CN117088679A - 一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法 - Google Patents

一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法 Download PDF

Info

Publication number
CN117088679A
CN117088679A CN202310998914.0A CN202310998914A CN117088679A CN 117088679 A CN117088679 A CN 117088679A CN 202310998914 A CN202310998914 A CN 202310998914A CN 117088679 A CN117088679 A CN 117088679A
Authority
CN
China
Prior art keywords
zinc oxide
oxide
slurry
rare earth
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310998914.0A
Other languages
English (en)
Inventor
曾墩风
陈光园
王志强
曾探
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhu Yingri Technology Co ltd
Original Assignee
Wuhu Yingri Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhu Yingri Technology Co ltd filed Critical Wuhu Yingri Technology Co ltd
Priority to CN202310998914.0A priority Critical patent/CN117088679A/zh
Publication of CN117088679A publication Critical patent/CN117088679A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明属于靶材制造技术领域,涉及一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,步骤S1原材料选择氧化铟、氧化锌、氧化镨、氧化锆;步骤S2按照质量百分比,氧化镨:氧化铟:氧化锌:氧化锆=2%~4%:80%~85%:12~17%:1~6%,称取原料混合配粉进行浆料球磨,步骤S3将得到的浆料烘干后进行煅烧;步骤S4二次球磨;步骤S5浆料砂磨;步骤S6将得到的粉末进行粉末造粒;步骤S7靶材一次成型;步骤S8靶材二次冷等静压成型;步骤S9将得到素坯放入到加压气氛烧结炉中烧结,本发明选择氧化铟、氧化锌、氧化镨、氧化锆为原材料,并调控之间的比例,使用加压气氛炉进行烧结,能够有效提高氧化铟锌靶材密度。

Description

一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法
技术领域
本发明属于靶材制造技术领域,具体涉及一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法。
背景技术
靶材是磁控溅射过程中的基本耗材,不仅使用量大,而且靶材质量的好坏对薄膜的性能起着至关重要的决定作用。靶材应用领域比较广泛,主要包括光学靶材、显示薄膜用靶材、半导体领域用靶材、记录介质用靶材、超导靶材等。其中半导体领域用靶材、显示用靶材和记录介质用靶材是当前使用最为广泛的三大靶材。为提升薄膜制备速率和保证薄膜的质量,溅射靶材要达到一定的指标要求。现有技术中,把控制靶材质量的关键因素概括为纯度、致密度、强度、晶粒尺寸及尺寸分布等几个方面。
近年来,液晶显示(LCD)、有源有机发光二极管显示(AMOLED)以及柔性显示等平板显示技术迅猛发展,作为核心部件的薄膜晶体管((thin film transistors,TFT)的重要性不言而喻。其中,基于氧化物半导体的TFT以其较高的载流子迁移率、良好的电学均匀性、高的可见光透过性、较低的制备温度、以及较低的成本等优势受到广泛的关注。TFT中半导体层的性能很大程度上决定了整个器件的性能,在氧化物半导体中,氧化铟锌(In2O3 ZnO ,IZO)半导体具有较高的载流子迁移率、大的禁带宽度(>3ev),可满足大尺寸、高分辨率、高开口率等显示要求,具有极大的应用潜力。
现有技术中,光透过性及导电性优异的铟锡氧化物 (Indium Tin Oxide,ITO)膜是TFT的主流。但是,ITO膜的耐湿性较差,有因湿气导致电阻值增大的缺点。为了改善上述缺点,本技术领域正在研究包含的氧化铟锌(In2O3-ZnO,IZO)半导体,氧化铟锌具有较高的载流子迁移率、大的禁带宽度,可以满足大尺寸、高分辨率、高开口率等显示要求,具有极大的应用潜力。
但是目前市场上的氧化铟锌靶材存在相对密度低,烧结时间长等问题。靶材密度低会导致客户使用靶材时,靶材表面出现积瘤中毒等现象,导致了靶材导电性能不好,薄膜表面出现大量粉尘,影响薄膜的性能和载流子迁移率。而烧结时间长会大大加大靶材的生产成本,降低市场竞争力。
发明内容
本发明的目的在于解决现有技术中的不足,提供一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法。
为了达到上述目的,本发明是通过以下技术方案实现的:一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,所述方法包括以下步骤:
步骤S1:原材料选择:氧化铟、氧化锌、氧化镨、氧化锆;
步骤S2:浆料球磨:按照质量百分比,氧化镨:氧化铟:氧化锌:氧化锆=2%~4%:80%~85%:12~17%:1~6%,称取原料混合配粉,按照质量比,水:混合粉末=1:1,将水与混合粉在装有直径为2~10mm研磨介质材料,对浆料进行球磨,球磨时间为18~24h;
步骤S3:将步骤S2得到的浆料烘干,然后将烘干后的粉末进行煅烧;
步骤S4:二次球磨:按照质量比,水:混合粉末=1:1,将步骤S3煅烧得到的粉末与水混合,在装有直径为2~10mm研磨介质材料,对浆料进行球磨,球磨时间为2~4h;
步骤S5:浆料砂磨:将步骤S4球磨后的浆料打入砂磨机,采用直径为0.1~0.3mm研磨介质材料,对浆料进行砂磨;研磨时间为5-7h;
以氧化铟、氧化锌、氧化镨、氧化锆的总质量计,分散剂的加入量为0.2%~0.5%,粘结剂的加入量为1%~5%,去离子水的加入量为40%-50%;
步骤S6:将步骤S5得到的粉末进行粉末造粒;
步骤S7:靶材一次成型:将步骤S6得到的造粒后的粉末放进模具中,铺开,进行一次机械成型,得到一次素胚;
步骤S8:靶材二次冷等静压成型:将步骤S7通过靶材一次成型的粉末通过冷等静压成型,得到致密性更均匀的素胚;
步骤S9:靶材烧结:将步骤S8得到素坯放入到加压气氛烧结炉中烧结,以0.05~0.15℃/min的升温速率升温至300℃进行一次脱水,再以0.15~0.65℃/min的升温速率由300℃升温至650℃进行二次脱水;再以0.4~1℃/min的升温速率由650℃升温至1100~1300℃进行保温,保温时间6-10H;继续以0.6~1.2℃/min的升温速率由1100~1300℃升温至1450℃~1550℃保温10~20h;烧结过程中通入氧气,最后,降温得到高密度稀土复合掺杂的氧化铟锌靶材。
优选的,所述氧化铟纯度为≥99.99%,比表8-12m2/g;氧化锌纯度为≥99.95%,比表2-4m2/g;氧化镨纯度为≥99.99% 比表12-16m2/g;氧化锆纯度为≥99.99% 比表18-25m2/g。
优选的,步骤S3中所述将步骤S2得到的浆料烘干,然后将烘干后的粉末进行煅烧,煅烧条件为以0.4~0.6℃/min的升温速率由室温升温至600-650℃进行保温,保温时间6-10h;继续以0.4~1.0℃/min的升温速率由600~650℃升温至1150℃~1250℃,保温10~20h。
优选的,步骤S3煅烧过程中通氧。
优选的,步骤S5中砂磨条件为:砂磨机主机转速:800-1100转/min,双罐研磨遍数:3-6遍。
优选的,步骤S5最终得到浆料粒度D50≤0.25μm。
优选的,步骤S6中所述步骤S5得到的粉末进行粉末造粒,造粒过程中进风温度:225±5℃、出风温度:105±5℃。
优选的,步骤S7中成型压力为350-500kgf/cm2
优选的,步骤S8中成型压力为300-400MPa,保压2-6h。
优选的,步骤S9中将步骤S8得到素坯放入到加压气氛烧结炉中烧结,烧结压力:0.5~1MPa。
本发明具有以下有益效果:本发明通过选择氧化镨、氧化铟、氧化锌、氧化锆作为制备高密度的靶材得到原料,并通过调整氧化镨、氧化铟、氧化锌、氧化锆之间的比例制备得到高密度的氧化铟锌靶材;选择氧化铟纯度为≥99.99%,比表8-12m2/g;氧化锌纯度为≥99.95%,比表2-4m2/g;氧化镨纯度为≥99.99% 比表12-16m2/g;氧化锆纯度为≥99.99% 比表18-25m2/g,以及使用加压气氛炉进行烧结,有效提高氧化铟锌靶材密度;同时,本发明的制备方法烧结时间相对较短,一定程度上降低了生产成本。
附图说明
图1为实施例3中氧化铟粉末的电镜图;
图2为实施例3中氧化锌粉末的电镜图;
图3为实施例3制备得到的靶材,腐蚀后靶材晶相图;
图4为实施例3制备得到的靶材端面电镜图。
具体实施方式
下面结合实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,所述方法包括以下步骤:
步骤S1:原材料选择:氧化铟、氧化锌、氧化镨、氧化锆;
氧化铟纯度为≥99.99%,比表8-12m2/g;
氧化锌纯度为≥99.95%,比表2-4m2/g;
氧化镨纯度为≥99.99% 比表12-16m2/g;
氧化锆纯度为≥99.99% 比表18-25m2/g。
步骤S2:浆料球磨:按照质量百分比,氧化镨:氧化铟:氧化锌:氧化锆=2%~4%:80%~85%:12%~17%:1%~6%,称取原料混合配粉,按照质量比,水:混合粉末=1:1,将水与混合粉在装有直径为2~10mm研磨介质材料,对浆料进行球磨,球磨时间为18~24h;
步骤S3:将步骤S2得到的浆料烘干,然后将烘干后的粉末进行煅烧;以0.4~0.6℃/min的升温速率由室温升温至600-650℃进行保温,保温时间6-10h;继续以0.4~1.0℃/min的升温速率由600~650℃升温至1150℃~1250℃,保温10~20h;该阶段煅烧过程中通氧;
步骤S4:二次球磨:按照质量比,水:混合粉末=1:1,将步骤S3煅烧得到的粉末与水混合,在装有直径为2~10mm研磨介质材料,对浆料进行球磨,球磨时间为2~4h;
步骤S5:浆料砂磨:将步骤S4球磨后的浆料打入砂磨机,采用直径为0.1~0.3mm研磨介质材料,对浆料进行砂磨;砂磨机主机转速:800-1100转/min,双罐研磨遍数:3-6遍,研磨时间为5-7h;
以氧化镨:氧化铟:氧化锌:氧化锆的总质量计,分散剂的加入量为0.2%~0.5%,粘结剂的加入量为1%~5%,去离子水的加入量为40%-50%;最终得到浆料粒度D50≤0.25μm;其中,所述分散剂为聚乙烯吡络烷酮、聚羧酸、聚乙烯酸盐中的至少一种;所述粘结剂为聚乙烯醇、羧甲基纤维素、聚丙烯酰胺、聚丙烯酸盐、聚乙二醇中的至少一种;
步骤S6:将步骤S5得到的粉末进行粉末造粒;进风温度:225±5℃、出风温度:105±5℃;
步骤S7:靶材一次成型:将步骤S6得到的造粒后的粉末放进模具中,铺开,进行一次机械成型,成型压力为350-500kgf/cm2;得到一次素胚;
步骤S8:靶材二次冷等静压成型:将步骤S7通过靶材一次成型的粉末通过冷等静压成型,成型压力为300-400MPa,保压2-6h;得到致密性更均匀的素胚;
步骤S9:靶材烧结:将步骤S8得到素坯放入到加压气氛烧结炉中烧结,烧结压力:0.5~1MPa,以0.05~0.15℃/min的升温速率升温至300℃进行一次脱水,再以0.15~0.65℃/min的升温速率由300℃升温至650℃进行二次脱水;再以0.4~1℃/min的升温速率由650℃升温至1100~1300℃进行保温,保温时间6-10H;继续以0.6~1.2℃/min的升温速率由1100~1300℃升温至1450℃~1550℃保温10~20h;烧结过程中通入氧气,最后,降温得到高密度稀土复合掺杂的氧化铟锌靶材。
实施例
一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,所述方法包括以下步骤:
步骤S1:原材料选择:氧化铟、氧化锌、氧化镨、氧化锆;
氧化铟纯度为≥99.99%,比表4m2/g;
氧化锌纯度为≥99.95%,比表2-4m2/g;
氧化镨纯度为≥99.99% 比表12-16m2/g;
氧化锆纯度为≥99.99% 比表18-25m2/g。
步骤S2:浆料球磨:按照质量百分比,氧化镨:氧化铟:氧化锌:氧化锆=2%~4%:80%~85%:12%~17%:1%~6%,称取原料混合配粉,按照质量比,水:混合粉末=1:1,将水与混合粉在装有直径为2~10mm研磨介质材料,对浆料进行球磨,球磨时间为18~24h;
步骤S3:将步骤S2得到的浆料烘干,然后将烘干后的粉末进行煅烧;以0.4~0.6℃/min的升温速率由室温升温至600-650℃进行保温,保温时间6-10h;继续以0.4~1.0℃/min的升温速率由600~650℃升温至1150℃~1250℃,保温10~20h;该阶段煅烧过程中通氧;
步骤S4:二次球磨:按照质量比,水:混合粉末=1:1,将步骤S3煅烧得到的粉末与水混合,在装有直径为2~10mm研磨介质材料,对浆料进行球磨,球磨时间为2~4h;
步骤S5:浆料砂磨:将步骤S4球磨后的浆料打入砂磨机,采用直径为0.1~0.3mm研磨介质材料,对浆料进行砂磨;砂磨机主机转速:800-1100转/min,双罐研磨遍数:3-6遍,研磨时间为5-7h;
以氧化镨:氧化铟:氧化锌:氧化锆的总质量计,分散剂的加入量为0.2%~0.5%,粘结剂的加入量为1%~5%,去离子水的加入量为40%-50%;最终得到浆料粒度D50≤0.25μm;其中,所述分散剂为聚乙烯吡络烷酮、聚羧酸、聚乙烯酸盐中的至少一种;所述粘结剂为聚乙烯醇、羧甲基纤维素、聚丙烯酰胺、聚丙烯酸盐、聚乙二醇中的至少一种;
步骤S6:将步骤S5得到的粉末进行粉末造粒;进风温度:225±5℃、出风温度:105±5℃;
步骤S7:靶材一次成型:将步骤S6得到的造粒后的粉末放进模具中,铺开,进行一次机械成型,成型压力为350-500kgf/cm2;得到一次素胚;
步骤S8:靶材二次冷等静压成型:将步骤S7通过靶材一次成型的粉末通过冷等静压成型,成型压力为300-400MPa,保压2-6h;得到致密性更均匀的素胚;
步骤S9:靶材烧结:将步骤S8得到素坯放入到加压气氛烧结炉中烧结,烧结压力:0.5~1MPa,以0.05~0.15℃/min的升温速率升温至300℃进行一次脱水,再以0.15~0.65℃/min的升温速率由300℃升温至650℃进行二次脱水;再以0.4~1℃/min的升温速率由650℃升温至1100~1300℃进行保温,保温时间6-10H;继续以0.6~1.2℃/min的升温速率由1100~1300℃升温至1450℃~1550℃保温10~20h;烧结过程中通入氧气,最后,降温得到高密度稀土复合掺杂的氧化铟锌靶材。
实施例
与实施例1相比,氧化铟比表6m2/g。
实施例
与实施例1相比,氧化铟比表8m2/g。由图3腐蚀后靶材晶相图看出,腐蚀后靶材晶相分布均匀;由图4靶材端面电镜图可知,靶材断面电镜没有孔洞,从侧面说明靶材密度高。
实施例
与实施例1相比,氧化铟比表10m2/g。
实施例
与实施例1相比,氧化铟比表12m2/g。
对比例1
与实施例1相比,步骤S9:将步骤S8得到素坯放入到常压气氛烧结炉中烧结。
对比例2
与实施例1相比,氧化铟比表6m2/g,步骤S9:将步骤S8得到素坯放入到常压气氛烧结炉中烧结。
对比例3
与实施例1相比,氧化铟比表8m2/g,步骤S9:将步骤S8得到素坯放入到常压气氛烧结炉中烧结。
对比例4
与实施例1相比,氧化铟比表10m2/g,步骤S9:将步骤S8得到素坯放入到常压气氛烧结炉中烧结。
实施例
与实施例1相比,氧化铟比表12m2/g,步骤S9:将步骤S8得到素坯放入到常压气氛烧结炉中烧结。
由表1所示,氧化铟比表8-12m2/g,能有效提高氧化铟锌靶材密度;同时,使用加压气氛炉进行烧结,能有效提高氧化铟锌靶材密度;
表1
氧化镨比例 氧化铟比例 氧化锌比例 氧化锆比例 氧化铟比表面积m2/g 烧结炉 相对密度
实施例1 2-4% 80-85% 12-17% 1-6% 4 加压 99.71%
实施例2 2-4% 80-85% 12-17% 1-6% 6 加压 99.75%
实施例3 2-4% 80-85% 12-17% 1-6% 8 加压 99.93%
实施例4 2-4% 80-85% 12-17% 1-6% 10 加压 100.10%
实施例5 2-4% 80-85% 12-17% 1-6% 12 加压 99.85%
对比例1 2-4% 80-85% 12-17% 1-6% 4 常压 97.80%
对比例2 2-4% 80-85% 12-17% 1-6% 6 常压 98.10%
对比例3 2-4% 80-85% 12-17% 1-6% 8 常压 97.75%
对比例4 2-4% 80-85% 12-17% 1-6% 10 常压 98.40%
对比例5 2-4% 80-85% 12-17% 1-6% 12 常压 97.10%
实施例
一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,所述方法包括以下步骤:
步骤S1:原材料选择:氧化铟、氧化锌、氧化镨、氧化锆;
氧化铟纯度为≥99.99%,比表8-12m2/g;
氧化锌纯度为≥99.95%,比表2-4m2/g;
氧化镨纯度为≥99.99% 比表12-16m2/g;
氧化锆纯度为≥99.99% 比表18-25m2/g。
步骤S2:浆料球磨:按照质量百分比,氧化镨:氧化铟:氧化锌:氧化锆=2%:85%:12%:1%,称取原料混合配粉,按照质量比,水:混合粉末=1:1,将水与混合粉在装有直径为2~10mm研磨介质材料,对浆料进行球磨,球磨时间为18~24h;
步骤S3:将步骤S2得到的浆料烘干,然后将烘干后的粉末进行煅烧;以0.4~0.6℃/min的升温速率由室温升温至600-650℃进行保温,保温时间6-10h;继续以0.4~1.0℃/min的升温速率由600~650℃升温至1150℃~1250℃,保温10~20h;该阶段煅烧过程中通氧;
步骤S4:二次球磨:按照质量比,水:混合粉末=1:1,将步骤S3煅烧得到的粉末与水混合,在装有直径为2~10mm研磨介质材料,对浆料进行球磨,球磨时间为2~4h;
步骤S5:浆料砂磨:将步骤S4球磨后的浆料打入砂磨机,采用直径为0.1~0.3mm研磨介质材料,对浆料进行砂磨;砂磨机主机转速:800-1100转/min,双罐研磨遍数:3-6遍,研磨时间为5-7h;
以氧化镨:氧化铟:氧化锌:氧化锆的总质量计,分散剂的加入量为0.2%~0.5%,粘结剂的加入量为1%~5%,去离子水的加入量为40%-50%;最终得到浆料粒度D50≤0.25μm;其中,所述分散剂为聚乙烯吡络烷酮、聚羧酸、聚乙烯酸盐中的至少一种;所述粘结剂为聚乙烯醇、羧甲基纤维素、聚丙烯酰胺、聚丙烯酸盐、聚乙二醇中的至少一种;
步骤S6:将步骤S5得到的粉末进行粉末造粒;进风温度:225±5℃、出风温度:105±5℃;
步骤S7:靶材一次成型:将步骤S6得到的造粒后的粉末放进模具中,铺开,进行一次机械成型,成型压力为350-500kgf/cm2;得到一次素胚;
步骤S8:靶材二次冷等静压成型:将步骤S7通过靶材一次成型的粉末通过冷等静压成型,成型压力为300-400MPa,保压2-6h;得到致密性更均匀的素胚;
步骤S9:靶材烧结:将步骤S8得到素坯放入到加压气氛烧结炉中烧结,烧结压力:0.5-1MPa,以0.05~0.15℃/min的升温速率升温至300℃进行一次脱水,再以0.15~0.65℃/min的升温速率由300℃升温至650℃进行二次脱水;再以0.4~1℃/min的升温速率由650℃升温至1100~1300℃进行保温,保温时间6-10H;继续以0.6~1.2℃/min的升温速率由1100~1300℃升温至1450℃~1550℃保温10~20h;烧结过程中通入氧气,最后,降温得到高密度稀土复合掺杂的氧化铟锌靶材。
实施例
与实施例1相比,步骤S2按照质量百分比,氧化镨:氧化铟:氧化锌:氧化锆=4%:80%:15%:1%。
实施例
与实施例1相比,步骤S2按照质量百分比,氧化镨:氧化铟:氧化锌:氧化锆=2%:80%:12%:6%。
实施例
与实施例1相比,步骤S2按照质量百分比,氧化镨:氧化铟:氧化锌:氧化锆=2%:80%:17%:1%。
对比例6
与实施例1相比,步骤S1原材料选择:氧化铟和氧化锌;步骤S2按照质量百分比,氧化铟:氧化锌=88%:12%。
对比例7
与实施例1相比,步骤S2按照质量百分比,氧化铟:氧化锌=83%:17%。
由表2所示,原材料中添加氧化镨和氧化锆可以提高靶材的相对密度;
表2
氧化镨比例 氧化铟比例 氧化锌比例 氧化锆比例 烧结炉 相对密度
实施例6 2% 85% 12% 1% 加压 99.93%
实施例7 4% 80% 15% 1% 加压 99.81%
实施例8 2% 80% 12% 6% 加压 99.82%
实施例9 2% 80% 17% 1% 加压 99.75%
对比例6 88% 12% 加压 99.01%
对比例7 83% 17% 加压 98.85%
以上显示和描述了本发明的基本原理、主要特征及优点。但是以上所述仅为本发明的具体实施例,本发明的技术特征并不局限于此,任何本领域的技术人员在不脱离本发明的技术方案下得出的其他实施方式均应涵盖在本发明的专利范围之中。

Claims (10)

1.一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,其特征在于,所述方法包括以下步骤:
步骤S1:原材料选择:氧化铟、氧化锌、氧化镨、氧化锆;
步骤S2:浆料球磨:按照质量百分比,氧化镨:氧化铟:氧化锌:氧化锆=2%~4%:80%~85%:12~17%:1~6%,称取原材料混合配粉,按照质量比,水:混合粉末=1:1,将水与混合粉在装有直径为2~10mm研磨介质材料,对浆料进行球磨,球磨时间为18~24h;
步骤S3:将步骤S2得到的浆料烘干,然后将烘干后的粉末进行煅烧;
步骤S4:二次球磨:按照质量比,水:混合粉末=1:1,将步骤S3煅烧得到的粉末与水混合,在装有直径为2~10mm研磨介质材料,对浆料进行球磨,球磨时间为2~4h;
步骤S5:浆料砂磨:将步骤S4球磨后的浆料打入砂磨机,采用直径为0.1~0.3mm研磨介质材料,对浆料进行砂磨;研磨时间为5-7h;
以氧化铟、氧化锌、氧化镨、氧化锆的总质量计,分散剂的加入量为0.2%~0.5%,粘结剂的加入量为1%~5%,去离子水的加入量为40%-50%;
步骤S6:将步骤S5得到的粉末进行粉末造粒;
步骤S7:靶材一次成型:将步骤S6得到的造粒后的粉末放进模具中,铺开,进行一次机械成型,得到一次素胚;
步骤S8:靶材二次冷等静压成型:将步骤S7通过靶材一次成型的粉末通过冷等静压成型,得到致密性更均匀的素胚;
步骤S9:靶材烧结:将步骤S8得到素坯放入到加压气氛烧结炉中烧结,以0.05~0.15℃/min的升温速率升温至300℃进行一次脱水,再以0.15~0.65℃/min的升温速率由300℃升温至650℃进行二次脱水;再以0.4~1℃/min的升温速率由650℃升温至1100~1300℃进行保温,保温时间6-10H;继续以0.6~1.2℃/min的升温速率由1100~1300℃升温至1450℃~1550℃保温10~20h;烧结过程中通入氧气,最后,降温得到高密度稀土复合掺杂的氧化铟锌靶材。
2.根据权利要求1所述的高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,其特征在于,所述氧化铟纯度为≥99.99%,比表8-12m2/g;氧化锌纯度为≥99.95%,比表2-4m2/g;氧化镨纯度为≥99.99%比表12-16m2/g;氧化锆纯度为≥99.99%比表18-25m2/g。
3.根据权利要求1所述的高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,其特征在于,步骤S3中所述将步骤S2得到的浆料烘干,然后将烘干后的粉末进行煅烧,煅烧条件为以0.4~0.6℃/min的升温速率由室温升温至600-650℃进行保温,保温时间6-10h;继续以0.4~1.0℃/min的升温速率由600~650℃升温至1150℃~1250℃,保温10~20h。
4.根据权利要求3所述的高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,其特征在于,步骤S3煅烧过程中通氧。
5.根据权利要求1所述的高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,其特征在于,步骤S5中砂磨条件为:砂磨机主机转速:800-1100转/min,双罐研磨遍数:3-6遍。
6.根据权利要求1所述的高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,其特征在于,步骤S5最终得到浆料粒度D50≤0.25μm。
7.根据权利要求1所述的高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,其特征在于,步骤S6中所述步骤S5得到的粉末进行粉末造粒,造粒过程中进风温度:225±5℃、出风温度:105±5℃。
8.根据权利要求1所述的高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,其特征在于,步骤S7中成型压力为350-500kgf/cm2
9.根据权利要求1所述的高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,其特征在于,步骤S8中成型压力为300-400MPa,保压2-6h。
10.根据权利要求1所述的高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法,其特征在于,步骤S9中将步骤S8得到素坯放入到加压气氛烧结炉中烧结,烧结压力:0.5~1MPa。
CN202310998914.0A 2023-08-09 2023-08-09 一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法 Pending CN117088679A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310998914.0A CN117088679A (zh) 2023-08-09 2023-08-09 一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310998914.0A CN117088679A (zh) 2023-08-09 2023-08-09 一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法

Publications (1)

Publication Number Publication Date
CN117088679A true CN117088679A (zh) 2023-11-21

Family

ID=88769201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310998914.0A Pending CN117088679A (zh) 2023-08-09 2023-08-09 一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法

Country Status (1)

Country Link
CN (1) CN117088679A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118184312A (zh) * 2024-05-17 2024-06-14 芜湖映日科技股份有限公司 一种太阳能行业用高密度低电阻率的靶材

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118184312A (zh) * 2024-05-17 2024-06-14 芜湖映日科技股份有限公司 一种太阳能行业用高密度低电阻率的靶材

Similar Documents

Publication Publication Date Title
CN109665834B (zh) 相组成可控的氧化铟镓锌靶材及其制备方法
CN106977179B (zh) 一种两步分段烧结法制备高致密ito靶材的方法
CN111394706B (zh) 一种晶粒尺寸可控ito陶瓷靶材的制备方法
CN117088679A (zh) 一种高密度低迁移率的氧化铟锌稀土掺杂靶材的制备方法
JP2012126937A (ja) Itoスパッタリングターゲットとその製造方法
CN112030026B (zh) 一种高硬度、高致密度复合稀土氧化物掺杂钨基复合材料的制备方法
CN112341159A (zh) 一种氧化铟镓锌靶材的制备方法
CN112723863A (zh) 一种高世代tft级细晶粒ito靶材的制造方法
CN108218419B (zh) 一种铟锡氧化物陶瓷靶材的制备方法
CN113735567A (zh) 一种氧化物平面靶及其制备方法
CN115925410B (zh) 镨掺杂氧化铟锌溅射靶材及其制备方法
CN108002428B (zh) 一种蒸镀用ito颗粒的制备方法及由该方法制备的ito颗粒
CN114620996A (zh) 一种高效太阳能电池用旋转陶瓷靶材
CN110002853A (zh) 两步烧结工艺制备igzo陶瓷靶材的方法
CN116253556A (zh) 氧化铟锡锌靶材及其制备方法
CN106587940B (zh) 一种高纯致密氧化镁靶材及其制备方法
CN117105636A (zh) 一种igzo靶材的制备方法
JP6285076B2 (ja) 酸化物焼結体及び該酸化物焼結体からなるスパッタリングターゲット
CN112390622A (zh) 一种eigzo靶材的制备方法
CN109940158A (zh) 一种细晶钼板的快速制备工艺
CN117209267A (zh) 一种高密度高均匀性氧化锌铝靶材及其制备方法
CN116815137A (zh) 一种高密度复合掺杂氧化锡钽靶材及其制备方法
JP2009184876A (ja) Gzo焼結体およびその製造方法
CN115974530A (zh) 一种低电阻率高迁移率氧化物靶材的制备方法
CN113233888A (zh) 一种igzo废素坯回收制备igzo靶材的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination