CN116948056A - 季铵化甲壳素、止血海绵及其制备方法 - Google Patents

季铵化甲壳素、止血海绵及其制备方法 Download PDF

Info

Publication number
CN116948056A
CN116948056A CN202310920528.XA CN202310920528A CN116948056A CN 116948056 A CN116948056 A CN 116948056A CN 202310920528 A CN202310920528 A CN 202310920528A CN 116948056 A CN116948056 A CN 116948056A
Authority
CN
China
Prior art keywords
quaternized
hemostatic
sponge
modified chitin
chitin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310920528.XA
Other languages
English (en)
Inventor
蒋序林
蔡明真
钟亚兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN202310920528.XA priority Critical patent/CN116948056A/zh
Publication of CN116948056A publication Critical patent/CN116948056A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0036Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/001Use of materials characterised by their function or physical properties
    • A61L24/0042Materials resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/08Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了季铵化甲壳素、止血海绵及其制备方法,先利用碱性尿素低温甲壳素水溶液,加入季铵化试剂均相反应,制备具有温度或pH敏感性的季铵化改性甲壳素,再将其水溶液冷冻凝固再生纯化制成海绵材料用于止血,其具有很高的湿强度。本发明方法制备工艺简单,为环境友好的绿色工艺,不使用任何化学交联剂,材料体内可降解吸收,具有良好的生物相容性和生物降解性,该类止血海绵材料吸水速度快,具有良好的力学性能和形状记忆性能,止血效果好,促进伤口组织愈合,特别适合于动脉止血和深且窄的伤口、不可压迫性伤口及贯穿性伤口的止血,也可作为局部麻醉镇痛药和/或抗炎抗菌药的载药缓释的载体。

Description

季铵化甲壳素、止血海绵及其制备方法
技术领域
本发明属于天然高分子改性和材料科学领域,涉及一种改性甲壳素海绵材料,具体涉及一种季铵化甲壳素、止血海绵及其制备方法。
背景技术
自然灾害、交通和日常意外事故、战伤急救和外科手术会导致人体出血。据报道,全球30%~40%的创伤性死亡是由于失血过多造成的。在创伤性出血中,止血有“黄金4分钟”的说法,能够在3~5分钟内迅速止血,从而挽救生命,因此快速高效的止血材料非常重要,特别是对于动脉创伤出血的快速止血,常用的粉末止血材料效果有限。传统的止血材料如氰基丙烯酸酯、戊二醛交联的白蛋白、基于沸石的QuickClot或基于血纤蛋白的止血绷带等仅适用于外部可触及或可按压的伤口,这极大地限制了它们的使用。除了可适用于不同类型的伤口,理想的止血材料还应具有价廉,良好的力学强度,良好的生物降解性及生物相容性,以便于使用和携带。止血过程中,止血材料不可避免的会与伤口接触。如果没有良好的力学强度,止血材料会在止血过程中垮塌,这不但会降低止血效率,而且会导致止血材料残留在伤口中。同时难以降解的止血材料也会导致在止血后材料于伤口中的大量残留。强行剥离止血材料会使得伤口二次撕裂,并导致继发性出血和疼痛,同时也会增加患者治疗时长及总的医疗支出。添加化学交联剂可提高材料强度,但同时难以避免交联剂残留的问题,从而降低材料的生物安全性。另外对于意外事故、战争创伤急救,环境条件不理想,细菌感染很难避免,这要求止血材料具有抗菌特性。因此,迫切需要开发一种具有良好的力学性能,无化学交联,可生物降解的抗菌止血材料。该材料可遗留在伤口中,并可应用于不同类型的伤口止血,包括动脉止血和深且窄的伤口、不可按压性伤口和贯穿性伤口的止血。
甲壳素是一种天然多糖,是仅次于纤维素的第二大可再生天然高分子,每年自然界生物合成量多达100亿吨。由于甲壳素的单体组成与细胞外基质的成分相似,为N-乙酰氨基葡萄糖,所以其具有非常好的生物相容性、可降解性和低毒性。然而,由于甲壳素分子内和分子间存在大量氢键,较高的结晶度使其不溶于酸碱和其他有机溶剂,从而限制了甲壳素的应用。通过改性获得的甲壳素衍生物能赋予其新的性能并提高其附加值。特别是季铵化改性甲壳素带有正电荷,能明显抑制细菌生长,具有较好的抗菌性[Xu H,Fang Z,TianW,et al.Green Fabrication of Amphiphilic Quaternizedβ-Chitin Derivatives withExcellentBiocompatibility and Antibacterial Activities for Wound Healing[J].Advanced Materials,2018,30(29):e1801100]。但是对于季铵化改性甲壳素的研究和应用主要在水溶性的季铵化衍生物(一般指室温下可以溶于水),而对于具有温度或pH的响应的季铵化改性甲壳素通过非化学交联方法制备海绵及其应用的研究却未有报道。这些温敏性季铵化甲壳素溶解后可望在低温时保持液体状态,可以通过升温物理交联制备成型,不使用任何化学交联剂。
发明内容
本发明的目的在于克服现有止血材料的缺陷,利用均相水相法制备的具有pH敏感性或温度敏感性季铵化甲壳素,将其碱性水溶液冷冻凝固再生纯化制成止血海绵材料。本发明方法制备工艺简单,为环境友好的绿色工艺,不使用任何化学交联剂。制得的海绵具有良好的力学性能、不含化学交联剂、在水/血中具有优良的形状记忆功能,并且海绵材料本身带有正电荷,具有促进凝血止血和抗菌作用,以解决现有的止血材料凝血止血抗菌功能有限,低力学强度或需引入化学交联剂,不能用于动脉止血及深且窄的伤口、不可按压性伤口和贯穿性伤口的止血的技术问题。
本发明提供如下技术方案:
一种用于制备止血海绵的季铵化改性甲壳素止血海绵,该季铵化改性甲壳素的单元结构式示意图为:
R1为-H或者-COCH3
R2为H、-CH2C(OH)CH2NCl(CH3)3、-CH2C(OH)CH2NCl(CH2CH3)3及-CH2C(OH)CH2N+(CH3)2(CH2)mCH3中的任意一种;
R3为H、-CH2C(OH)CH2NCl(CH3)3、-CH2C(OH)CH2NCl(CH2CH3)3及-CH2C(OH)CH2N+(CH3)2(CH2)mCH3中的任意一种;
n是1-12的正整数;
所述季铵化改性甲壳素具有温敏性或pH敏感性,是指其能够在低温下溶解于碱性水溶液中,升温或者调整pH会发生相转变。通过其水溶液中冷冻成冰在凝固浴中再生纯化制成再生海绵材料,该再生海绵材料在生理条件下不溶解,有较好的湿强度;这里的低温是指0-20℃;
所述季铵化改性甲壳素的乙酰度为0.88~0.94,季铵化取代度为0.06~0.15。
优选的,所述季铵化改性甲壳素的重均分子量为5×104~5×106
本发明还提供一种季铵化改性甲壳素止血海绵的制备方法,包括如下步骤:
(1)在0-20℃低温下,将权利要求1-2任意一项所述的季铵化改性甲壳素配置成碱性的水溶液;
(2)将步骤(1)配置的季铵化改性甲壳素溶液脱泡后倒入模具中冷冻成冰;
(3)将季铵化改性甲壳素冰块浸泡在凝固浴中,制得再生海绵;
(4)用去离子水洗涤纯化再生海绵,脱水干燥,制得季铵化改性甲壳素止血海绵。
优选的,步骤(1)中,所述季铵化改性甲壳素水溶液的质量浓度为1~10%;
优选的,所述季铵化改性甲壳素的乙酰度为0.88~0.94,季铵化取代度为0.06~0.15;步骤(1)中,所述季铵化改性甲壳素水溶液的质量浓度为3~7%;
优选的,步骤(2)中,所述冷冻成冰的温度为-18℃~-30℃。
优选的,步骤(3)中,所述凝固浴为50%~100%甲醇/水溶液、50%~100%乙醇/水溶液或50%~100%丙酮/水溶液中的任意一种。优选的,所述凝固浴温度为-30℃~-10℃;所述在凝固浴中浸泡的时长为1~7天。
优选的,步骤(3)中,所述凝固浴温度为-30℃~4℃;所述的凝固浴为70%~100%甲醇/水溶液,70%~100%乙醇/水溶液或70%~100%丙酮/水溶液中的任意一种;所述凝固浴温度为-30℃~-18℃;所述在凝固浴中浸泡的时长为4~7天。
优选的,步骤(4)中,所述脱水干燥的干燥方式为冷冻干燥,室温干燥,真空干燥及30~100℃加热干燥的一种和几种的结合。
优选的,将所述季铵化改性甲壳素止血海绵作为载体负载含有羧基或者胺基的药物,得到功能性止血海绵。
所述药物为在酸性或者碱性水溶液里有较高的溶解度的局部麻醉镇痛药和/或抗炎抗菌药。
优选的,所述局部麻醉镇痛药选自普鲁卡因,布比卡因,左布比卡因,丁卡因,罗哌卡因,依替卡因,阿替卡因,利多卡因,甲哌卡因,丙胺卡因,羟乙卡因或它们的盐酸盐中的任意一种或者几种;所述抗炎抗菌药选自阿司匹林,对乙酰氨基酚,吲哚美辛,萘普生,萘普酮,双氯芬酸,布洛芬,尼美舒利,罗非昔布,塞来昔布,地塞米松,醋酸泼尼松,可的松中的一种或几种。
负载方法如下:
将含有羧基或者胺基的药物配置为药物水溶液,将季铵化改性甲壳素止血海绵浸泡在药物水溶液中1-10个小时左右,完全吸附后,加碱液或者酸液中和pH值到6.0~8.0后再次干燥,得到功能性止血海绵。
本发明还提供了一种所述的季铵化改性甲壳素止血海绵的用途,用于动脉止血材料、动脉止血贴和深且窄的伤口、不可压迫性伤口及贯穿性伤口的止血,促进伤口组织愈合。
优选的,所述季铵化甲壳素止血海绵材料具有形状记忆功能。
与现有技术相比,本发明方法具有显著的技术进步和特点:
第一,本发明方法是利用均相水溶液中制备的低脱乙酰度具有pH敏感性或温度敏感性季铵化改性甲壳素,在低温0-20℃下溶解于碱性水溶液中,通过冷冻凝固再生的方法制备海绵材料,其具有形状记忆性能,在水/血中均可快速吸收液体膨胀,恢复其原始体积和形状。本发明方法制备工艺简单,为环境友好的绿色工艺,制备过程不需要使用化学交联剂。
第二,制备的上述海绵材料本身带有正电荷,具有较好的抗菌性和促进凝血止血作用,该类止血海绵材料吸水速度快,具有良好的力学性能和形状记忆性能,含水湿海绵的QCH1的压缩断裂强度高达378kPa,该强度值高于许多已报道中的可降解止血海绵的强度,大动物实验止血效果好,优于商用止血胶原,特别适合于动脉止血和深且窄的伤口、不可压迫性伤口及贯穿性伤口的止血。
第三,本发明制备的季铵化甲壳素止血海绵材料除了具有止血抗菌功能,材料本身体内可降解吸收,具有良好的生物相容性和生物降解性,还有促进伤口组织愈合的功能,并且可作为载体负载含有羧基或者胺基的药物,得到功能性止血海绵。
附图说明
图1为实施例2中pH敏感性和温度敏感性季铵化甲壳素QCH2和水溶性季铵化甲壳素QCH5对大肠杆菌和金黄色葡萄球菌的体外抗菌性能,其中,图1中(a)为季铵化甲壳素QCH2、QCH5、中性壳聚糖和链霉素阳性对照组在浓度为200μg/mL和10小时后相对于大肠杆菌的空白组的细菌成活率;图1中(b)为季铵化甲壳素QCH2在不同浓度对于大肠杆菌的相对细菌成活率;图1中(c)为季铵化甲壳素QCH2对于大肠杆菌在不同时间(0,15,30,60,120min)的抗菌动力学;图1中(d)为季铵化甲壳素QCH2、QCH5、中性壳聚糖和青霉素阳性对照组在浓度为200μg/mL和10小时后相对于金黄色葡萄球菌的空白组的细菌成活率;图1中(e)为季铵化甲壳素QCH2在不同浓度对于金黄色葡萄球菌的相对细菌成活率;图1中(f)为季铵化甲壳素QCH2对于金黄色葡萄球菌在不同时间(0,15,30,60,120min)的抗菌动力学;图1中(g)为季铵化甲壳素QCH2、QCH5、空白组对于金黄色葡萄球菌在不同时间(0,15,30,60,120min)的抗菌动力学;图1中,数据通过显著性t检验分析,其中*p<0.05,**p<0.01,and***p<0.001。
图2为实施例5中的季铵化甲壳素海绵的体外凝血参数;其中图2中(a)为实施例5中的季铵化甲壳素海绵凝血时间;图2中(b)为实施例5中的季铵化甲壳素海绵凝血指数(BCI);图2中(c)为实施例5中的季铵化甲壳素海绵粘附的红细胞相对数量;图2中(d)为实施例5中的季铵化甲壳素海绵粘附的血小板相对量;图2中(e)为实施例5中的季铵化甲壳素海绵PT时间;图2中(f)为实施例5中的季铵化甲壳素海绵APTT时间;数据通过显著性t检验分析,*p<0.05,**p<0.01,and***p<0.001。
图3为实施例6中季铵化甲壳素海绵的体内止血效果;其中,图3中(a)为实施例6中正常的肝贯穿创伤模型不同材料止血时失血量;图3中(d)为实施例6中正常的肝贯穿创伤模型不同材料止血时止血时间;图3中(b)为肝素化的肝贯穿创伤模型不同材料止血时失血量;图3中(e)为肝素化的肝贯穿创伤模型不同材料止血时止血时间;图3中(c)为股动脉全切模型不同材料的止血时失血量;图3中(f)为股动脉全切模型不同材料的止血时的止血时间;数据通过显著性t检验分析,*p<0.05,**p<0.01,and***p<0.001,n=5。
图4为实施例6中季铵化甲壳素海绵的大动物体内止血效果:图4中(a)为可注射季铵化甲壳素止血海绵QCH2照片;图4中(b)为大动物猪的锁骨动静脉全切止血模型的实验过程照片。
图5为实施例6中季铵化甲壳素海绵QCH2大鼠肝脏创伤止血再生模型,正常肝脏组织、使用医用纱布和使用胶原作为对照;图5中(a)为DAPI染色显示宿主细胞渗入,H&E染色显示组织生长,免疫荧光染色vWF(红),ALB(红)and HNF-4α(红)显示毛细血管,肝实质细胞(LPC)数量和肝细胞因子表达量,PAS染色显示肝糖原合成量,*,#,→和▲分别代表没有降解的QCH2海绵,毛细血管,LPC和关键肝细胞因子;图5中(b)为每个观测单元的宿主细胞数量;图5中(c)为每个观测单元的组织生长面积;图5中(d)中为每个观测单元的毛细血管数量;图5中(e)中为每个观测单元的肝实质细胞LPC数量;图5中(f)中为每个观测单元的肝糖原合成量分布面积;图5中(g)中为每个观测单元的肝细胞因子表达量;N=3,数据通过显著性t检验分析,ns表示没有显著差异,*p<0.05,**p<0.01,and***p<0.001。
具体实施方式
下面将结合实例进一步说明本发明,但它们不是对权利要求的限制。
实施例1水均相法制备温敏性季铵化改性甲壳素
将5克甲壳素加入到预先冷冻的含有11wt%氢氧化钠和4wt%尿素的245克水溶液中,在-24℃下冷冻6h后,取出在室温下机械搅拌解冻,再重复冷冻解冻即可得到溶解的2wt%甲壳素水溶液。再加入不同比例的2,3-环氧丙基三甲基氯化铵(表1),分别在2~5℃下搅拌充分,使其溶解,然后在5℃下搅拌反应24小时,控制反应液为均相透明体系。之后,将体系冷却至2℃,并用3M的盐酸调节pH值到中性,使用纯水透析洗涤,除去其中尿素和盐类小分子,冷冻干燥得到海绵蓬松状季铵化改性甲壳素,通过核磁氢谱1HNMR,在3.15ppm处出现N+(CH3)3的吸收峰,说明该产品已被季铵化,且反应产物取代度分布均一。通过核磁氢谱计算得到其乙酰度DA和季铵化取代度DS。由表1可知,这些季铵化改性甲壳素乙酰度都高于0.82,收率在88%以上。
表1不同投料比的均相季铵化改性甲壳素
*由核磁氢谱计算出产物的季铵基团取代度DS和乙酰度DA;#5℃下的反应时间。
使用上述制得的季铵化改性甲壳素样品QCH1-4,分别称取20mg,在低温4℃下加入1.0M NaOH和1.0M HCl 2.0mL使其完全溶解以配制pH=0和14的溶液,同时称取20mg的QCH2溶于1mL的1.0M NaOH溶液并用2.0M HCl溶液和0.1M HCl溶液调节pH至7,季铵化改性甲壳素浓度为10mg/mL并利用动态光散射仪升温时相对光散射强度的变化,升温范围为5-65℃,平衡时间10s,升温间隔为5℃,升温速率为15min/5℃,结果表明QCH1-4均具有温度敏感性,且其对应的在pH=7时的转变温度分别为5℃,25℃,40℃和50℃,当然这里的升温速度也会影响其转变温度值的。同样通过测试季铵化改性甲壳素水溶液在600nm的透过率随着升温而发生改变,说明这些样品都具有温敏性,当然这里的升温速度、样品浓度及pH都会影响其转变温度值的,而QCH5的水溶液一直透明,透过率不随温度升高而变化,没有温敏性。研究数据表明调节季铵化甲壳素的乙酰度和取代度在合适的乙酰度和取代度范围,乙酰度为0.79-0.94和取代度为0.06-0.23,其具有温度敏感性,如果用于人体医药,那么转变温度一般不超过40,所以其季铵基团取代度DS不超过0.18,DS最优不超过0.15。
称取30mg上述制得的季铵化甲壳素样品QCH1-4,分别在低温4℃下加入1.0M NaOH或1.0M HCl 3mL完全溶解,然后用1M HCl溶液缓慢调低聚合物的溶液pH到12、10、8和7,或者用1.0M NaOH溶液缓慢调节酸性聚合物的pH到2、4和6同时控制溶液温度在4℃左右,并使用紫外可见分光光度计在600纳米波长测试相应pH溶液在37℃时的透过率,结果表明其在1M NaOH或1M HCl能完全溶解,但随着pH慢慢接近中性,则析出越来越明显,说明这些季铵化甲壳素具有pH敏感性。
采用3-氯-2-羟丙基三甲基氯化铵、3-氯-2-羟丙基三乙基氯化铵、2,3-环氧丙基三乙基氯化铵、2,3-环氧丙基三乙基溴化铵、2,3-环氧丙基三丙基氯化铵、其它短烷基碳原子数为m的环氧基短烷基链季铵盐或氯羟丙基短烷基季铵盐的一种或者任何几种的混合物(这里的m是1-12的正整数)代替2,3-环氧丙基三甲基氯化铵制得的季铵化改性甲壳素也都不影响其温敏和pH敏感特性。
实施例2抗菌性试验
使用实例1中制备的温敏性的QCH2和水溶性的QCH5作为代表,通过振动烧瓶法对其进行抗菌性实验[国家卫生行业标准WS/T 650—2019]。设置去离子水为空白组,QCH2,壳聚糖,QCH5和抗生素链霉素和青霉素(其对应为大肠杆菌,和金黄色葡萄球菌的阳性对照),样品初始浓度为200μg/mL(均用灭菌后的去离子水配制)。首先将菌悬液稀释至8x104CFU/mL,然后将菌液取100μl加入到对应的10mL溶液环境中,按照菌液:样品悬液1:100(v/v)比例进行稀释,并在220rpm,37℃摇床中震荡共培养10h,然后取100μL共培养液涂板,将涂板后的样品置于恒温恒湿箱中培养24h(37℃,98%),观察菌落的生长情况,每组实验重复5次,并按照平板计数法计算样品的杀菌效果,结果显示QCH2在200μg/mL时对大肠杆菌和金黄色葡萄球菌的杀菌率均可以达到100%。实验结果如图1中(a)和1中(d)所示,说明QCH2和QCH5的抗菌性优于壳聚糖,因为壳聚糖在中性条件下抗菌性较弱,对金黄色葡萄球菌的杀菌率非常有限,所以季铵化甲壳素均具有较好的广谱抗菌性。对QCH2的进一步的最小抑菌浓度试验(抑菌率为90%以上的最低浓度MIC)的结果分别为:对大肠杆菌的MIC:8mg/L(图1中(b)),对金黄色葡萄球菌的MIC:32mg/L(图1中(e)。当使用2倍或者8倍MIC剂量时QCH2对大肠杆菌和金黄色葡萄球菌的杀菌时间分别只有60分钟(图1中(c))和30分钟(图1中(f)),说明很快的杀菌速度,死活细菌染色和SEM细菌表面照片表明在QCH2作用下细菌可以被杀死。所有这些结果显示了季铵化改性甲壳素具有良好的抗菌杀菌特性。
实施例3温敏季铵化改性甲壳素的止血海绵材料的制备和力学性能
利用低温碱水溶解上述温敏性的季铵化甲壳素,通过冷冻使季铵化甲壳素(QCH)溶液固化,而后在低温乙醇溶液再生(即低温再生法)得到的QCH海绵具有良好的力学强度。将实例1中QCH1,QCH2和QCH3样品每组称取200mg,然后加入一定体积1M NaOH溶液,在低温0-20℃下使其充分溶解呈澄清透明状,配制5wt%季铵化甲壳素溶液,低温离心脱泡加入到长度为12mm,直径8mm的圆柱形模具中,然后置于-30℃中进行冷冻凝固,将其置于-30℃下的95wt%乙醇水溶液凝固浴中浸泡3-7天,制得再生海绵,然后将样品用去离子水清洗,随后冷冻干燥制备出季铵化甲壳素海绵。将上述样品参照国家行业标准YY/T1511-2017进行吸水倍率实验,在30s,15min,1h测量其吸水倍率,每组设置5个重复组,结果表明QCH1,QCH2和QCH3的吸水倍率分别可达到15倍,18倍和23倍,且在30s以内就能达到饱和吸水量。将季铵化甲壳素溶液浓度调整为1-10%,冷冻成冰的温度改为-18℃~-30℃,凝固浴温度改为-30℃~4℃,凝固浴改为50%~100%甲醇/水溶液、50%~100%乙醇/水溶液或50%~100%丙酮/水溶液中的任意一种,凝固浴中浸泡的时长为1~7天,都可以制得性能良好的季铵化甲壳素止血海绵材料。调节干燥方式室温干燥、真空干燥及30~100℃加热干燥的一种和几种的结合均可得到类似的具有形状记忆的季铵化甲壳素止血海绵材料。
使用QCH1样品,只是改变QCH1样品质量浓度,置于-30℃中进行冷冻凝固,将其置于-30℃下的95wt%乙醇水溶液凝固浴中浸泡3-7天,制得再生海绵,然后将样品用去离子水清洗,随后冷冻干燥制备出季铵化甲壳素海绵,再测试其吸水平衡后的压缩强度,设置载荷速度50mm/min,实验重复4次,测得其压缩断裂强度如表2。当制备的QCH1的浓度为1%及以下时所得的湿强度太低很难测得准确结果,浓度增加到5%时,其再生含水湿海绵的压缩断裂强度增加,最高压缩断裂强度达到378kPa,再增加到6%时,其再生海绵的压缩断裂强度反而下降,这是由于浓度增加,其物理交联的密度增加从而提高强度,但太高的浓度由于粘度太大可能导致制备的海绵的结构不均匀而降低强度。与申请人先前的论文[S.-Y.Lv,M.-Z.Cai,F.Leng,X.-L.Jiang*,Carboxymethyl chitin-based hemostatic spongeswith high strength and shape memory for non-compressible hemorrhage,CarbohydrPolym 2022,288,119369]中利用纯的温敏性羧甲基甲壳素在5%的浓度通过类似的再生技术制备的具有良好的力学性能和形状恢复能力的海绵,其含水湿海绵的最优的压缩断裂强度(表1样品G,207.1kPa)相比,含水湿海绵的QCH1的压缩断裂强度(378kPa)明显提供了80%多,该强度值也高于许多已报道中的可降解止血海绵的强度[S.-Y.Lv,M.-Z.Cai,F.Leng,X.-L.Jiang*,Carboxymethyl chitin-based hemostatic sponges with highstrength and shape memory for non-compressible hemorrhage,Carbohydr Polym2022,288,119369]。由表2可看出,含水湿海绵的QCH1的压缩断裂强度高于含水湿海绵的QCH2的压缩断裂强度,并且吸血后湿海绵的QCH1的压缩断裂强度(431kPa)高于吸水后湿海绵的QCH1的压缩断裂强度,这说明吸血后血液里的一些成分如蛋白具有一定的增强作用。由表2还可看出,含水湿海绵的QCH3的压缩断裂强度较低,而QCH4含水海绵部分垮塌,强度更弱无法测量。我们也类似制备了另一个的QCH12海绵(乙酰度为0.88,季铵化取代度为0.06,使用重量浓度5%),其在吸水后还具有较好力学强度,断裂压缩强度为310kPa。所以只有乙酰度在0.88~0.94,季铵化取代度为0.06~0.15的范围内的季铵化改性甲壳素海绵在吸水后还具有较好力学强度,这些季铵化改性甲壳素海绵均具有优良的形状记忆性能,吸水或吸血液后形状恢复率均为100%,形状恢复时间较短,在数秒(水)到十几秒(血液)。
表2不同样品和方法制备的季铵化甲壳素海绵吸水/吸血后的压缩断裂强度
NA:太弱无法测量。
实施例4可降解性和生物相容性测试
在没有溶菌酶的PBS缓冲液中,QCH海绵的质量减少较慢,30天左右质量损失仅约20%,而溶菌酶的存在和浓度增加,体外降解大大加快,并且随着QCH的DS的提高降解明显加快。因此通过调节QCH的DS或溶菌酶的浓度可调节这类材料的降解速率。细胞实验表明QCH海绵具有良好的细胞相容性,其浸提液不影响NIH 3T3细胞的生长和增殖。溶血实验说明QCH海绵不会使红细胞破裂,其相对溶血率都低于5%,具有良好的血液相容性,说明这类材料在生物医用材料领域是比较安全的材料。
实施例5温敏季铵化甲壳素止血海绵材料的体外止血性能
由图2a-b可看出季铵化改性甲壳素止血海绵QCH1和QCH2的体外凝血时间和凝血指数不但均低于纱布,甚至低于商用止血明胶,QCH2的甚至优于商用止血胶原,说明其有良好的体外凝血性能。例如以QCH1海绵和QCH2海绵为例测试其全血凝血指数(BCI),设置4个重复组,将50μL全血滴加到20mg干燥的海绵上,放在37℃水浴下60rpm的摇床里孵育5min,随后加入10mL去离子水并吸取上清液测540nm的吸光度以计算凝血指数。将50μL全血加入10mL去离子水中作为空白对照组。结果显示QCH1海绵和QCH2海绵的BCI分别为26%和17%,远低于已经批准上市的医用纱布和明胶海绵分别为100%和91%,QCH2的甚至优于商用止血胶原(20%)。图2c-d说明季铵化改性甲壳素海绵具有良好的血小板和红细胞粘附性能,与商用止血明胶的类似。对于海绵QCH1和QCH2的APTT和PT(图2中e-f)都有一定程度的缩短,说明他们对外源性和内源性凝血都有促进作用。这表明该类温敏季铵化改性甲壳素海绵材料具备优良的吸水性、止血性和力学强度,可望适用于动脉止血及深且窄的伤口、不可压迫性伤口及贯穿性伤口的止血。但是使用没有温敏性的QCH5材料不能通过上述物理交联过程制得止血海绵材料。
实施例6季铵化甲壳素海绵的体内止血效果
使用穿孔器在大鼠肝脏上形成直径为5mm的圆柱形贯穿伤口作为不可压迫性贯穿伤口模型,选择商用胶原海绵iRegene@,明胶海绵医用纱布,作为对照组。由图3中a和d可知,海绵QCH1和QCH2有最好的止血效果,出血量最少,止血时间更短,并且优于商用胶原海绵的止血效果,其中海绵QCH2的效果优于QCH1的止血效果。为了模拟有凝血障碍的止血效果,首先通过注射适量肝素的大鼠断尾模型,确认其注射肝素后凝血时间明显延长和出血量明显增多。与图3中a、d相比,图3中b、e的注射肝素(50U/100kg)后的大鼠肝脏贯穿伤口的出血量明显增多,凝血时间明显延长,整个止血效果类似于图2中b、c、d,海绵QCH1和QCH2有最好的止血效果,出血量最少,止血时间更短,并且优于商用胶原海绵的止血效果,其中海绵QCH2的效果优于QCH1的止血效果,即使有凝血障碍,也有很好的止血效果。对于大鼠股动脉的止血效果(图3中c、f)也表明海绵QCH1和QCH2有最好的止血效果,出血量最少,止血时间更短,并且优于商用艾薇亭胶原粉的止血效果,其中海绵QCH2的效果优于QCH1的止血效果。
初步试验了大动物猪锁骨动静脉全切模型的止血效果,首先冷冻干燥制备压缩型QCH2海绵样品(直径7mm,长度4-5mm),置于50ml注射器中(100个左右,重量大约3-4g,图4a)。选择约克夏猪(体重约20kg,雌性)。实时监控猪的心率、血压和体温,用温生理盐水填充伤前创面腔体积测试容量体积,大概48mL,用手术剪刀在腋中线建立锁骨下动脉、静脉和神经丛的全横切,伤口允许自由流血30秒开始注射海绵止血,止血后伤口缝合。试验发现QCH2海绵止血剂的失血量24.6g,止血时间为30s,不需要使用其他的外力挤压,止血效果明显。血压和心率在整个过程基本平稳,在术后1h,由于疼痛,其无法四脚站立,但2个小时后,其能正常行走,9个小时以后就能正常进食(图4中b),说明该止血材料有良好的生物安全性,没有明显刺激作用。
实施例7季铵化甲壳素海绵的体内促进伤口组织愈合功能
在SD大鼠止血完成以后,以QCH2止血海绵为代表留在大鼠创伤肝脏内,同时清理肝脏周围多余的血迹,缝合外表并注射青霉素抗感染,通过38天的正常饲养后,大鼠麻醉再次提取创伤肝组织通过免疫荧光评价海绵引导促进创伤肝脏原位再生修复的效果。宿主细胞的快速浸润是肝细胞重建的关键,DAPI染色显示,QCH2海绵组已有84%的宿主细胞(相对于正常肝组织Native Liver)迁入到海绵内部(图5中a、b)。通过H&E染色可以观察到QCH2海绵组的组织生长面积达到正常肝组织的92.3%(图5中a、c)。用vWF/DAPI免疫染色法检测血管性血友病因子,无论是正常肝组织还是QCH 2海绵组均分布着高密度的毛细血管(分别为81根和70根),而胶原海绵组和医用纱布组只发现了少量的毛细血管(图5a,d)。肝实质细胞(LPC)是具有肝功能的基本单位,ALB/DAPI免疫染色法用来观察ALB阳性细胞数量,QCH2组内可见大量ALB阳性细胞的表达,达到了81,表示肝实质细胞的向内生长,并且十分接近原生正常肝脏组的87(图5中a、e)。肝糖原是肝功能的一个重要体现,起到调节血糖的作用,从PAS染色可以看出,QCH2组的肝糖原生长面积为正常肝组织的89%(图5中a、f)。肝细胞核因子HNF-4的表达随着肝脏的发育而升高,这在肝脏分化和各种各样的肝功能中发挥着关键作用,QCH2组显著促进了肝细胞制造者的表达(图5中a、g)。作为对照,医用纱布作为多孔道但又不可降解的植入材料代表,其中宿主细胞很难穿过的部分,基本没有任何细胞的浸润和组织的生长,QCH2海绵组因具有可降解性和内部大量的微孔结构,宿主细胞的浸润穿过效率将会显著提高。很特别,商用化的胶原海绵组iRegene@只有一些但有限的原位肝组织再生,可能是其较弱的强度而不能有效促进细胞生长和组织再生。Du等最近报道的微通道烷基化壳聚糖(MACs)形状记忆止血海绵材料在肝脏原位再生模型中具有十分优异的效果[X.Du,L.Wu,H.Yan,Z.Jiang,S.Li,W.Li,Y.Bai,H.Wang,Z.Cheng,D.Kong,Microchannelled alkylated chitosan sponge to treatnoncompressible hemorrhagesand facilitate wound healing,Nature communications 2021,12,4733],MACs在新生组织生长面积,毛细血管数量以及肝实质细胞数量分别为是正常肝组织的50%,20%和50%左右,而QCH2海绵的相对应指标明显高于MACs。所以QCH止血海绵不仅止血效果好,还能原位留在体内,利用其可降解性及多孔结构的特点,促进创伤肝脏的原位再生修复,还具有促进伤口组织愈合的功能。
实施例8季铵化甲壳素载药止血海绵的制备和缓释
按实施例3中首先制备QCH1海绵(使用重量浓度5%)并冷冻干燥,称取该海绵64mg,加入到溶解240mg罗哌卡因盐酸盐的1mL的水溶液中充分浸泡2小时,再慢慢加入少量3.0M的NaOH溶液调节溶液pH值至7.0中性,最后用少量去离子水洗去表面的药物,然后冷冻结冰并冷冻干燥制得载药海绵中性功能性止血海绵体系。体外释放结果表明具有明显的缓释效果,在1小时释药20±3wt%,在8小时释药35±4wt%,在22小时只释放约58%的罗哌卡因药量,到96小时才释放完全。将季铵化改性甲壳素止血海绵浸泡在药物水溶液中1-10个小时左右,完全吸附后,加碱液中和pH值到6.0~8.0后再次干燥,都可得到功能性止血海绵。局部麻醉镇痛药选自普鲁卡因、布比卡因、左布比卡因、丁卡因、罗哌卡因、依替卡因、阿替卡因、利多卡因、甲哌卡因、丙胺卡因或者羟乙卡因的一种或者几种的混合物代替上述的实验中的罗哌卡因都可得到类似的长效缓释结果。
使用含有羧基的萘普生药物碱性水溶液,将季铵化改性甲壳素止血海绵浸泡在药物水溶液中1-10个小时左右,完全吸附后,加酸液中和pH值到6.0~8.0后再次干燥,也可得到功能性抗炎止血海绵。使用阿司匹林,对乙酰氨基酚,吲哚美辛,萘普生,萘普酮,双氯芬酸,布洛芬,尼美舒利,罗非昔布,塞来昔布,地塞米松,醋酸泼尼松,可的松中的一种或几种代替萘普生药物,同样也可得到功能性载药缓释止血海绵。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步的详细说明,所应理解的是,以上所述仅为本发明的具体实例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种用于制备止血海绵的季铵化改性甲壳素,其特征在于:该季铵化改性甲壳素的单元结构式示意图为:
R1为-H或者-COCH3
R2为H、-CH2C(OH)CH2NCl(CH3)3、-CH2C(OH)CH2NCl(CH2CH3)3及-CH2C(OH)CH2N+(CH3)2(CH2)mCH3中的任意一种;
R3为H、-CH2C(OH)CH2NCl(CH3)3、-CH2C(OH)CH2NCl(CH2CH3)3及-CH2C(OH)CH2N+(CH3)2(CH2)mCH3中的任意一种;
n是1-12的正整数;
所述季铵化改性甲壳素具有温敏性或pH敏感性,能够在低温下溶解于碱性水溶液中,通过冷冻成冰在凝固浴中再生纯化制成再生海绵材料,该再生海绵材料在生理条件下有较好的湿强度;
优选的,所述低温是指0-20℃;
所述季铵化改性甲壳素的乙酰度为0.88~0.94,季铵化取代度为0.06~0.15。
2.一种季铵化改性甲壳素止血海绵的制备方法,其特征在于,包括如下步骤:
(1)在0-20℃低温下,将权利要求1所述的季铵化改性甲壳素配置成碱性的水溶液;
(2)将步骤(1)配置的季铵化改性甲壳素溶液脱泡后倒入模具中冷冻成冰;
(3)将季铵化改性甲壳素冰块浸泡在凝固浴中,制得再生海绵;
(4)用去离子水洗涤纯化再生海绵,脱水干燥,制得季铵化改性甲壳素止血海绵。
3.如权利要求2所述季铵化改性甲壳素止血海绵的制备方法,其特征在于:步骤(1)中,季铵化改性甲壳素水溶液的质量浓度为1~10%,季铵化改性甲壳素的重均分子量为5×104~5×106
4.如权利要求2所述季铵化改性甲壳素止血海绵的制备方法,其特征在于:步骤(1)中,季铵化改性甲壳素水溶液的质量浓度为3~7%;
优选的,步骤(4)中,所述脱水干燥的干燥方式为冷冻干燥,室温干燥,真空干燥及30~100℃加热干燥的一种和几种的结合。
5.如权利要求2所述季铵化改性甲壳素止血海绵的制备方法,其特征在于:步骤(2)中,所述冷冻成冰的温度为-18℃~-30℃;
优选的,步骤(3)所述凝固浴为50%~100%甲醇/水溶液、50%~100%乙醇/水溶液或50%~100%丙酮/水溶液中的任意一种;
优选的,所述凝固浴温度为-30℃~-10℃;所述在凝固浴中浸泡的时长为1~7天。
6.如权利要求5所述季铵化改性甲壳素止血海绵的制备方法,其特征在于:所述的凝固浴为70%~100%甲醇/水溶液,70%~100%乙醇/水溶液或70%~100%丙酮/水溶液中的任意一种;
优选的,所述凝固浴温度为-30℃~-18℃;所述在凝固浴中浸泡的时长为4~7天。
7.一种权利要求1-6所述的季铵化改性甲壳素止血海绵的制备方法,其特征在于:将所述季铵化改性甲壳素止血海绵作为载体负载含有羧基或者胺基的药物,得到功能性止血海绵。
8.一种权利要求7所述的季铵化改性甲壳素止血海绵的制备方法,其特征在于:所述药物为在酸性或者碱性水溶液里有较高的溶解度的局部麻醉镇痛药和/或抗炎抗菌药,加碱液或者酸液中和调节pH值到6.0~8.0,再次干燥制得。
9.一种权利要求8所述的季铵化改性甲壳素止血海绵的制备方法,其特征在于:所述局部麻醉镇痛药选自普鲁卡因,布比卡因,左布比卡因,丁卡因,罗哌卡因,依替卡因,阿替卡因,利多卡因,甲哌卡因,丙胺卡因,羟乙卡因或它们的盐酸盐中的任意一种或者几种;所述抗炎抗菌药选自阿司匹林,对乙酰氨基酚,吲哚美辛,萘普生,萘普酮,双氯芬酸,布洛芬,尼美舒利,罗非昔布,塞来昔布,地塞米松,醋酸泼尼松,可的松中的一种或几种。
10.一种权利要求1-6所述的季铵化改性甲壳素止血海绵的应用,其特征在于:将所述季铵化改性甲壳素用于制备高湿强度的止血海绵,所述止血海绵用于动脉止血材料、动脉止血贴和深且窄的伤口、不可压迫性伤口及贯穿性伤口的止血,促进伤口组织愈合。
CN202310920528.XA 2023-07-25 2023-07-25 季铵化甲壳素、止血海绵及其制备方法 Pending CN116948056A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310920528.XA CN116948056A (zh) 2023-07-25 2023-07-25 季铵化甲壳素、止血海绵及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310920528.XA CN116948056A (zh) 2023-07-25 2023-07-25 季铵化甲壳素、止血海绵及其制备方法

Publications (1)

Publication Number Publication Date
CN116948056A true CN116948056A (zh) 2023-10-27

Family

ID=88461481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310920528.XA Pending CN116948056A (zh) 2023-07-25 2023-07-25 季铵化甲壳素、止血海绵及其制备方法

Country Status (1)

Country Link
CN (1) CN116948056A (zh)

Similar Documents

Publication Publication Date Title
Cao et al. Double crosslinking chitosan sponge with antibacterial and hemostatic properties for accelerating wound repair
Cheng et al. Preparation and characterization of 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanocrystal/alginate biodegradable composite dressing for hemostasis applications
Pan et al. Porous chitosan microspheres containing zinc ion for enhanced thrombosis and hemostasis
CN105142399B (zh) 生物相容的和生物可吸收的衍生的壳聚糖组合物
CN105778126B (zh) 一种京尼平交联生物凝胶及其制备方法与应用
Lestari et al. A glimpse on the function of chitosan as a dental hemostatic agent
Wang et al. Porous photothermal antibacterial antioxidant dual–crosslinked cryogel based on hyaluronic acid/polydopamine for non-compressible hemostasis and infectious wound repair
Ouyang et al. Rapidly degrading and mussel-inspired multifunctional carboxymethyl chitosan/montmorillonite hydrogel for wound hemostasis
CN113769156B (zh) 兼具止血和创面修复的杂化纤维海绵及其制备方法
WO2013096448A1 (en) Composition, preparation, and use of dense chitosan membrane materials
Zhu et al. Polysaccharides composite materials for rapid hemostasis
Song et al. Effects of degree of deacetylation on hemostatic performance of partially deacetylated chitin sponges
Liu et al. Injectable, self-healable and antibacterial multi-responsive tunicate cellulose nanocrystals strengthened supramolecular hydrogels for wound dressings
Long et al. Microfibrillated cellulose-enhanced carboxymethyl chitosan/oxidized starch sponge for chronic diabetic wound repair
Wei et al. Injectable chitosan/xyloglucan composite hydrogel with mechanical adaptivity and endogenous bioactivity for skin repair
Cai et al. Synthesis and characterization of thermosensitive 2-hydroxypropyl-trimethylammonium chitin and its antibacterial sponge for noncompressible hemostasis and tissue regeneration
Cao et al. Preparation of biodegradable carboxymethyl cellulose/dopamine/Ag NPs cryogel for rapid hemostasis and bacteria-infected wound repair
Chen et al. Preparation, characterization, and potential biomedical application of composite sponges based on collagen from silver carp skin
CN113663120B (zh) 止血海绵垫芯及其制备方法
CN107137758B (zh) 一种微纤维胶原止血材料及其制备方法
Li et al. Fabricating oxidized cellulose sponge for hemorrhage control and wound healing
CN107216496B (zh) 一种可控氨基含量的壳聚糖材料及其制备方法
CN116948056A (zh) 季铵化甲壳素、止血海绵及其制备方法
CN114917400B (zh) 一种聚赖氨酸抗菌组织粘合剂及应用
Rao et al. GO/CaCO3/SiO2 nanocomposite incorporated Carrageenan/Chitosan injectable hydrogel for enhanced hemostasis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination