维加入到陶瓷后会阻碍陶瓷烧结,使陶瓷密度降低,导致单位体积内含量降低,从而降低陶瓷对中子的吸收效率。因此,为兼顾陶瓷抗热震性和中子吸收效率,陶瓷采用梯度结构,即保证陶瓷的抗热震性,又不大幅度降低陶瓷对中子的吸收效率。
附图说明
图1为碳化硼造粒粉的扫描电镜图(10μm)
图2为碳化硼造粒粉的扫描电镜图(1μm)
图3为晶须型碳纳米管的扫描电镜图(2μm)
图4为复合造粒粉的扫描电镜图(2μm)
图5为复合造粒粉的扫描电镜图(1μm)
具体实施方式
下面通过实施例对本申请的技术方案进行详细说明,但是本申请的保护范围不局限于所述实施例。
实施例1
步骤1,碳化硼造粒粉制备:碳化硼微粉1(d50=15-20μm)67公斤,碳化硼微粉2(d50=0.8-1.2μm)30公斤,多壁碳纳米管3公斤(多壁碳纳米管以分散均匀的浆料形式引入)。外加聚乙烯醇5公斤,水溶性酚醛树脂10公斤,丙三醇1公斤,分散剂1公斤,去离子水100公斤。将各组分加入到球磨机中进行球磨均化,球磨时间为20h。将球磨均匀的浆料进行喷雾造粒,得到球状造粒粉。所得造粒粉的扫描电镜图如图1、图2所示。晶须型碳纳米管的扫描电镜图如图3所示。
步骤2,碳化硼造粒粉与短切碳纤维复合粉制备:将碳纤维分散剂(苯乙烯-马来酸酐树脂(SMA1000))0.05公斤,氨水1公斤,碳纤维分散剂(工业酒精)30公斤,置于搅拌桶中,搅拌分散10分钟,使分散剂与溶剂充分混合均匀成单一溶液。然后将0.1公斤短切碳纤维(长度2-5mm)加入到分散溶液之中,利用超声振动棒均匀搅拌,使聚集的短切碳纤维束分散成单一的碳纤维,分散后静置1分钟,观察是否有束状碳纤维沉淀,若有继续搅拌分散,若没有沉淀代表碳纤维束已经全部实现分散。最后将100公斤碳化硼造粒粉缓慢倒入碳纤维分散液中,用搅拌棒轻轻搅拌,使碳纤维与造粒粉颗粒充分混合均匀。将混合好的造粒粉放入真空干燥机中进行干燥处理,并用冷凝器回收酒精。保证混合造粒粉中水分含量在0.8-1.2%之间。将干燥好的造粒粉置于锥形混料器中进行旋转分散,将造粒粉颗粒的疏松团聚体打散,最后过30目筛,得到复合造粒粉。所得复合造粒粉的扫描电镜图如图4、图5所示。
步骤3,梯度碳化硼陶瓷压制成型及烧结:根据陶瓷重量将不添加碳纤维造粒粉与添加碳纤维造粒粉各称取一半。首先将不添加碳纤维造粒粉倒入到钢制模具,用梳状刮刀将造粒粉刮平,然后再将添加碳纤维造粒粉倒入到模具之中。启动压机进行干压成型,成型压力140MPa,成型坯体密度控制在1.8-1.85g/cm3。并将陶瓷生坯中添加碳纤维的那一面标记为工作面。将陶瓷坯体置于120℃烘箱中,烘干24h。干燥后将坯体置于真空烧结炉进行烧结,烧结温度为2280℃,保温3h,烧结后陶瓷密度为2.2-2.3g/cm3
实施例2
步骤1,碳化硼造粒粉制备:碳化硼微粉1(d50=15-20μm)60公斤,碳化硼微粉2(d50=0.8-1.2μm)25公斤,多壁碳纳米管1公斤(多壁碳纳米管以分散均匀的浆料形式引入)。外加聚乙烯醇3公斤,水溶性酚醛树脂10公斤,丙三醇1公斤,分散剂0.5公斤,去离子水100公斤。将各组分加入到球磨机中进行球磨均化,球磨时间为20h。将球磨均匀的浆料进行喷雾造粒,得到球状造粒粉。
步骤2,碳化硼造粒粉与短切碳纤维复合粉制备:将碳纤维分散剂(苯乙烯-马来酸酐树脂(SMA1000))0.05公斤,氨水1公斤,碳纤维分散剂(工业酒精)25公斤,置于搅拌桶中,搅拌分散10分钟,使分散剂与溶剂充分混合均匀成单一溶液。然后将0.1公斤短切碳纤维(长度2-5mm)加入到分散溶液之中,利用超声振动棒均匀搅拌,使聚集的短切碳纤维束分散成单一的碳纤维,分散后静置1分钟,观察是否有束状碳纤维沉淀,若有继续搅拌分散,若没有沉淀代表碳纤维束已经全部实现分散。最后将100公斤碳化硼造粒粉缓慢倒入碳纤维分散液中,用搅拌棒轻轻搅拌,使碳纤维与造粒粉颗粒充分混合均匀。将混合好的造粒粉放入真空干燥机中进行干燥处理,并用冷凝器回收酒精。保证混合造粒粉中水分含量在0.8-1.2%之间。将干燥好的造粒粉置于锥形混料器中进行旋转分散,将造粒粉颗粒的疏松团聚体打散,最后过30目筛,得到复合造粒粉。
步骤3,梯度碳化硼陶瓷压制成型及烧结:根据陶瓷重量将不添加碳纤维造粒粉与添加碳纤维造粒粉各称取一半。首先将不添加碳纤维造粒粉倒入到钢制模具,用梳状刮刀将造粒粉刮平,然后再将添加碳纤维造粒粉倒入到模具之中。启动压机进行干压成型,成型压力140MPa,成型坯体密度控制在1.8-1.85g/cm3。并将陶瓷生坯中添加碳纤维的那一面标记为工作面。将陶瓷坯体置于120℃烘箱中,烘干24h。干燥后将坯体置于真空烧结炉进行烧结,烧结温度为2280℃,保温3h。
实施例3
步骤1,碳化硼造粒粉制备:碳化硼微粉1(d50=15-20μm)70公斤,碳化硼微粉2(d50=0.8-1.2μm)35公斤,多壁碳纳米管5公斤(多壁碳纳米管以分散均匀的浆料形式引入)。外加聚乙烯醇5公斤,水溶性酚醛树脂15公斤,丙三醇3公斤,分散剂1公斤,去离子水100公斤。将各组分加入到球磨机中进行球磨均化,球磨时间为20h。将球磨均匀的浆料进行喷雾造粒,得到球状造粒粉。
步骤2,碳化硼造粒粉与短切碳纤维复合粉制备:将碳纤维分散剂(苯乙烯-马来酸酐树脂(SMA1000))0.05公斤,氨水1公斤,碳纤维分散剂(工业酒精)35公斤,置于搅拌桶中,搅拌分散10分钟,使分散剂与溶剂充分混合均匀成单一溶液。然后将0.5公斤短切碳纤维(长度2-5mm)加入到分散溶液之中,利用超声振动棒均匀搅拌,使聚集的短切碳纤维束分散成单一的碳纤维,分散后静置1分钟,观察是否有束状碳纤维沉淀,若有继续搅拌分散,若没有沉淀代表碳纤维束已经全部实现分散。最后将100公斤碳化硼造粒粉缓慢倒入碳纤维分散液中,用搅拌棒轻轻搅拌,使碳纤维与造粒粉颗粒充分混合均匀。将混合好的造粒粉放入真空干燥机中进行干燥处理,并用冷凝器回收酒精。保证混合造粒粉中水分含量在0.8-1.2%之间。将干燥好的造粒粉置于锥形混料器中进行旋转分散,将造粒粉颗粒的疏松团聚体打散,最后过30目筛,得到复合造粒粉。
步骤3,梯度碳化硼陶瓷压制成型及烧结:根据陶瓷重量将不添加碳纤维造粒粉与添加碳纤维造粒粉各称取一半。首先将不添加碳纤维造粒粉倒入到钢制模具,用梳状刮刀将造粒粉刮平,然后再将添加碳纤维造粒粉倒入到模具之中。启动压机进行干压成型,成型压力140MPa,成型坯体密度控制在1.8-1.85g/cm3。并将陶瓷生坯中添加碳纤维的那一面标记为工作面。将陶瓷坯体置于120℃烘箱中,烘干24h。干燥后将坯体置于真空烧结炉进行烧结,烧结温度为2280℃,保温3h。
实施例4性能测试:
陶瓷将陶瓷切割成50-50-50的正方体,其中添加碳纤维和未添加碳纤维厚度各为25mm,测试陶瓷的力学性能及抗热震性测试,抗热震性是将陶瓷加热到目标温度然后置于冷水中,反复循环100次,观察表面是否有裂纹并测试耐压强度。试验结果如下
表1
表2
经测试陶瓷耐压强度合格。经过抗热震性测试,表面安好无裂纹,强度衰减在合理范围内,性能满足使用条件要求。
对比例1
操作步骤与实施例1大致相同,不同之处在于步骤1中采用普通碳纳米管。
对比例2
操作步骤与实施例1大致相同,不同之处在于步骤2中的分散剂选用十二烷基硫酸钠。
表3
表4
从上述试验数据可以看出,对比例的耐压强度低于实施例,并且在抗热震性方面更是具有较大的差距,尤其是高温下表面有裂纹,且强度衰减尤为明显。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请。

Claims (9)

1.一种核防护用高抗热震性碳化硼陶瓷制备方法,其特征在于,步骤1,按重量份计:将碳化硼粉60-70份、碳化硼微粉25-35份、晶须型多壁碳纳米管1-5份、外加助剂14-24份、水80-100份加入球磨机中,研磨20-24h,得到均匀的陶瓷浆料,然后采用喷雾造粒工艺得到球形碳化硼造粒粉;
步骤2,将短切碳纤维分散溶剂25-35份与分散剂0.05-0.1份混合搅拌10-15min,使之均匀混合,然后将短切碳纤维0.1-0.5份置于其中,超声振动分散10-15min,使短切碳纤维均匀的分散于混合溶剂之中,最后边搅拌边将碳化硼造粒粉99-100份倒入其中,使造粒粉与碳纤维均匀混合,干燥,将干燥好的复合粉体倒入锥形混料器中,将团聚体打散,并过30目筛,得到复合造粒粉;
步骤2中的碳纤维分散溶剂为工业酒精,分散剂为苯乙烯-马来酸酐树脂;
步骤3,将第一步的造粒粉和第二步制备的复合造粒粉依次倒入到模具中,然后一起压制,得到具有梯度结构的碳化硼陶瓷生坯,生坯密度控制在1.85-1.9g/cm3,然后干燥,将烘干好的生坯置于真空烧结炉进行高温烧结,最终得到碳化硼陶瓷。
2.根据权利要求1所述的核防护用高抗热震性碳化硼陶瓷制备方法,其特征在于,步骤1中所述的碳化硼粉,平均粒径d50=15-20μm;所述的碳化硼微粉,平均粒径d50=0.8-1.2μm。
3.根据权利要求1所述的核防护用高抗热震性碳化硼陶瓷制备方法,其特征在于,步骤1中所述的晶须型多壁碳纳米管以浆料的形式引入,多壁碳纳米管经高速剪切分散处理,已经由团聚体转变为单分散性碳纳米管。
4.根据权利要求1所述的核防护用高抗热震性碳化硼陶瓷制备方法,其特征在于,步骤1中所述的外加助剂包括:水溶性酚醛树脂10-15份,聚乙烯醇3-5份,分散剂0.5-1份,丙三醇1-3份。
5.根据权利要求1所述的核防护用高抗热震性碳化硼陶瓷制备方法,其特征在于,步骤2中所述的短切碳纤维为2-5mm。
6.根据权利要求1所述的核防护用高抗热震性碳化硼陶瓷制备方法,其特征在于,步骤2中,所述的干燥,置于20-35℃真空干燥箱中干燥3h-5h,使混合造粒粉的水控制在0.8-1.2%。
7.根据权利要求1所述的核防护用高抗热震性碳化硼陶瓷制备方法,其特征在于,步骤3中,造粒粉和复合造粒粉的加入量,根据不同的梯度结构设计,确定两者的用量。
8.根据权利要求1所述的核防护用高抗热震性碳化硼陶瓷制备方法,其特征在于,步骤3中,所述的干燥,将压制好的生坯置于120℃烘箱中,干燥12-15h。
9.根据权利要求1所述的核防护用高抗热震性碳化硼陶瓷制备方法,其特征在于,步骤3中,所述的烧结,温度为2250-2280℃,保温2-4h。
CN202311054023.6A 2023-08-21 2023-08-21 一种核防护用高抗热震性碳化硼陶瓷制备方法 Active CN117105665B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311054023.6A CN117105665B (zh) 2023-08-21 2023-08-21 一种核防护用高抗热震性碳化硼陶瓷制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311054023.6A CN117105665B (zh) 2023-08-21 2023-08-21 一种核防护用高抗热震性碳化硼陶瓷制备方法

Publications (2)

Publication Number Publication Date
CN117105665A CN117105665A (zh) 2023-11-24
CN117105665B true CN117105665B (zh) 2024-04-12

Family

ID=88806923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311054023.6A Active CN117105665B (zh) 2023-08-21 2023-08-21 一种核防护用高抗热震性碳化硼陶瓷制备方法

Country Status (1)

Country Link
CN (1) CN117105665B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107534A (ja) * 2002-09-19 2004-04-08 Rikogaku Shinkokai 炭素繊維含有複合部材
WO2012060442A1 (ja) * 2010-11-04 2012-05-10 黒崎播磨株式会社 高剛性セラミックス材料およびその製造方法
KR20150028745A (ko) * 2013-09-06 2015-03-16 한국과학기술원 육방정 질화붕소 나노시트/세라믹 나노 복합 분말 및 그의 제조 방법, 및 육방정 질화붕소/세라믹 나노 복합 소재 및 그의 제조 방법
WO2017114174A1 (zh) * 2015-12-31 2017-07-06 济南圣泉集团股份有限公司 一种石墨烯电热材料及其应用
CN111410538A (zh) * 2020-05-08 2020-07-14 潍坊工商职业学院 一种增韧碳化硅陶瓷及其制备方法
CN112125680A (zh) * 2020-09-25 2020-12-25 扬州北方三山工业陶瓷有限公司 碳化硼微粉提纯方法、碳化硼陶瓷及碳化硼陶瓷制备方法
CN112266591A (zh) * 2020-10-27 2021-01-26 合肥通融新型材料科技有限公司 一种碳纤维增强聚乳酸3d打印材料的制备方法
CN112759408A (zh) * 2021-01-04 2021-05-07 苏州第一元素纳米技术有限公司 碳化硼陶瓷及其制备方法与应用
CN114538929A (zh) * 2022-03-17 2022-05-27 南通三责精密陶瓷有限公司 一种高致密度碳化硼陶瓷的制备方法
WO2023029080A1 (zh) * 2021-08-30 2023-03-09 武汉工程大学 氮化硼纳米管/纳米片-碳化硼陶瓷复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815381B2 (en) * 2012-01-26 2014-08-26 The United States Of America, As Represented By The Secretary Of The Navy Formation of boron carbide-boron nitride carbon compositions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107534A (ja) * 2002-09-19 2004-04-08 Rikogaku Shinkokai 炭素繊維含有複合部材
WO2012060442A1 (ja) * 2010-11-04 2012-05-10 黒崎播磨株式会社 高剛性セラミックス材料およびその製造方法
KR20150028745A (ko) * 2013-09-06 2015-03-16 한국과학기술원 육방정 질화붕소 나노시트/세라믹 나노 복합 분말 및 그의 제조 방법, 및 육방정 질화붕소/세라믹 나노 복합 소재 및 그의 제조 방법
WO2017114174A1 (zh) * 2015-12-31 2017-07-06 济南圣泉集团股份有限公司 一种石墨烯电热材料及其应用
CN111410538A (zh) * 2020-05-08 2020-07-14 潍坊工商职业学院 一种增韧碳化硅陶瓷及其制备方法
CN112125680A (zh) * 2020-09-25 2020-12-25 扬州北方三山工业陶瓷有限公司 碳化硼微粉提纯方法、碳化硼陶瓷及碳化硼陶瓷制备方法
CN112266591A (zh) * 2020-10-27 2021-01-26 合肥通融新型材料科技有限公司 一种碳纤维增强聚乳酸3d打印材料的制备方法
CN112759408A (zh) * 2021-01-04 2021-05-07 苏州第一元素纳米技术有限公司 碳化硼陶瓷及其制备方法与应用
WO2023029080A1 (zh) * 2021-08-30 2023-03-09 武汉工程大学 氮化硼纳米管/纳米片-碳化硼陶瓷复合材料及其制备方法
CN114538929A (zh) * 2022-03-17 2022-05-27 南通三责精密陶瓷有限公司 一种高致密度碳化硼陶瓷的制备方法

Also Published As

Publication number Publication date
CN117105665A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
Xu et al. Constructing straight pores and improving mechanical properties of GangueBased porous ceramics
Rui et al. Comparative study on the effect of steel and polyoxymethylene fibers on the characteristics of Ultra-High Performance Concrete (UHPC)
Yi et al. Super-insulated, flexible, and high resilient mullite fiber reinforced silica aerogel composites by interfacial modification with nanoscale mullite whisker
CN107010896A (zh) 一种掺加短切玄武岩纤维和再生粗骨料的再生混凝土
El-Feky et al. Effect of nano silica addition on enhancing the performance of cement composites reinforced with nano cellulose fibers.
Keshavarzian et al. Investigation on mechanical properties of steel fiber reinforced reactive powder concrete containing nano-SiO2: An experimental and analytical study
CN113292344B (zh) 原位生长莫来石晶须增强碳化硅陶瓷基复合材料的制备方法
Lin et al. Influences of black carbon addition on mechanical performance of low-carbon MgO-C composite
Wang et al. Effects of pore size on microstructure, mechanical and dielectric properties of gel casting BN/Si3N4 ceramics with spherical-shaped pore structures
CN111517761A (zh) 一种复合内衬材料及其应用和应用方法
CN112592188A (zh) 一种石墨烯复合碳化硅陶瓷材料的制备方法
Li et al. Effects of V2O5 addition on the synthesis of columnar self-reinforced mullite porous ceramics
CN107235495B (zh) 一种解聚黏土矿物晶束制备高长径比一维纳米材料的方法
CN117105665B (zh) 一种核防护用高抗热震性碳化硼陶瓷制备方法
CN101164993B (zh) 一种含纤维、晶须的碳化硅陶瓷组合物制造方法
CN101164999B (zh) 一种三组元组合增韧料组合增韧碳化硅陶瓷制造方法
CN101172877B (zh) 一种包括晶须、纤维的多元组合增韧碳化硅陶瓷制造方法
CN115448659B (zh) 一种基于早期碳化和早期干湿循环耦合作用的固废不锈钢渣再生混凝土及其制备方法
CN110683845A (zh) 一种极细结构炭素石墨制品的制备方法
CN113998934B (zh) 一种地聚物免烧结人造骨料的制备方法及其在高强混凝土的应用
CN103253941B (zh) 一种高热导率ZrB2超高温陶瓷及其制备方法
Liu Application of Carbon Nanofiber-Modified Concrete in Industrial Building Design
CN115716748A (zh) 树脂玻璃碳改性的石墨管
Khushnood et al. Theoretical and experimental analysis of multifunctional high performance cement mortar matrices reinforced with varying lengths of carbon fibers
CN114956677A (zh) 一种废毛毡碳纤维基导电混凝土

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant