CN116970193A - 基于高透明性的室温相变材料制备复合隔热薄膜及方法 - Google Patents

基于高透明性的室温相变材料制备复合隔热薄膜及方法 Download PDF

Info

Publication number
CN116970193A
CN116970193A CN202310795142.0A CN202310795142A CN116970193A CN 116970193 A CN116970193 A CN 116970193A CN 202310795142 A CN202310795142 A CN 202310795142A CN 116970193 A CN116970193 A CN 116970193A
Authority
CN
China
Prior art keywords
film
phase change
sio
transparency
change material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310795142.0A
Other languages
English (en)
Inventor
孟晓荣
张丽萍
刘党豪
朱军
杜金晶
王斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN202310795142.0A priority Critical patent/CN116970193A/zh
Publication of CN116970193A publication Critical patent/CN116970193A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明公开了一种基于高透明性的室温相变材料制备复合隔热薄膜及方法,将Mo或W元素掺杂改性的M相VO2纳米材料与有机硅和介孔试剂共混,加热反应,得到表面原位生长二氧化硅壳层的核壳结构型粉体材料,通过溶剂回流萃取法去除表面的介孔模板,得到对可见光具有高透明性介孔硅外包覆XnV1‑nO2‑mYm(M)粉体材料;分散在聚合物溶液中得到均质铸膜液,在玻璃基底上镀膜,干燥固化,得到聚合物复合隔热薄膜。本发明方法制备的复合隔热薄膜具有在保持温致变色薄膜的红外隔热性能的同时大幅提升VO2薄膜的可见光透过率,在增加可见光透过率的同时保证一定的隔热性能,为喷涂或刮涂成膜提供了可能。

Description

基于高透明性的室温相变材料制备复合隔热薄膜及方法
技术领域
本发明涉及功能材料/智能窗技术领域,特别涉及一种基于高透明性的室温相变材料制备复合隔热薄膜及方法。
背景技术
M相VO2在68℃时就能发生可逆相变,低于相变温度时,VO2为单斜相半导体态(M相),允许大部分的近红外光透过;高于相变温度时,VO2为金红石四方金属态(R相),对近红外光有反射和吸收作用,起到隔热的效果。而在相变过程中保持可见光范围内的透光率不变,因此VO2被称为智能窗领域的理想材料。
虽然VO2具有优异的相变特性,但由于相变温度较室温较高,光学性能差及耐候稳定性差等问题,限制二氧化钒薄膜的实际应用。为了解决上述问题,研究者们采用了许多方法,如元素掺杂,核壳结构及多层膜的设计等。这些方法对于二氧化钒薄膜的热致变色性能有一定提升,但Mo5+、W6+等高价金属元素的掺杂会导致VO2材料的光学性能低以及热滞回线宽化等问题,同时折射率低的SiO2、TiO2等外壳层等的引入也会使得VO2材料出现相变滞后现象。且制备多层薄膜大多工艺复杂,对于仪器、操作、环境要求高。
因此,需要提供一种高透明的二氧化钒复合薄膜的制备方法,室温下就能发生可逆相变,并且在具有高光学性能的同时具有较优异的隔热性能。
发明内容
基于以上现有技术的不足,本发明旨在提供高透明性的室温相变材料的制备方法及其复合隔热薄膜应用,利用壳层SiO2增加VO2可见光透过率及VO2粉体的分散性,并通过介孔的结构解决由于外壳层包覆VO2引起的相变滞后现象。核壳结构纳米粉体具有较宽的可控范围的相变温度、较小的介孔孔径和较薄的壳层厚度;聚合物复合薄膜具有较高的见光透过率和薄膜隔热性能,以及较强的耐酸性能和抗氧化性能。
本发明是通过下述技术方案来实现的。
根据本发明的一个方面,提供了一种基于高透明性的室温相变材料制备复合隔热薄膜的方法,包括以下步骤:
1)在醇水混合液中,将X元素掺杂改性的M相VO2纳米材料与有机硅和介孔试剂共混,加热搅拌反应,得到在XnV1-nO2-mYm(M)表面原位生长二氧化硅壳层的核壳结构型粉体材料XnV1-nO2-mYm(M)@SiO2
X为Mo或W,Y为F;
2)通过溶剂回流萃取法去除XnV1-nO2-mYm(M)@SiO2表面的介孔模板,得到对可见光具有高效增透减反性能的高透明性介孔硅外包覆XnV1-nO2-mYm(M)粉体材料XnV1-nO2-mYm(M)@SiO2
3)将XnV1-nO2-mYm(M)@m-SiO2粉体按照质量比为(0.5-10):(90-99.5)分散在聚合物溶液中得到均质铸膜液,采用喷涂或刮涂法,将铸膜液在玻璃基底上镀膜,低温干燥固化,得到具有高透明性室温相变复合材料XnV1-nO2-mYm(M)@m-SiO2聚合物复合隔热薄膜。
根据本发明的示例性实施方式,n取值在0.01~0.04,m取值在0.01~0.04;或n=0,m=0,未掺杂纯M相VO2
根据本发明的示例性实施方式,有机硅包括硅烷氧化物或多聚硅氧烷;
所述硅烷氧化物为正硅酸乙酯、正硅酸甲酯或甲基三甲基乙氧基硅烷;
所述多聚硅氧烷为聚二乙氧基硅氧烷或聚二甲基硅氧烷。
根据本发明的示例性实施方式,介孔模板剂包括阳离子型表面活性剂或非离子型表面活性剂;
所述阳离子型表面活性剂为十六烷基三甲基溴化铵CTAB、十二烷基三甲基溴化铵DTAB、十八烷基三甲基溴化铵STAB或四甲基溴化铵TMABr;
所述非离子型表面活性剂为聚乙二醇PEG或聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段聚物P123。
根据本发明的示例性实施方式,回流萃取溶剂为盐酸-乙醇、乙醇或丙酮,回流时间为4-10h,回流温度为75-90℃。
根据本发明的示例性实施方式,聚合物溶液的聚合物包括分子量在10~60万之间的PVC、PVDF、PVB、PVP、PMMA或Ps。
根据本发明的示例性实施方式,聚合物溶液的溶剂包括水、乙醇、四氢呋喃或丙酮。
根据本发明的另一方面,提供了一种基于高透明性的室温相变材料制备复合隔热薄膜。
本发明由于采取以上技术方案,其具有以下有益效果:
1.通过引入壳层SiO2增加VO2可见光透过率及VO2粉体的分散性,并通过介孔的结构解决由于外壳层包覆VO2引起的相变滞后现象。
2.制备出38-68℃可调相变温度、2-15nm可调介孔孔径及10-60nm可调硅壳层厚度的XnV1-nO2-mYm(M)@m-SiO2核壳结构纳米粉体,通过可调孔径及层厚改进二氧化钒热致变色薄膜的可见光透过率,具有在保持传统M相VO2温致变色薄膜良好的红外隔热性能的同时,大幅提升VO2薄膜的可见光透过率。
3.由于介孔硅外包覆层的低界面能效应,提供了与聚合物间良好的共混相容性,介孔硅低界面能的存在使得XnV1-nO2-mYm(M)@m-SiO2在聚合物溶液中保持良好的分散性,VO2粉体能均匀分散在聚合物溶液中,在增加可见光透过率的同时保证一定的隔热性能,为喷涂或刮涂成膜提供了可能。
XnV1-nO2-mYm(M)@m-SiO2聚合物复合薄膜可见光透过率为45%-82.2%,薄膜隔热性能ΔT=5-25℃,粉体在0.5M H2SO4溶液中的耐酸性能为30min-5d,在0.1M H2O2溶液中的抗氧化性能为10min-12h。
与传统磁控溅射法或气相沉积法制备VO2薄膜技术相比,本发明膜生产成本大大降低,便于工业化大规模制备满足不同需求的各种厚度的VO2薄膜。该制备方法具有设备简单、易于控制、制作成本低、易于工厂化生产的优点。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的不当限定,在附图中:
图1为实施例1制备的核壳结构VO2(M)@m-SiO2纳米粒子的X射线衍射图(XRD);
图2为实施例2制备的核壳结构VO2(M)@m-SiO2纳米粒子的X射线衍射图(XRD);
图3为实施例1制备的核壳结构VO2(M)@m-SiO2纳米粒子的高分辨率透射电镜图(HRTEM);
图4为实施例2制备的核壳结构VO2(M)@m-SiO2纳米粒子的高分辨率透射电镜图(HRTEM);
图5为实施例3制备的核壳结构VO2@m-SiO2纳米粒子的氮气吸脱附曲线及孔径大小分步图;
图6为实施例1、2、3制备的VO2@m-SiO2聚合物复合薄膜的紫外可见光透过率图;
图7为实施例3制备的VO2@m-SiO2聚合物复合薄膜的隔热性能图;
图8为实施例4制备的Mo0.02V1.98O2@m-SiO2聚合物复合薄膜的紫外可见光透过率图;
图9为实施例4制备的Mo0.02V1.98O2@m-SiO2聚合物复合薄膜的隔热性能图。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,在此本发明的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限定。
本发明实施例提供了一种高透明性的室温相变材料的制备方法,包括以下步骤:
步骤1,采用溶胶凝胶法制备SiO2外包覆的元素掺杂改性M相VO2粉体材料
在醇水比为4:1-8:1的醇水混合液中,将具有温致相变特性的X元素掺杂改性的M相VO2纳米材料(XnV1-nO2-mYm(M))与有机硅和介孔模板剂共混,XnV1-nO2-mYm(M)、有机硅、介孔模板剂和醇/水混合液的质量比为0.1:(0.05-0.2):(0.07-0.21):58。在25-35℃温度下水浴加热搅拌反应,得到在XnV1-nO2-mYm(M)表面原位生长二氧化硅壳层的核壳结构型粉体材料(XnV1-nO2-mYm(M)@SiO2)。
X元素掺杂改性的M相VO2纳米材料通式为XnV1-nO2-mYm(M)(n/m<1),其中,X为Mo或W,Y为F;n或m为X或Y元素与V元素的物质的量之比,n取值在0.01~0.04,m取值在0.01~0.04。
在一个实施例中,可以采用n=0,m=0,为未掺杂的纯M相VO2
上述有机硅包括硅烷氧化物或多聚硅氧烷;
硅烷氧化物为正硅酸乙酯(TEOS)、正硅酸甲酯(TMOS)或甲基三甲基乙氧基硅烷(ETMS);多聚硅氧烷为聚二乙氧基硅氧烷(PDEOS)或聚二甲基硅氧烷(PDES)。
上述介孔模板剂包括阳离子型表面活性剂或非离子型表面活性剂;
阳离子型表面活性剂为十六烷基三甲基溴化铵CTAB、十二烷基三甲基溴化铵DTAB、十八烷基三甲基溴化铵STAB或四甲基溴化铵TMABr。
非离子型表面活性剂为聚乙二醇PEG或聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段聚物P123。
步骤2,通过溶剂回流萃取法去除XnV1-nO2-mYm(M)@SiO2表面的介孔模板,得到对可见光具有高效增透减反性能的高透明性介孔硅外包覆XnV1-nO2-mYm(M)粉体材料(XnV1-nO2-mYm(M)@SiO2)。
回流萃取溶剂为盐酸-乙醇、乙醇或丙酮等极性溶剂,回流时间为4-10h,回流温度为75-90℃,随介孔模板剂的选择作对应调整。通过回流萃取法除去介孔模板,得到XnV1-nO2(M)@m-SiO2改性粉体。
步骤3,将XnV1-nO2-mYm(M)@m-SiO2粉体按质量比为(0.5-10):(90-99.5)分散在质量浓度为5-20wt%的聚合物溶液中得到均质铸膜液,采用喷涂或刮涂法,将铸膜液在玻璃基底上镀膜,刮涂棒厚度在50μm-150μm;喷涂的范围为2cm×2cm-10cm×10cm,进液速度0.1-0.3mL/min,喷涂步距2mm,喷涂高度为40mm,工进速度为600mm/min,快进速度为1000mm/min。30℃干燥固化,得到在具有高透明度且具温致相变性能的XnV1-nO2-mYm(M)@m-SiO2聚合物复合隔热薄膜。
聚合物溶液的聚合物,包括但不限于分子量在10~60万之间的PVC、PVDF、PVB、PVP、PMMA或Ps等具有良好透明特性的聚合物。
所述溶剂包括但不限于水、乙醇、四氢呋喃、丙酮等低沸点易挥发性溶剂中的一种或2-3种的混合物,所述溶剂随聚合物的选择作对应调整。
制备出的核壳结构XnV1-nO2-mYm(M)@m-SiO2纳米粉体相变温度为40-68℃;介孔孔径为2-10nm;硅壳层厚度为10-60nm。
制备出的XnV1-nO2-mYm(M)@m-SiO2聚合物复合薄膜可见光透过率在45%-82.2%之间,高于一般VO2掺杂量在5-70wt%之间的隔热薄膜材料约5-15%。薄膜隔热性能ΔT=5-25℃之间,粉体在0.5M H2SO4溶液中的耐酸性能30min-5d,在0.1M H2O2溶液中的抗氧化性能10min-12h。
下面通过不同实施例来进一步说明本发明。
实施例1
1)取VO2(M)(XnV1-nO2-mYm(M),n=0,m=0,未掺杂改性的M相VO2)按XnV1-nO2-mYm(M)、有机硅试剂甲基三甲基乙氧基硅烷(ETMS)、介孔模板剂十八烷基三甲基溴化铵STAB、醇/水混合溶剂的质量比为0.1:0.11:0.10:58,称取VO2(M)TC=67℃、ETMS、STAB分散在醇水比为4:1醇水混合溶剂中,35℃搅拌12h。抽滤,无水乙醇、去离子水分别洗涤三次。
2)将收集的沉淀在丙酮溶液中80℃回流6h,过滤,用无水乙醇、去离子水分别洗涤三次,60℃干燥24h,得到VO2(M)@m-SiO2纳米粉体。
3)将XnV1-nO2-mYm(M)@m-SiO2粉体按质量比为0.5:99.5分散在质量浓度为12%PMMA丙酮溶液中,充分搅拌12h,得到铸膜液,在玻璃基板上利用50、75、100、150μm刮膜棒刮涂成膜。
图1为实施例1制备的核壳结构VO2(M)@m-SiO2纳米粒子的X射线衍射图(XRD),图3为实施例1制备的核壳结构VO2(M)@m-SiO2纳米粒子的高分辨率透射电镜图(HRTEM);从图中可知,衍射峰在26.9°、27.8°、36.9°、42.3°、55.5°和56.9°分别对应于(-1 1 1)、(0 1 1)、(-2 0 2)、(2 1 0)、(-2 2 2)和(-1 1 3)晶面,与标准卡片单斜相VO2(JCPDS No.09-0142)对应,且峰型尖锐。表明通过此方法制备出的介孔氧化硅包覆VO2核壳复合粉体,并不会改变内核VO2(M)的晶相。核中0.32nm的晶格间距对应于单斜相VO2的(011)平面,外壳层硅大约为40nm厚。
实施例2
1)取VO2(M)(XnV1-nO2-mYm(M),n=0,m=0,未掺杂改性的M相VO2)按XnV1-nO2-mYm(M)、有机硅试剂正硅酸甲酯(TMOS)、介孔模板剂十二烷基三甲基溴化铵DTAB、醇/水混合溶剂的质量比为0.1:0.09:0.07:58,称取VO2(M)TC=67℃、TMOS、STAB分散在醇水比为5:1的醇水混合溶剂中,25℃搅拌12h。抽滤,无水乙醇、去离子水分别洗涤三次。
2)将收集的沉淀在乙醇溶液中75℃回流10h,过滤,用无水乙醇、去离子水分别洗涤三次,60℃干燥24h,得到VO2(M)@m-SiO2纳米粉体。
3)将XnV1-nO2-mYm(M)@m-SiO2粉体按质量比为2:98分散在质量浓度为10wt%PVP水溶液中,充分搅拌10h,得到铸膜液,在玻璃基板上利用50、75、100、150μm刮膜棒刮涂成膜。
图2为实施例2制备的核壳结构VO2(M)@m-SiO2纳米粒子的X射线衍射图(XRD),图4为实施例2制备的核壳结构VO2(M)@m-SiO2纳米粒子的高分辨率透射电镜图(HRTEM),从图中可知,衍射峰在26.9°、27.8°、36.9°、42.3°、55.5°和56.9°分别对应于(-1 1 1)、(0 1 1)、(-2 0 2)、(2 1 0)、(-22 2)和(-1 1 3)晶面,与标准卡片单斜相VO2(JCPDS No.09-0142)对应,且峰型尖锐,内核仍为VO2(M)。核中0.32nm的晶格间距对应于单斜相VO2的(011)平面,外壳层硅大约为15nm厚。
实施例3
1)取VO2(M)(XnV1-nO2-mYm(M),n=0,m=0,未掺杂改性的M相VO2)按XnV1-nO2-mYm(M)、有机硅试剂正硅酸乙酯(TEOS);、介孔模板剂十六烷基三甲基溴化铵CTAB、醇/水混合溶剂的质量比为0.1:0.16:0.07:58,称取VO2(M)TC=67℃、TEOS、CTAB分散在醇水比为8:1的醇水混合溶剂中,30℃搅拌12h。抽滤,无水乙醇、去离子水分别洗涤三次。
2)将收集的沉淀在丙酮溶液中中85℃回流4h,过滤,用无水乙醇、去离子水分别洗涤三次,60℃干燥24h,得到VO2(M)@m-SiO2纳米粉体。
3)将XnV1-nO2-mYm(M)@m-SiO2粉体按质量比为5:95分散在质量浓度为5wt%PVB乙醇溶液中,充分搅拌6h,得到铸膜液,在玻璃基板上利用50、75、100、150μm刮膜棒刮涂成膜。
图5为实施例3制备的核壳结构VO2@m-SiO2纳米粒子的氮气吸脱附曲线及孔径大小分步图,图7为实施例3制备的VO2@m-SiO2聚合物复合薄膜的隔热性能图;从图中可知,二氧化硅壳层呈现介孔结构,氮气吸脱附曲线呈现出典型的IV型曲线,存在较小的介孔约4nm。在50、75、100、150μm刮膜棒厚度下所制的膜隔热性能ΔT=4-8℃。
图6为实施例1、2、3制备的VO2@m-SiO2聚合物复合薄膜的紫外可见光透过率图;从图中可知,实例1中复合薄膜在50、75、100、150μm刮膜棒厚度下的可见光透过率分别为61.4%、57.3%、55.1%、49.4%;实例2中复合薄膜在50、75、100、150μm刮膜棒厚度下的可见光透过率分别为61.8%、51.2%、50.4%、46.8%;实例3中复合薄膜在50、75、100、150μm刮膜棒厚度下的可见光透过率分别为66.4%、62.6%、57.2%、49.8%。
实施例4
1)取Mo0.02V1.98O2(M)(XnV1-nO2-mYm(M),n=0.02,m=0)按XnV1-nO2-mYm(M)、有机硅试剂聚二乙氧基硅氧烷(PDEOS)、介孔模板剂四甲基溴化铵TMABr、醇/水混合溶剂的质量比为0.1:0.16:0.07:58,称取Mo0.02V1.98O2(M)TC=48℃、TEOS、CTAB分散在醇水比为6:1醇水混合溶剂中,35℃搅拌12h。抽滤,无水乙醇、去离子水分别洗涤三次。
2)将收集的沉淀在丙酮溶液中80℃回流6h,过滤,用无水乙醇、去离子水分别洗涤三次,60℃干燥24h,得到Mo0.02V1.98O2(M)@m-SiO2纳米粉体。
3)将XnV1-nO2-mYm(M)@m-SiO2粉体按质量比为7:93分散在质量浓度为20wt%的PVB乙醇溶液中,充分搅拌6h,得到铸膜液,在玻璃基板上利用刮膜棒刮涂成膜。
图8为实施例4制备的Mo0.02V1.98O2@m-SiO2聚合物复合薄膜的紫外可见光透过率图;图9为实施例4制备的Mo0.02V1.98O2@m-SiO2聚合物复合薄膜的隔热性能图,从图中可知,复合薄膜在50、75、100、150μm刮膜棒厚度下的可见光透过率分别为70.3%、59.3%、58.1%、53.3%,隔热性能ΔT=6-13℃。
实施例5
1)取Mo0.02V1.98O1.97F0.03(M)(XnV1-nO2-mYm(M),n=0.02,m=0.03)按XnV1-nO2-mYm(M)、有机硅试剂聚二甲基硅氧烷(PDES)、介孔模板剂聚乙二醇PEG、醇/水混合溶剂的质量比为0.1:0.05:0.12:58,称取Mo0.02V1.98O1.97F0.03(M)TC=38℃、TEOS、P123分散在醇水比为7:1的醇水混合溶剂中,30℃搅拌12h。抽滤,无水乙醇、去离子水分别洗涤三次。
2)将收集的沉淀在乙醇溶液中80℃回流10h,过滤,用无水乙醇、去离子水分别洗涤三次,60℃干燥24h,得到Mo0.02V1.98O1.97F0.03(M)@m-SiO2纳米粉体。
3)将XnV1-nO2-mYm(M)@m-SiO2粉体按质量比为10:90分散在质量浓度为18wt%Ps四氢呋喃溶液中,充分搅拌6h,得到铸膜液,在玻璃基板上利用刮膜棒刮涂成膜。
实施例6
1)取Mo0.01V1.99O1.97F0.03(M)(XnV1-nO2-mYm(M),n=0.01,m=0.03)按XnV1-nO2-mYm(M)、有机硅试剂正硅酸乙酯(TMOS)、介孔模板剂聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段聚物P123、醇/水混合溶剂的质量比为0.1:0.2:0.21:58,称取Mo0.01V1.99O1.97F0.03(M)TC=46℃、TEOS、P123分散在醇水比为4:1的醇水混合溶剂中,35℃搅拌12h。抽滤,无水乙醇、去离子水分别洗涤三次。
2)将收集的沉淀在盐酸-乙醇溶液中90℃回流4h,过滤,用无水乙醇、去离子水分别洗涤三次,60℃干燥24h,得到Mo0.01V1.99O1.97F0.03(M)@m-SiO2纳米粉体。
3)将XnV1-nO2-mYm(M)@m-SiO2粉体按质量比为(0.5-10):(90-99.5)分散在质量浓度为15wt%PVP乙醇溶液中,充分搅拌10h,得到铸膜液,在玻璃基板上利用喷涂机成膜。喷涂的范围为8cm×8cm,进液速度0.1mL/min,喷涂步距2mm,喷涂高度为40mm,工进速度为600mm/min,快进速度为1000mm/min。
下述给出了对比例与本发明实施例比较,来进一步说明本发明效果。
对比例的具体制备工艺:
1)取VO2(M)(XnV1-nO2-mYm(M),n=0,m=0,未掺杂改性的M相VO2)按XnV1-nO2-mYm(M)、有机硅试剂、醇/水混合溶剂的质量比为0.1:0.16:58,称取VO2(M)TC=66℃、TEOS分散在醇水比为4:1醇水混合溶剂中,30℃搅拌12h。抽滤,无水乙醇、去离子水分别洗涤三次。60℃干燥24h,得到VO2(M)@SiO2纳米粉体。
2)称取0.05gVO2(M)@SiO2纳米粉体分散在5%PVB乙醇溶液中,充分搅拌12h,得到铸膜液,在玻璃基板上利用150μm刮膜棒刮涂成膜。
3)所制的膜在150μm刮膜棒厚度下的可见光透过率为44.8%。
对比例为无介孔VO2(M)@SiO2,具体数据见表1
表1本发明与对比例相变温度、可见光透过率及隔热性能对比表
从表1可以看出,本发明提出的高透明度的介孔硅(m-SiO2)包覆室温相变性M相VO2材料及其复合隔热薄膜,相对于实例1中无介孔VO2(M)@SiO2复合薄膜,其可见光有大幅提升,隔热性能也相对较高,同时在掺杂一定元素后,达到接近室温的相变温度。说明本发明制备的XnV1-nO2-mYm(M)复合薄膜,能在保证较高可见光透过率的同时具备一定隔热性能。
本发明制备具有高透明度的室温相变聚合物复合薄膜材料,其可见光透过率可达45%-82.2%,在0.5M H2SO4溶液中的耐酸性能30min-5d,在0.1M H2O2溶液中的抗氧化性能10min-12h,薄膜隔热性能ΔT可达5-25℃。本发明所制备的具温致相变性能的XnV1-nO2-mYm(M)@m-SiO2聚合物复合隔热薄膜,不仅具有较高的可见光透过率,同时具备较优异的隔热能力和一定耐候性。
本发明并不局限于上述实施例,在本发明公开的技术方案的基础上,本领域的技术人员根据所公开的技术内容,不需要创造性的劳动就可以对其中的一些技术特征作出一些替换和变形,这些替换和变形均在本发明的保护范围内。

Claims (10)

1.一种基于高透明性的室温相变材料制备复合隔热薄膜的方法,其特征在于,包括以下步骤:
1)在醇水混合液中,将X元素掺杂改性的M相VO2纳米材料与有机硅和介孔试剂共混,加热搅拌反应,得到在XnV1-nO2-mYm(M)表面原位生长二氧化硅壳层的核壳结构型粉体材料XnV1-nO2-mYm(M)@SiO2
X为Mo或W,Y为F;
2)通过溶剂回流萃取法去除XnV1-nO2-mYm(M)@SiO2表面的介孔模板,得到对可见光高透明性介孔硅外包覆XnV1-nO2-mYm(M)粉体材料XnV1-nO2-mYm(M)@SiO2
3)将XnV1-nO2-mYm(M)@m-SiO2粉体按照质量比为(0.5-10):(90-99.5)分散在聚合物溶液中得到均质铸膜液,采用喷涂或刮涂法,将铸膜液在玻璃基底上镀膜,低温干燥固化,得到具有高透明性室温相变复合材料XnV1-nO2-mYm(M)@m-SiO2聚合物复合隔热薄膜。
2.根据权利要求1所述的基于高透明性的室温相变材料制备复合隔热薄膜的方法,其特征在于,n取值在0.01~0.04,m取值在0.01~0.04;或n=0,m=0,未掺杂纯M相VO2
3.根据权利要求1所述的基于高透明性的室温相变材料制备复合隔热薄膜的方法,其特征在于,有机硅包括硅烷氧化物或多聚硅氧烷;
所述硅烷氧化物为正硅酸乙酯、正硅酸甲酯或甲基三甲基乙氧基硅烷;
所述多聚硅氧烷为聚二乙氧基硅氧烷或聚二甲基硅氧烷。
4.根据权利要求1所述的基于高透明性的室温相变材料制备复合隔热薄膜的方法,其特征在于,介孔模板剂包括阳离子型表面活性剂或非离子型表面活性剂;
所述阳离子型表面活性剂为十六烷基三甲基溴化铵CTAB、十二烷基三甲基溴化铵DTAB、十八烷基三甲基溴化铵STAB或四甲基溴化铵TMABr;
所述非离子型表面活性剂为聚乙二醇PEG或聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段聚物P123。
5.根据权利要求1所述的基于高透明性的室温相变材料制备复合隔热薄膜的方法,其特征在于,回流萃取溶剂为盐酸-乙醇、乙醇或丙酮,回流时间为4-10h,回流温度为75-90℃。
6.根据权利要求1所述的基于高透明性的室温相变材料制备复合隔热薄膜的方法,其特征在于,聚合物溶液的聚合物包括分子量在10~60万之间的PVC、PVDF、PVB、PVP、PMMA或Ps。
7.根据权利要求1所述的基于高透明性的室温相变材料制备复合隔热薄膜的方法,其特征在于,聚合物溶液的溶剂包括水、乙醇、四氢呋喃或丙酮。
8.一种权利要求1-7任一项所述方法制备的基于高透明性的室温相变材料制备复合隔热薄膜。
9.根据权利要求8所述的基于高透明性的室温相变材料制备复合隔热薄膜,其特征在于,复合隔热薄膜的前驱体材料核壳结构XnV1-nO2-mYm(M)@m-SiO2纳米粉体相变温度为40-68℃;介孔孔径为2-10nm;硅壳层厚度为10-60nm。
10.根据权利要求8所述的基于高透明性的室温相变材料制备复合隔热薄膜,其特征在于,XnV1-nO2-mYm(M)@m-SiO2聚合物复合薄膜可见光透过率为45%-82.2%,薄膜隔热性能ΔT=5-25℃,粉体在0.5M H2SO4溶液中的耐酸性能为30min-5d,在0.1M H2O2溶液中的抗氧化性能为10min-12h。
CN202310795142.0A 2023-06-30 2023-06-30 基于高透明性的室温相变材料制备复合隔热薄膜及方法 Pending CN116970193A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310795142.0A CN116970193A (zh) 2023-06-30 2023-06-30 基于高透明性的室温相变材料制备复合隔热薄膜及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310795142.0A CN116970193A (zh) 2023-06-30 2023-06-30 基于高透明性的室温相变材料制备复合隔热薄膜及方法

Publications (1)

Publication Number Publication Date
CN116970193A true CN116970193A (zh) 2023-10-31

Family

ID=88480658

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310795142.0A Pending CN116970193A (zh) 2023-06-30 2023-06-30 基于高透明性的室温相变材料制备复合隔热薄膜及方法

Country Status (1)

Country Link
CN (1) CN116970193A (zh)

Similar Documents

Publication Publication Date Title
CN102206387B (zh) 一种高分子和无机纳米粒子杂化薄膜及其制备方法
JP6319732B2 (ja) 無機酸化物被膜
US9221976B2 (en) Antireflective coatings with self-cleaning, moisture resistance and antimicrobial properties
US7255847B2 (en) Method for making single-phase anatase titanium oxide
Guo et al. Influence of dopant valence on the thermochromic properties of VO2 nanoparticles
Sun et al. Preparation of MgF2/SiO2 coating with broadband antireflective coating by using sol–gel combined with electron beam evaporation
Xiang et al. Synthesis and characterization of titania/MQ silicone resin hybrid nanocomposite via sol–gel process
Yuan et al. Preparation of hydrophobic SiO2/PMHS sol and ORMOSIL antireflective films for solar glass cover
KR20120107103A (ko) 반응성 이온-빔 에칭에 의한 표면의 구조화 방법, 구조화된 표면 및 용도
KR20140022491A (ko) 초발수성 코팅용액 조성물 및 코팅 조성물의 제조방법
CN103508681B (zh) 超亲水增透涂层的制备方法及超亲水增透涂层
WO2000046154A1 (fr) Procede d&#39;obtention de titane d&#39;anatase ou d&#39;oxyde composite contenant du titane d&#39;anatase
JP2008074699A (ja) 結晶性チタン酸バリウムナノ粒子を含む高誘電率の無/有機ハイブリッド膜の製造方法
KR101768311B1 (ko) 열변색 특성 및 투명도가 우수한 도핑된 열변색 나노입자의 제조 방법 및 그를 이용한 열변색 필름 제조방법
JP5838643B2 (ja) チタン錯体及びそれを含む水系コーティング液
CN116970193A (zh) 基于高透明性的室温相变材料制备复合隔热薄膜及方法
KR20160099903A (ko) 다기능성 복합 코팅의 제조방법
US8106101B2 (en) Method for making single-phase anatase titanium oxide
JP5741303B2 (ja) ペロブスカイト型酸化物膜形成用水溶液
Chen et al. One-step assembly of organic-inorganic hybrid coatings with superior thermal insulation, sustainable antifogging and self-cleaning capabilities
Huang et al. Study on electrical conductivity of transparent SnO 2: Al thin films
Harry et al. Optical, electrical and structural investigation on different molarities of titanium dioxide (TiO2) via sol-gel method
KR100914449B1 (ko) 밴드갭 조절 가능한 나노포러스 TiO2-ZrO2하이브리드 박막의 제조방법
Huang et al. Influence of P doping on transparent conductive property of SnO 2: P thin film
JP2012190856A (ja) 太陽電池向け透明導電膜用組成物および透明導電膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination