CN116943693B - 一种硒氧化铋/磷酸银纳米复合材料及其制备方法和应用 - Google Patents

一种硒氧化铋/磷酸银纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN116943693B
CN116943693B CN202311215550.0A CN202311215550A CN116943693B CN 116943693 B CN116943693 B CN 116943693B CN 202311215550 A CN202311215550 A CN 202311215550A CN 116943693 B CN116943693 B CN 116943693B
Authority
CN
China
Prior art keywords
silver phosphate
bismuth selenide
phosphate nanocomposite
mixing
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311215550.0A
Other languages
English (en)
Other versions
CN116943693A (zh
Inventor
段旭
艾伟
雷楷
祁学玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSCEC Aecom Consultant Co Ltd
Original Assignee
CSCEC Aecom Consultant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSCEC Aecom Consultant Co Ltd filed Critical CSCEC Aecom Consultant Co Ltd
Priority to CN202311215550.0A priority Critical patent/CN116943693B/zh
Publication of CN116943693A publication Critical patent/CN116943693A/zh
Application granted granted Critical
Publication of CN116943693B publication Critical patent/CN116943693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种硒氧化铋/磷酸银纳米复合材料及其制备方法和应用,属于光催化剂领域,以获得可见光利用率和电荷分离效率更高、可重复利用的光催化材料。制备方法:LiNO3和KNO3固体粉末混合,Bi(NO3)3·5H2O和硒粉混合;将两种混合粉末再一次混合;加入水合肼和去离子水进行水热反应,固体沉淀洗涤并干燥,得到产品Bi2O2Se;将Bi2O2Se和Na2HPO4溶液滴加在CH3COOAg溶液中,沉淀物洗涤后干燥,得到Bi2O2Se/Ag3PO4。Bi2O2Se与Ag3PO4的可见光区域形成吸光互补,通过异质结的构建更加有效地增强异质结界面电荷分离与电子转移,大幅提高污染物降解效率。

Description

一种硒氧化铋/磷酸银纳米复合材料及其制备方法和应用
技术领域
本发明属于光催化剂领域,具体涉及一种硒氧化铋/磷酸银纳米复合材料及其制备方法和应用。
背景技术
随着医疗行业看到的进步,抗生素的使用频率越来越高,抗生素不仅可以治疗疾病,还可以用于水产养殖、畜牧业和农业生产。喹诺酮类抗生素具有抗菌、抗炎和抗癌活性,对呼吸道感染和泌尿系统疾病有良好的治疗效果,因此在医学上得到了广泛认可。然而微量的抗生素被释放到水中由于不能自发降解而对水环境造成危害。水中残留的抗生素通过食物、水源等途径进入人体,增加了基因突变和致癌的风险。因此,找到一种有效的方法来处理抗生素废水是非常重要的。
由于环境相容性和强氧化性,高级氧化工艺(AOPs)被广泛研究用于处理难降解污染物。在AOPs中,光催化技术利用太阳能作为能源,在光照下激发光生电子-空穴对,经过电子和空穴转移后,能够将污染物分解为无污染的CO2和H2O,因而被认为是最可持续和最有前途的技术,可以实现能源充分利用和环境友好发展。然而,光催化技术的实际应用受到了光产生的电子-空穴对快速重组,光利用率低等明显限制。
磷酸银(Ag3PO4)作为一种理想的可见光驱动的光催化剂,在420 nm左右的波长下具有约90%的量子效率。由于其窄带隙(2.40 eV)和合适的价带,Ag3PO4产生的光生空穴(h+)在可见光下表现出良好的氧化性能。然而,在光催化过程中,Ag3PO4的表面会由于Ag+与导带上的电子结合而产生Ag0。
Bi2O2Se是一种典型的铋基硫氧化物材料,由于其超快的电子迁移率和良好的环境稳定性,在先进的电子和光电子器件应用中得到了广泛的研究,Bi2O2Se因其可调带隙和全光谱吸附而在光催化应用中得到了逐步探索。
发明内容
本发明的目的是提供一种硒氧化铋/磷酸银纳米复合材料的制备方法,以获得可见光利用率和电荷分离效率更高、稳定性更好、可重复利用、实现污染物快速而有效降解的光催化纳米材料。
本发明的另一目的是提供一种硒氧化铋/磷酸银纳米复合材料。
本发明的第三目的是提供一种硒氧化铋/磷酸银纳米复合材料的应用。
本发明的技术方案是:
(一)、一种硒氧化铋/磷酸银纳米复合材料的制备方法,包括以下步骤:
A、将LiNO3和KNO3固体粉末进行混合,充分研磨;将Bi(NO3) 3·5H2O和硒(Se)粉进行混合,充分研磨;
B、将步骤A得到的两种混合粉末再一次混合,研磨至均匀,得到均匀的混合物;
C、将水合肼和去离子水加入到步骤B得到的混合物中,连续搅拌,然后将溶液转移到反应器中进行水热反应,反应完成后离心收集固体沉淀,固体沉淀经洗涤,并干燥,得到产品Bi2O2Se;
D、将Bi2O2Se和Na2HPO4溶液滴加在CH3COOAg溶液中,产生Ag3PO4和Bi2O2Se的混合沉淀物,将沉淀物离心,用去离子水和乙醇洗涤后真空干燥,得到硒氧化铋/磷酸银纳米复合材料Bi2O2Se/Ag3PO4
作为本发明的进一步改进,在步骤A中,LiNO3和KNO3的质量比为1:2,Bi(NO3) 3·5H2O和硒粉的摩尔比为1:2。
作为本发明的进一步改进,在步骤C中,水合肼和去离子水的体积比为4:1。
作为本发明的进一步改进,在步骤C中,连续搅拌时间为0.5-1h。
作为本发明的进一步改进,在步骤C中,水热温度为180-200℃,水热反应的时间为20-24h。
作为本发明的进一步改进,在步骤C中,干燥温度为60-80℃,干燥时间不小于12h。
作为本发明的进一步改进,在步骤D中,Bi2O2Se、CH3COOAg与Na2HPO4的摩尔比为0.3-1.2:3:1。
作为本发明的进一步改进,在步骤D中,真空干燥温度为60-80℃,干燥时间为12-24h。
(二)、一种硒氧化铋/磷酸银纳米复合材料,由上述硒氧化铋/磷酸银纳米复合材料的制备方法制得。
(三)、一种硒氧化铋/磷酸银纳米复合材料在有机污染物降解的应用。
本发明的有益效果是:
1. 本发明通过构建异质结将Bi2O2Se和Ag3PO4复合,构造出一种载流子分离能力更强、便于回收、吸光范围覆盖全可见光谱的光催化纳米复合材料Bi2O2Se/Ag3PO4。Ag3PO4是一种典型的光催化候选材料,但吸光范围窄,能量转化效率低;Bi2O2Se是一种在近红外光区域都有所响应的光催化材料,但单一材料电荷分离效率低;将Bi2O2Se和Ag3PO4复合,复合后的材料,导带上的部分电子就会转移至Bi2O2Se材料,避免Ag3PO4材料自身Ag+与其导带上的电子的复合,成功实现了Bi2O2Se/Ag3PO4复合光催化纳米材料的光生电子-空穴对在异质界面发生分离,避免了单一Ag3PO4催化纳米材料存在的带隙中电子-空穴重组问题,Bi2O2Se与Ag3PO4的可见光区域形成吸光互补。通过异质结的构建更加有效地增强异质结界面电荷分离与电子转移,大幅提高污染物降解效率。
2. 本发明制备方法简单,易于实现,具有很强的实用性。
3. 本发明Bi2O2Se/Ag3PO4光催化体系对以氧氟沙星(OFX)为代表的典型抗生素的降解效果尤其显著,且具有稳定性好、可重复利用的特点。
附图说明
图1为实施例2制备的Bi2O2Se/Ag3PO4纳米复合材料的扫描电镜图像;
图2为实施例2及对比例1、2制备的Bi2O2Se/Ag3PO4、Bi2O2Se、Ag3PO4的紫外漫反射光谱图;
图3为实施例2及对比例1、2制备的Bi2O2Se/Ag3PO4、Bi2O2Se、Ag3PO4的傅里叶漫反射红外光谱图;
图4为实施例2及对比例1、2制备的Bi2O2Se/Ag3PO4、Bi2O2Se、Ag3PO4的光催化降解氧氟沙星的性能对比图;
图5为实施例2制备的Bi2O2Se/Ag3PO4纳米复合材料光催化降解氧氟沙星的重复利用实验降解图。
具体实施方式
以下结合具体实施方式对本发明进行进一步详细说明。
实施例1、
一种硒氧化铋/磷酸银纳米复合材料的制备方法,包括以下步骤:
A、将0.15g LiNO3和0.30g KNO3固体粉末进行混合,充分研磨;将0.024g Bi(NO3) 3·5H2O和0.002g硒(Se)粉进行混合,充分研磨;
B、将步骤A得到的两种混合粉末再一次混合,研磨至均匀,得到均匀的混合物;
C、将步骤B得到的混合物转移到50mL的反应器中,在连续磁力搅拌下,将0.1mL水合肼和0.25mL的去离子水加入容器中,搅拌0.5h;然后将溶液转移到100mL聚四氟乙烯反应器中,在200℃下加热24 h进行结晶后,用去离子水和乙醇洗涤数次,并在80℃的烘箱中干燥20h,得到产品Bi2O2Se;
D、将0.2g Bi2O2Se和4mL 浓度为21.25g/L的Na2HPO4溶液滴加在100mL浓度为3g/L的CH3COOAg溶液中(Bi2O2Se、CH3COOAg与Na2HPO4的摩尔比约为0.38:3:1),产生Ag3PO4和Bi2O2Se的混合沉淀物,将沉淀物离心,用去离子水和乙醇洗涤,然后在 60℃真空干燥12h,得到Bi2O2Se/Ag3PO4
对比例1、制备光催化剂Bi2O2Se。
本对比例与实施例1的区别在于:不具备步骤D,步骤A-C与实施例1相同,制备得到Bi2O2Se。
对比例2、制备光催化剂Ag3PO4,方法如下:
将4ml浓度为21.25g/L 的Na2HPO4溶液滴加在100ml浓度为3g/L的CH3COOAg溶液中,形成Ag3PO4沉淀;将沉淀物离心,用去离子水和乙醇洗涤,然后在 60℃真空干燥,得到Ag3PO4
实施例2、
一种硒氧化铋/磷酸银纳米复合材料的制备方法,包括以下步骤:
A、将0.15g LiNO3和0.30g KNO3固体粉末进行混合,充分研磨;将0.024g Bi(NO3) 3·5H2O和0.002g硒(Se)粉进行混合,充分研磨;
B、将步骤A得到的两种混合粉末再一次混合,研磨至均匀,得到均匀的混合物;
C、将步骤B得到的混合物转移到50mL的反应器中,在连续磁力搅拌下,将0.1mL水合肼和0.25mL的去离子水加入容器中,搅拌0.5h;然后将溶液转移到100mL聚四氟乙烯反应器中,在200℃下加热24 h进行结晶后,用去离子水和乙醇洗涤数次,并在80℃的烘箱中干燥12h,得到产品Bi2O2Se;
D、将0.4g Bi2O2Se和4mL 浓度为21.25g/L的Na2HPO4溶液滴加在100mL浓度为3g/L的CH3COOAg溶液中(Bi2O2Se、CH3COOAg与Na2HPO4的摩尔比约为0.75:3:1),产生Ag3PO4和Bi2O2Se的混合沉淀物,将沉淀物离心,用去离子水和乙醇洗涤,然后在 60℃真空干燥18h,得到Bi2O2Se/Ag3PO4
图1示出了实施例2例提供的Bi2O2Se/Ag3PO4纳米复合材料的SEM图像,如图1所示,Bi2O2Se/Ag3PO4纳米复合材料为均匀的Ag3PO4纳米颗粒负载在Bi2O2Se纳米片结构上。
实施例3、
一种硒氧化铋/磷酸银纳米复合材料的制备方法,包括以下步骤:
A、将0.15g LiNO3和0.30g KNO3固体粉末进行混合,充分研磨;将0.024g Bi(NO3) 3·5H2O和0.002g硒(Se)粉进行混合,充分研磨;
B、将步骤A得到的两种混合粉末再一次混合,研磨至均匀,得到均匀的混合物;
C、将步骤B得到的混合物转移到50mL的反应器中,在连续磁力搅拌下,将0.1mL水合肼和0.25mL的去离子水加入容器中,搅拌0.5h;然后将溶液转移到100mL聚四氟乙烯反应器中,在200℃下加热24 h进行结晶后,用去离子水和乙醇洗涤数次,并在80℃的烘箱中干燥13h,得到产品Bi2O2Se;
D、将0.4g Bi2O2Se和4mL 浓度为21.25g/L的Na2HPO4溶液滴加在100mL浓度为3g/L的CH3COOAg溶液中(Bi2O2Se、CH3COOAg与Na2HPO4的摩尔比约为0.75:3:1),产生Ag3PO4和Bi2O2Se的混合沉淀物,将沉淀物离心,用去离子水和乙醇洗涤,然后在 60℃真空干燥24h,得到Bi2O2Se/Ag3PO4
实施例4、
一种硒氧化铋/磷酸银纳米复合材料的制备方法,包括以下步骤:
A、将0.15g LiNO3和0.30g KNO3固体粉末进行混合,充分研磨;将0.024g Bi(NO3) 3·5H2O和0.002g硒(Se)粉进行混合,充分研磨;
B、将步骤A得到的两种混合粉末再一次混合,研磨至均匀,得到均匀的混合物;
C、将步骤B得到的混合物转移到50mL的反应器中,在连续磁力搅拌下,将0.1mL水合肼和0.25mL的去离子水加入容器中,搅拌1h;然后将溶液转移到100mL聚四氟乙烯反应器中,在180℃下加热24 h进行结晶后,用去离子水和乙醇洗涤数次,并在60℃的烘箱中干燥24h,得到产品Bi2O2Se;
D、将0.2g Bi2O2Se和4mL 浓度为21.25g/L的Na2HPO4溶液滴加在100mL浓度为3g/L的CH3COOAg溶液中(Bi2O2Se、CH3COOAg与Na2HPO4的摩尔比约为0.38:3:1),产生Ag3PO4和Bi2O2Se的混合沉淀物,将沉淀物离心,用去离子水和乙醇洗涤,然后在 70℃真空干燥15h,得到Bi2O2Se/Ag3PO4
实施例5、
一种硒氧化铋/磷酸银纳米复合材料的制备方法,包括以下步骤:
A、将0.15g LiNO3和0.30g KNO3固体粉末进行混合,充分研磨;将0.024g Bi(NO3) 3·5H2O和0.002g硒(Se)粉进行混合,充分研磨;
B、将步骤A得到的两种混合粉末再一次混合,研磨至均匀,得到均匀的混合物;
C、将步骤B得到的混合物转移到50mL的反应器中,在连续磁力搅拌下,将0.1mL水合肼和0.25mL的去离子水加入容器中,搅拌0.8h;然后将溶液转移到100mL聚四氟乙烯反应器中,在190℃下加热20 h进行结晶后,用去离子水和乙醇洗涤数次,并在70℃的烘箱中干燥19h,得到产品Bi2O2Se;
D、将0.4g Bi2O2Se和4mL 浓度为21.25g/L的Na2HPO4溶液滴加在100mL浓度为3g/L的CH3COOAg溶液中(Bi2O2Se、CH3COOAg与Na2HPO4的摩尔比约为0.75:3:1),产生Ag3PO4和Bi2O2Se的混合沉淀物,将沉淀物离心,用去离子水和乙醇洗涤,然后在 80℃真空干燥12h,得到Bi2O2Se/Ag3PO4
实施例6、
一种硒氧化铋/磷酸银纳米复合材料的制备方法,包括以下步骤:
A、将0.15g LiNO3和0.30g KNO3固体粉末进行混合,充分研磨;将0.024g Bi(NO3) 3·5H2O和0.002g硒(Se)粉进行混合,充分研磨;
B、将步骤A得到的两种混合粉末再一次混合,研磨至均匀,得到均匀的混合物;
C、将步骤B得到的混合物转移到50mL的反应器中,在连续磁力搅拌下,将0.1mL水合肼和0.25mL的去离子水加入容器中,搅拌0.6h;然后将溶液转移到100mL聚四氟乙烯反应器中,在180℃下加热24 h进行结晶后,用去离子水和乙醇洗涤数次,并在80℃的烘箱中干燥13h,得到产品Bi2O2Se;
D、将0.6g Bi2O2Se和4mL 浓度为21.25g/L的Na2HPO4溶液滴加在100mL浓度为3g/L的CH3COOAg溶液中(Bi2O2Se、CH3COOAg与Na2HPO4的摩尔比约为1.13:3:1),产生Ag3PO4和Bi2O2Se的混合沉淀物,将沉淀物离心,用去离子水和乙醇洗涤,然后在 60℃真空干燥22h,得到Bi2O2Se/Ag3PO4
光催化性能评价:
对实施例2及对比例1、2进行光催化性能评价,方法如下:
光催化降解氧氟沙星的反应在250 mL石英光化学反应器中进行,由300W氙灯模拟光照射(λ>420 nm,北京中教金源科技有限公司)。在辐照之前,将含有催化剂(0.25 g/L)和污染物(10 mg/L)的溶液(100 mL)在黑暗中机械搅拌30分钟以达到吸附-解吸平衡。光源和反应器之间的距离是10 cm。光强被测定光强为100 mW/cm2,在给定的时间间隔内,取1毫升溶液并立即用0.22微米的注射器过滤器进行过滤以进行检测。氧氟沙星(OFX)溶液的吸光度是用分光光度法测定的,波长选择在293 nm。OFX的降解率用以下公式计算:
图2为实施例2及对比例1、2制备的Bi2O2Se/Ag3PO4、Bi2O2Se、Ag3PO4的紫外漫反射光谱图,主要反映了三种材料对光的响应能力与吸收情况。如图2所示,黑色Bi2O2Se在整个全可见光谱范围内都具有强吸收,Ag3PO4光催化剂的光吸收边在550nm左右,由于二者吸光互补,Bi2O2Se/Ag3PO4复合光催化纳米材料的可见光吸收强度稍微减弱但吸收范围仍覆盖全可见光谱,且出现了较大的吸收尾峰,表明其可以利用足够的可见光。Bi2O2Se和Ag3PO4的复合有效增强了材料的尾峰强度,表明二者之间形成吸光互补,有利于提高光捕集效率。
图3为实施例2及对比例1、2制备的Bi2O2Se/Ag3PO4、Bi2O2Se、Ag3PO4的傅里叶漫反射红外光谱图。为了研究合成后样品的组成和结构,采用FTIR分析,如图3所示,对于Bi2O2Se,在3314~3368 cm−1附近的宽峰为吸附的H2O的拉伸振动,在2972 cm-1和1051 cm-1附近的振动峰分别对应于C-H和C-O的拉伸振动。在433~811cm-1的吸收峰可归因于Bi-O的不对称(νas)和对称(νs)伸缩振动。对于Ag3PO4,在558 cm-1,1010cm-1附近观察到Ag3PO4纳米球的特征峰,这表明P-O的伸缩振动。值得一提的是,原始Bi2O2Se和Ag3PO4的主要典型吸收峰均存在于Bi2O2Se/Ag3PO4样品中,这进一步表明Bi2O2Se/Ag3PO4复合催化剂的成功合成。
图4为实施例2及对比例1、2制备的Bi2O2Se/Ag3PO4、Bi2O2Se、Ag3PO4的光催化降解氧氟沙星的性能对比图。实验结果显示:在催化剂投加量为0.25 g/L、氧氟沙星初始浓度为10mg/L、初始温度为室温的条件下,单一Bi2O2Se对氧氟沙星的降解效率为37.11%,这可能是由于Bi2O2Se在近红外光区的吸收增强了光催化效率,可以进一步诱导产生光生电子空穴对,意味着单一Bi2O2Se是一种性能良好的光催化材料。单一Ag3PO4在光催化作用下对氧氟沙星降解率仅为16.37%。而Bi2O2Se/Ag3PO4复合材料在光催化作用下,在30 min内对污染物的降解效率达到了97.16%,这表明光生电子在内建电场作用下快速跨异质界面进行迁移,进一步加速了污染物降解效率。
连续降解实验:
实施例2制备的Bi2O2Se/Ag3PO4在第一次降解反应完成后,将反应后的溶液进行离心洗涤,回收得到的催化剂在冷冻干燥机干燥24h,然后再次放入反应器中进行下一个降解实验,除材料外,其余反应条件和第一次保持一致;第二次反应完成后,重复上述步骤,共进行五次降解实验。
图5为实施例2制备的Bi2O2Se/Ag3PO4纳米复合材料光催化降解氧氟沙星的重复利用实验降解图。由图5可见,在五个连续的降解实验中氧氟沙星降解效率都在90%以上,这表明Bi2O2Se/Ag3PO4光催化纳米材料的光催化活性在五个循环后仍然保持良好。
利用本发明Bi2O2Se/Ag3PO4纳米复合材料可降解的有机污染物包括但不限于氧氟沙星、阿特拉津、双酚A、四环素、罗丹明b等。作为优选,本发明Bi2O2Se/Ag3PO4纳米复合材料在光催化条件下,对氧氟沙星具有格外优异的降解效果。在光照下,光催化材料Bi2O2Se/Ag3PO4均被光激发生成光生电子和光生空穴,匹配的能级位置使得Ag3PO4导带的光生电子跨异质结界面转移到Bi2O2Se价带,这种S型电荷传输机制不仅促进了载流子分离,诱导电子从Ag3PO4转移至Bi2O2Se,有效抑制电子空穴对复合从而显著提高电荷分离效率,同时保留了Bi2O2Se/Ag3PO4的强氧化还原能力,有利于通过表面活性氧或羟基、空穴氧化作用将污染物降解矿化,最终生成水和二氧化碳。
本发明通过操作简单的水热法成功制备了能高效稳定降解水中有机污染物的Bi2O2Se/Ag3PO4纳米复合材料。简便的制备方法和优异的光催化性能使该催化剂成为废水净化的有效材料。此外,制备的样品稳定性好,可循环利用,在废水净化领域具有潜在的应用价值。
本发明采用构建异质结的方式提高界面电荷转移效率抑制载流子原位复合,有效地增强异质结界面电荷分离与电子转移,大幅提高光催化降解污染物效率;利用光催化材料的全可见光谱强吸收,使得两种材料的吸光互补,提高可见光捕获效率。

Claims (9)

1.一种硒氧化铋/磷酸银纳米复合材料的制备方法,其特征在于包括以下步骤:
A、将LiNO3和KNO3固体粉末进行混合,充分研磨;将Bi(NO3) 3·5H2O和硒粉进行混合,充分研磨;LiNO3和KNO3的质量比为1:2,Bi(NO3) 3·5H2O和硒粉的摩尔比为1:2;
B、将步骤A得到的两种混合粉末再一次混合,研磨至均匀,得到均匀的混合物;
C、将水合肼和去离子水加入到步骤B得到的混合物中,连续搅拌,然后将溶液转移到反应器中进行水热反应,反应完成后离心收集固体沉淀,固体沉淀经洗涤,并干燥,得到产品Bi2O2Se;
D、将Bi2O2Se和Na2HPO4溶液滴加在CH3COOAg溶液中,产生Ag3PO4和Bi2O2Se的混合沉淀物,将沉淀物离心,用去离子水和乙醇洗涤后真空干燥,得到Bi2O2Se/Ag3PO4
2.根据权利要求1所述的一种硒氧化铋/磷酸银纳米复合材料的制备方法,其特征在于:在步骤C中,水合肼和去离子水的体积比为1:2.5。
3.根据权利要求1或2所述的一种硒氧化铋/磷酸银纳米复合材料的制备方法,其特征在于:在步骤C中,连续搅拌时间为0.5-1h。
4.根据权利要求3所述的一种硒氧化铋/磷酸银纳米复合材料的制备方法,其特征在于:在步骤C中,水热温度为180-200℃,水热反应的时间为20-24h。
5.根据权利要求4所述的一种硒氧化铋/磷酸银纳米复合材料的制备方法,其特征在于:在步骤C中,干燥温度为60-80℃,干燥时间不小于12h。
6.根据权利要求5所述的一种硒氧化铋/磷酸银纳米复合材料的制备方法,其特征在于:在步骤D中,Bi2O2Se、CH3COOAg与Na2HPO4的摩尔比为0.3-1.2:3:1。
7.根据权利要求6所述的一种硒氧化铋/磷酸银纳米复合材料的制备方法,其特征在于:在步骤D中,真空干燥温度为60-80℃,干燥时间为12-24h。
8.一种硒氧化铋/磷酸银纳米复合材料,其特征在于:由权利要求1-7中任一项所述的硒氧化铋/磷酸银纳米复合材料的制备方法制得。
9.一种权利要求8所述的硒氧化铋/磷酸银纳米复合材料在氧氟沙星降解的应用。
CN202311215550.0A 2023-09-20 2023-09-20 一种硒氧化铋/磷酸银纳米复合材料及其制备方法和应用 Active CN116943693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311215550.0A CN116943693B (zh) 2023-09-20 2023-09-20 一种硒氧化铋/磷酸银纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311215550.0A CN116943693B (zh) 2023-09-20 2023-09-20 一种硒氧化铋/磷酸银纳米复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN116943693A CN116943693A (zh) 2023-10-27
CN116943693B true CN116943693B (zh) 2023-12-12

Family

ID=88456846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311215550.0A Active CN116943693B (zh) 2023-09-20 2023-09-20 一种硒氧化铋/磷酸银纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116943693B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482210A (zh) * 2018-11-21 2019-03-19 湖南大学 磷酸银/硫化铋/氧化铋双z型光催化剂及其制备方法
CN109482209A (zh) * 2018-11-21 2019-03-19 湖南大学 利用磷酸银/硫化铋/氧化铋双z型光催化剂催化去除抗生素的方法
CN113000054A (zh) * 2021-03-30 2021-06-22 广州大学 一种Bi2O2Se材料的制备方法
KR20230000470A (ko) * 2021-06-24 2023-01-02 한국과학기술원 유기금속화학기상증착 방법을 이용한 Bi2O2Se 박막 제조방법 및 이를 위한 전구체

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077423A1 (en) * 2017-10-17 2019-04-25 King Abdullah University Of Science And Technology SEMICONDUCTOR DEVICE HAVING LATERAL SEMICONDUCTOR HETERONJUNCTION AND METHOD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482210A (zh) * 2018-11-21 2019-03-19 湖南大学 磷酸银/硫化铋/氧化铋双z型光催化剂及其制备方法
CN109482209A (zh) * 2018-11-21 2019-03-19 湖南大学 利用磷酸银/硫化铋/氧化铋双z型光催化剂催化去除抗生素的方法
CN113000054A (zh) * 2021-03-30 2021-06-22 广州大学 一种Bi2O2Se材料的制备方法
KR20230000470A (ko) * 2021-06-24 2023-01-02 한국과학기술원 유기금속화학기상증착 방법을 이용한 Bi2O2Se 박막 제조방법 및 이를 위한 전구체

Also Published As

Publication number Publication date
CN116943693A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
Yao et al. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater
Moradi et al. CuO and ZnO co-anchored on g-C3N4 nanosheets as an affordable double Z-scheme nanocomposite for photocatalytic decontamination of amoxicillin
Aghdam et al. Precipitation dispersion of various ratios of BiOI/BiOCl nanocomposite over g-C3N4 for promoted visible light nanophotocatalyst used in removal of acid orange 7 from water
Li et al. A novel binary visible-light-driven photocatalyst type-I CdIn2S4/g-C3N4 heterojunctions coupling with H2O2: Synthesis, characterization, photocatalytic activity for Reactive Blue 19 degradation and mechanism analysis
Kargar et al. Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways
CN111514882B (zh) 一种Ag-AgCl/三氧化钨/类石墨相氮化碳三元复合光催化剂及其制备方法和应用
AU2017101171A4 (en) The synthesis of GO/hemin/TiO2 nanocomposite catalyst and the photocatalytic degradation rate of organic pollutants
Jabbar et al. Design and construction of a robust ternary Bi5O7I/Cd0. 5Zn0. 5S/CuO photocatalytic system for boosted photodegradation of antibiotics via dual-S-scheme mechanisms: environmental factors and degradation intermediates
Pandi et al. Complete photocatalytic degradation of tetracycline by carbon doped TiO2 supported with stable metal nitrate hydroxide
Adenuga et al. Facile synthesis of a Ag/AgCl/BiOCl composite photocatalyst for visible–light–driven pollutant removal
Behnood et al. Novel ZnCo2O4 embedded with S, N-CQDs as efficient visible-light photocatalyst
CN112337459A (zh) 一种钨酸铋复合光催化剂的制备方法
Zhou et al. Synthesis of novel BiOBr/Bio-veins composite for photocatalytic degradation of pollutants under visible-light
Zhang et al. Preparation of TiO2-graphitized carbon composite photocatalyst and their degradation properties for tetracycline antibiotics
Zhang et al. Preparation and characterization of WO3/ZnO composite photocatalyst and its application for degradation of oxytetracycline in aqueous solution
Elavarasan et al. Significant enhancement of Z-Scheme mechanism based photocatalytic performance of Co3O4/ZnO–Cu nanocomposite for degradation of hazardous dye
Jatoi et al. Synthesis of efficient TiO 2/Al 2 O 3@ Cu (BDC) composite for water splitting and photodegradation of methylene blue
Liu et al. Photocatalytic activity study of ZnO modified with nitrogen–sulfur co-doped carbon quantum dots under visible light
Zhang et al. Synthesis and sonophotocatalytic activities of ZnO\BiVO4\Co3O4 composites
Lee et al. Face-to-face interfacial assembly of a hybrid NiAl-LDH@ BiOIO3 photocatalyst for the effective solar-induced abatement of antibiotic and dye pollutants: insights into surface engineering and S-scheme charge transfer
Graimed et al. Decoration of 0D Bi3NbO7 nanoparticles onto 2D BiOIO3 nanosheets as visible-light responsive S-scheme photocatalyst for photo-oxidation of antibiotics in wastewater
Li et al. Visible light assisted heterogeneous photo-Fenton-like degradation of Rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst properties, photogenerated carrier transfer and degradation mechanism
CN102274719A (zh) 一种可见光响应型纳米复合物粉体光触媒及其制备方法
CN116943693B (zh) 一种硒氧化铋/磷酸银纳米复合材料及其制备方法和应用
Song et al. Construction of floatable flower-like plasmonic Bi/BiOCl-loaded hollow kapok fiber photocatalyst for efficient degradation of RhB and antibiotics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant