CN116920758B - 一种钙钛矿溶液的配制方法及钙钛矿电池的制备方法 - Google Patents

一种钙钛矿溶液的配制方法及钙钛矿电池的制备方法 Download PDF

Info

Publication number
CN116920758B
CN116920758B CN202311187895.XA CN202311187895A CN116920758B CN 116920758 B CN116920758 B CN 116920758B CN 202311187895 A CN202311187895 A CN 202311187895A CN 116920758 B CN116920758 B CN 116920758B
Authority
CN
China
Prior art keywords
layer
perovskite
placing
evaporation
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311187895.XA
Other languages
English (en)
Other versions
CN116920758A (zh
Inventor
请求不公布姓名
易海芒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Heijing Optoelectronic Technology Co ltd
Original Assignee
Shenzhen Heijing Optoelectronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Heijing Optoelectronic Technology Co ltd filed Critical Shenzhen Heijing Optoelectronic Technology Co ltd
Priority to CN202311187895.XA priority Critical patent/CN116920758B/zh
Publication of CN116920758A publication Critical patent/CN116920758A/zh
Application granted granted Critical
Publication of CN116920758B publication Critical patent/CN116920758B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种钙钛矿溶液的配制方法及钙钛矿电池的制备方法,包括有以下步骤:S1,将钙钛矿粉末溶解于有机溶剂中,得到混合溶液;S2,将S1得到的混合溶液使用超声震荡加快溶解,超声震荡时间为10‑30min,在超声震荡过程中,对所述混合溶液充入惰性气体,所述惰性气体的充入流量为0‑5L/min,得到钙钛矿溶液。如此,通过在现有钙钛矿溶液的制备过程中充入惰性气体,减少了前驱体溶液中溶剂在长时间使用过程中的逃逸,有效防止前驱体溶液中的离子聚集,提升了钙钛矿溶液的长期稳定性;为生产线稳定产出高质量高良率的钙钛矿薄膜提供了保证。

Description

一种钙钛矿溶液的配制方法及钙钛矿电池的制备方法
技术领域
本发明涉及钙钛矿太阳能电池领域,特别是涉及一种钙钛矿溶液的配制方法及钙钛矿电池的制备方法。
背景技术
太阳能是一种备受瞩目的新型清洁能源,具有大量资源和低成本的优势。目前,光伏电池是将太阳能转化为电能最有效的方式之一,而单晶硅和多晶硅等太阳电池已经有了比较成熟的产业化技术。近年来,钙钛矿/晶硅叠层技术已成为光伏技术领域的研究热点之一,备受广泛关注。这一技术的发展对提高太阳能电池的光电转换效率和降低制造成本具有重要意义,从而促进太阳能发电技术的进一步发展和应用。晶硅/钙钛矿叠层太阳电池的理论有效光电转换效率高达40%以上,远高于晶体硅太阳电池。钙钛矿/晶硅叠层技术的基本原理是将钙钛矿材料和晶硅材料堆叠在一起,形成一个异质结,利用钙钛矿材料的宽带隙、高吸收系数和高载流子迁移率以及晶硅材料的稳定性和良好的电子传输性能,提高太阳能电池的光电转换效率。
目前现有的大部分晶硅/钙钛矿叠层太阳电池,其钙钛矿溶液一般为即配即用,不会考虑以及优化钙钛矿溶液的稳定性;基于工业化生产,制备钙钛矿薄膜的批量大;用少量多次即配即用钙钛矿溶液的方法来制备钙钛矿薄膜,会大大的提高了生产成本和耗时;因此工业生产倾向于一次配置好大量钙钛矿溶液,来用于短则几天,长则数月的钙钛矿薄膜批量制备;但是现有钙钛矿溶液配方,其长期保存的稳定性不佳,基本上在几天之内就会衰减,导致钙钛矿成膜质量差,器件性能低。因此,现亟需一种可以适应于大规模工业化生产的稳定钙钛矿溶液配方。
因此,需要研究一种新的技术方案来解决上述问题。
发明内容
为了解决上述现有技术的缺陷和不足,本发明提供了一种钙钛矿溶液的配制方法及钙钛矿电池的制备方法,其通过在现有钙钛矿溶液的制备过程中充入惰性气体,减少了前驱体溶液中溶剂在长时间使用过程中的逃逸,有效防止前驱体溶液中的离子聚集,提升了钙钛矿溶液的长期稳定性;为生产线稳定产出高质量高良率的钙钛矿薄膜提供了保证。
为实现上述目的,本发明采用如下之技术方案:
一种钙钛矿溶液的配制方法,包括有以下步骤:
S1,将钙钛矿粉末溶解于有机溶剂中,得到混合溶液;
S2,将S1得到的混合溶液使用超声震荡加快溶解,超声震荡时间为10-30min,在超声震荡过程中,对所述混合溶液充入惰性气体,所述惰性气体的充入流量为0-5L/min,得到钙钛矿溶液;
其中,在S1配制的混合溶液中,钙钛矿粉末的结构为ABX3;所述有机溶剂为二甲基甲酰胺(DMF)、G-丁内酯(GBL)、二甲基亚砜(DMSO)和N,N-二甲基乙酰胺(DMA)中的至少一种。
作为一种优选方案,所述惰性气体为氦、氖、氩中的至少一种。
作为一种优选方案,所述有机溶剂包括二甲基甲酰胺(DMF)和二甲基亚砜(DMSO),所述二甲基甲酰胺(DMF)和二甲基亚砜(DMSO)的摩尔量比例为8:2;
将所述钙钛矿粉末放入所述有机溶剂后,使用超声震荡30min,超声震荡过程中,对所述混合溶液充入氩气或氖气,所述氩气或氖气的充入流量为2L/min。
一种钙钛矿电池的制备方法,包括有如下步骤:
步骤一:提供一硅衬底,在所述硅衬底的背面依次制备基底背面钝化层和P型基底掺杂层,在所述硅衬底的表面依次制备基底表面钝化层和N型基底掺杂层;
步骤二:在P型基底掺杂层的背面采用磁控溅射法制备第一透明电极层,其包括:
将完成步骤一的基底样片置于磁控溅射设备中,设置IZO靶材,设备工作功率60W,运行时间为1.5h,第一透明电极层厚度为100nm;
步骤三:在第一透明电极层的背面采用蒸镀法制备第一金属电极层,其包括:将完成步骤二的基底样片放置于掩模版上,放入蒸镀机腔室进行蒸镀,第一金属电极层的厚度为200nm;
步骤四:在N型基底掺杂层的表面采用磁控溅射法制备隧穿层,其包括:将完成步骤三的基底样片放置于磁控溅射设备中,设置IZO靶材,设备工作功率60W,运行时间为1h,隧穿层的厚度为40nm;
步骤五:在隧穿层的表面采用旋涂法制备空穴传输层,其包括:将完成步骤四的基底样片放置于UV-Ozone中清洗15min;将空穴传输层分散液涂覆在隧穿层的表面,旋涂转速为2000r/pm,旋涂时间为40s,旋涂结束后,将基底样片进行退火,退火温度为450℃,退火时间为30min,空穴传输层厚度为20nm;
步骤六:在所述空穴传输层的表面采用旋涂法制备钙钛矿吸收层,其包括:将完成步骤五的基底样片放置于旋涂仪的基台上,取钙钛矿溶液涂覆空穴传输层的表面,旋涂转速为3500r/pm,旋涂时间为30s;
旋涂结束后,将基底样片放置于闪蒸台上,闪蒸时间为30s,闪蒸温度为30℃;
闪蒸结束后进行退火处理,退火温度为100℃,退火时间为15 min,钙钛矿吸收层厚度为500nm;
以及,所述钙钛矿溶液为前述的一种钙钛矿溶液的配制方法制得的钙钛矿溶液;
步骤七:在所述钙钛矿吸收层的表面采用蒸镀法制备钝化层,其包括:称取一定量的丙二胺碘放置于坩埚中,将完成步骤六的基底样片放置于掩模版上蒸镀,钝化层的厚度为4nm;
蒸镀结束后,将基底样片进行退火,退火温度为100℃,退火时间为8min;
步骤八:在所述钝化层的表面采用蒸镀法制备电子传输层,其包括:称取一定量的C60放置于坩埚中,将完成步骤七的基底样片放置于掩模版上蒸镀,电子传输层厚度为20nm;
步骤九:在所述电子传输层的表面采用原子层沉积法制备缓冲层,其包括:利用原子层沉积设备将缓冲层材料沉积至电子传输层的表面;
步骤十:在所述缓冲层的表面采用磁控溅射法制备第二透明电极层,其包括:将完成步骤九的基底样片置于磁控溅射设备中,设置IZO靶材,设备工作功率50W,运行时间为1h,第二透明电极层的厚度为100nm;
步骤十一:在所述第二透明电极层的表面采用蒸镀法制备第二金属电极层;其包括:
将完成步骤十的基底样片放置于掩模版上,放入蒸镀机腔室进行蒸镀,第一金属电极层的厚度为100nm;
步骤十二:在所述第二金属电极层的表面采用蒸镀法制备减反射层;其包括:将完成步骤十一的基底样片放置于掩模版上,放入蒸镀机腔室进行蒸镀,减反射层的厚度为100nm。
作为一种优选方案,步骤三中,所述蒸镀机的蒸镀真空度为2×10-4Pa,蒸发速率2.5Å/S,所述第一透明电极层为金属银制得。
作为一种优选方案,步骤七中,所述蒸镀机的蒸镀真空度为2×10-4Pa,蒸发速率0.1Å/S。
作为一种优选方案,步骤八中,所述蒸镀机的蒸镀真空度为1×10-4Pa,蒸发速率0.1至0.15Å/S。
作为一种优选方案,步骤九中,原子层沉积设备的真空度为0.5×10-4Pa,沉积管道温度为60℃,沉积腔室温度为70℃,所述缓冲层为SnO2制得。
作为一种优选方案,步骤十一中,所述蒸镀机的蒸镀真空度为2×10-4Pa,蒸发速率2.5Å/S,第二金属电极层的厚度为100nm,第二金属电极层为Ag;
步骤十二中,所述蒸镀机的蒸镀真空度为2×10-4Pa,蒸发速率2Å/S,所述减反射层为氟化镁。
本发明与现有技术相比具有明显的优点和有益效果,具体而言,由上述技术方案可知,其主要是在现有钙钛矿溶液的制备过程中充入惰性气体,减少了前驱体溶液中溶剂在长时间使用过程中的逃逸,有效防止前驱体溶液中的离子聚集,提升了钙钛矿溶液的长期稳定性。使用该发明提供的稳定钙钛矿溶液配方,一次配置好的钙钛矿溶液,可用于长达数月的钙钛矿薄膜批量制备而不衰减,为生产线稳定产出高质量高良率的钙钛矿薄膜提供了保证。
为更清楚地阐述本发明的结构特征和功效,下面结合附图与具体实施例来对本发明进行详细说明。
附图说明
图1为本发明之钙钛矿太阳能电池的结构示意图;
图2为本发明之钙钛矿溶液充入惰性气体的示意图;
图3为常规钙钛矿溶液储存30天后的内部离子示意图;
图4为本申请钙钛矿溶液储存30天后的的内部离子示意图;
图5为本申请不同实施例的钙钛矿太阳能电池的性能测试结果图。
附图标识说明:
110、第一金属电极层;111、第一透明电极层;112、P型基底掺杂层;113、基底背面钝化层;114、硅衬底;115、基底表面钝化层;116、N型基底掺杂层;117、隧穿层;211、空穴传输层;212、钙钛矿吸收层;213、钝化层;214、电子传输层;215、缓冲层;216、第二透明电极层;217、第二金属电极层;218、减反射层。
具体实施方式
下面将结合附图,对本发明对本实施例中的技术方案进行清晰、完整的描述,显然,所描述的实施例仅仅是本发明的较佳实施例。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
参照附图1至图5,在本发明实施例中的一种钙钛矿溶液的配制方法,包括有以下步骤:
S1,将钙钛矿粉末溶解于有机溶剂中,得到混合溶液;
S2,将S1配制完成的混合溶液使用超声震荡加快溶解,超声震荡时间为10-30min,在超声震荡过程中,对所述混合溶液充入惰性气体,所述惰性气体的充入流量为0-5L/min。
所述惰性气体通常为氦、氖、氩中的至少一种;当然,也可以是氪、氙等惰性气体。
优选地,在S1配制的混合溶液中,钙钛矿粉末的结构为ABX3;所述有机溶剂为二甲基甲酰胺(DMF)、G-丁内酯(GBL)、二甲基亚砜(DMSO)和N,N-二甲基乙酰胺(DMA)中的至少一种。
优选地,所述有机溶剂包括二甲基甲酰胺(DMF)和二甲基亚砜(DMSO),所述二甲基甲酰胺(DMF)和二甲基亚砜(DMSO)的摩尔量比例为8:2;将所述钙钛矿粉末放入所述有机溶剂后形成混合溶液,使用超声震荡30min,超声震荡过程中,对所述混合溶液充入氩气或氖气,所述氩气或氖气的充入流量为0-5L/min(优选2L/min)。
参阅图1,本发明还公开一种钙钛矿电池,其从下至上依次为第一金属电极层110、第一透明电极层111、P型基底掺杂层112、基底背面钝化层113、硅衬底114、基底表面钝化层115、N型基底掺杂层116、隧穿层117、空穴传输层211、钙钛矿吸收层212、钝化层213、电子传输层214、缓冲层215、第二透明电极层216、第二金属电极层217、减反射层218;
下面提供具体多个制备钙钛矿电池的实施例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种钙钛矿电池的制备方法,包括有如下步骤:
步骤一:提供一硅衬底114,在所述硅衬底114的背面依次制备基底背面钝化层113和P型基底掺杂层112,在所述硅衬底114的表面依次制备基底表面钝化层115和N型基底掺杂层116;
步骤二:在P型基底掺杂层112的背面采用磁控溅射法制备第一透明电极层111,其包括:将完成步骤一的硅衬底114(基底样片)置于磁控溅射设备中,设置IZO靶材,设备工作功率60W,运行时间为1.5h,第一透明电极层111厚度为100nm;
步骤三:在第一透明电极层111的背面采用蒸镀法制备第一金属电极层110,其包括:将完成步骤二的硅衬底(基底样片)放置于掩模版上,放入蒸镀机腔室进行蒸镀,蒸镀真空度为2×10-4Pa,蒸发速率2.5Å/S,将Ag蒸镀至第一透明电极层111上,第一金属电极层110的厚度为200nm;
步骤四:在N型基底掺杂层116的表面采用磁控溅射法制备隧穿层117,其包括:将完成步骤三的硅衬底(基底样片)放置于磁控溅射设备中,设置IZO靶材,设备工作功率60W,运行时间为1h,隧穿层的厚度为40nm;
步骤五:在隧穿层117的表面采用旋涂法制备空穴传输层211,其包括:将完成步骤四的硅衬底(基底样片)放置于UV-Ozone中清洗15min;将空穴传输层211分散液涂覆在隧穿层117的表面,旋涂转速为2000r/pm,旋涂时间40s,空穴传输层211分散液的量为100ul,其中:配备空穴传输层211分散液可以是一定量的NiOx粉末溶解于一定量的超纯水中,如称取0.05mol的NiOx粉末溶解于1ml的超纯水比例,超声震荡20min。
旋涂结束后,将基底样片进行退火,退火温度为450℃,退火时间为30min,空穴传输层211厚度为20nm;
步骤六:在所述空穴传输层211的表面采用旋涂法制备钙钛矿吸收层212,其包括:配备钙钛矿溶液,称量钙钛矿粉末溶解于1ml二甲基甲酰胺(DMF)和二甲基亚砜(DMSO)溶剂中,溶剂比例为8:2,使用超声震荡溶解,超声震荡时间为30min;在超声震荡过程中,对钙钛矿溶液充入氩气,氩气充入流量为2L/min。
将完成步骤五的硅衬底114(基底样片)放置于旋涂仪的基台上,取钙钛矿溶液涂覆在空穴传输层211的表面,旋涂转速为3500r/pm,旋涂时间为30s;
旋涂结束后,将硅衬底(基底样片)放置于闪蒸台上,闪蒸时间为30s,闪蒸温度为30℃;
闪蒸结束后进行退火处理,退火温度为100℃,退火时间为15 min,钙钛矿吸收层212厚度为500nm;
步骤七:在所述钙钛矿吸收层212的表面采用蒸镀法制备钝化层213,其包括:称取一定量的丙二胺碘放置于坩埚中,将完成步骤六的基底样片放置于掩模版上,蒸镀真空度为2×10-4Pa,蒸发速率0.1Å/S,钝化层213的厚度为4nm;
蒸镀结束后,将基底样片进行退火,退火温度为100℃,退火时间为8min;
步骤八:在所述钝化层213的表面采用蒸镀法制备电子传输层214,其包括:称取一定量的C60放置于坩埚中,将完成步骤七的硅衬底放置于掩模版上,蒸镀真空度为1×10- 4Pa,蒸发速率0.1至0.15Å/S,将C60蒸镀至钝化层213上,电子传输层214厚度为20nm;
步骤九:在所述电子传输层214的表面采用原子层沉积法制备缓冲层215,其包括:利用原子层沉积设备,设置原子层沉积设的真空度为0.5×10-4 Pa,沉积管道温度为60℃,沉积腔室温度为70℃,将SnO2蒸镀至电子传输层214的表面,缓冲层215的厚度为15nm;
步骤十:在所述缓冲层215的表面采用磁控溅射法制备第二透明电极层216,其包括:将完成步骤九的硅衬底置于磁控溅射设备中,设置IZO靶材,设备工作功率50W,运行时间为1h,第二透明电极层216的厚度为100nm;
步骤十一:在所述第二透明电极层216的表面采用蒸镀法制备第二金属电极层217;其包括:将完成步骤十的硅衬底放置于掩模版上,放入蒸镀机腔室进行蒸镀,蒸镀真空度为2×10-4Pa,蒸发速率2.5Å/S,将Ag蒸镀至层膜上,第二金属电极层217的厚度为100nm;
步骤十二:在所述第二金属电极层217的表面采用蒸镀法制备减反射层218;其包括:将完成步骤十一的硅衬底放置于掩模版上,放入蒸镀机腔室进行蒸镀,蒸镀真空度为2×10-4Pa,蒸发速率2Å/S,将氟化镁蒸镀至第二金属电极层217上,减反射层218的厚度为100nm。即本实施例1是:基于现配现用含氩气钙钛矿溶液的钙钛矿太阳电池的制备方法。
实施例2
本实施例与实施例1基本一致,不同之处在于:在步骤六配置钙钛矿溶液后,将配置好钙钛矿溶液的静置30天后,进行后续的制备步骤;即本实施例是:基于使用储存30天后含氩气钙钛矿溶液的钙钛矿太阳电池的制备方法。
实施例3
本实施例与实施例1基本一致,不同之处在于:在步骤六中,对钙钛矿溶液充入氖气,氖气充入流量为2L/min。即本实施例是:基于现配现用含氖气钙钛矿溶液的钙钛矿太阳电池制备方法;
实施例4
本实施例与实施例3基本一致,不同之处在于:在步骤六配置钙钛矿溶液后,将钙钛矿溶液静置30天后,进行后续的制备步骤。即本实施例是:基于使用储存30天后含氖气钙钛矿溶液的钙钛矿太阳电池的制备方法。
实施例5
本实施例与实施例1基本一致,不同之处在于:在步骤六配置钙钛矿溶液的震荡过程中,不对钙钛矿溶液充入气体。即本实施例是:基于现配现用不充入惰性气体钙钛矿溶液的钙钛矿太阳电池制备方法。
实施例6
本实施例与实施例5基本一致,不同之处在于:在步骤六配置钙钛矿溶液的震荡过程中,不对钙钛矿溶液充入气体,且将配置好钙钛矿溶液静置30天后,进行后续的制备步骤。即本实施例是:基于使用储存30天后不充入惰性气体钙钛矿溶液的钙钛矿太阳电池器件制备方法。
利用太阳光模拟器,进行一个标准太阳光强校准,并对面积为1.0cm2的实施例器件进行长时间段的IV测试,设置起始电压为1.95V,截止电压为0V,量程为100mA,结果保留两位小数,其测试结果如图5所示。
本发明的设计重点在于,其主要是在现有钙钛矿溶液的制备过程中充入惰性气体,减少了前驱体溶液中溶剂在长时间使用过程中的逃逸,有效防止前驱体溶液中的离子聚集,提升了钙钛矿溶液的长期稳定性。使用该发明提供的稳定钙钛矿溶液配方,一次配置好的钙钛矿溶液,可用于长达数月的钙钛矿薄膜批量制备而不衰减,为生产线稳定产出高质量高良率的钙钛矿薄膜提供了保证。具体如图5所示,实例6的太阳能电池(器件)制备使用的是储存30天后的无惰性气体钙钛矿溶液。从器件性能表现来看,实例6的器件性能相比于使用即配即用的无惰性气体钙钛矿溶液实例5,有了显著衰减,其光电转化效率由31.09%降低至26.52%,这表明无充入惰性气体钙钛矿溶液十分不稳定,在储存的30天内出现了衰减,导致成膜质量差,器件性能低。
而对于实例2,4使用的含有惰性气体钙钛矿溶液而言,其30天的储存并没导致前驱体溶液衰减严重;就实例1,2器件性能而言,加入氩气惰性气体钙钛矿溶液,相对于不充入惰性气体的钙钛矿前前驱体溶液稳定性大大提升;使用储存30天后加入氖气钙钛矿溶液的实例2,器件性能相对于实例1仅衰减了不到1个百分点;就实例3,4器件性能而言,加入氖气钙钛矿溶液在30天的储存内不会存在衰减;甚至实例4的器件性能优于实例3。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (9)

1.一种钙钛矿溶液的配制方法,其特征在于:包括有以下步骤:
S1,将钙钛矿粉末溶解于有机溶剂中,得到混合溶液;
S2,将S1得到的混合溶液使用超声震荡加快溶解,超声震荡时间为10-30min,在超声震荡过程中,对所述混合溶液充入惰性气体,所述惰性气体的充入流量为0-5L/min,得到钙钛矿溶液;
其中,在S1配制的混合溶液中,钙钛矿粉末的结构为ABX3;所述有机溶剂为二甲基甲酰胺(DMF)、G-丁内酯(GBL)、二甲基亚砜(DMSO)和N,N-二甲基乙酰胺(DMA)中的至少一种。
2.根据权利要求1所述的一种钙钛矿溶液的配制方法,其特征在于:所述惰性气体为氦、氖、氩中的至少一种。
3.根据权利要求2所述的一种钙钛矿溶液的配制方法,其特征在于:所述有机溶剂包括二甲基甲酰胺(DMF)和二甲基亚砜(DMSO),所述二甲基甲酰胺(DMF)和二甲基亚砜(DMSO)的摩尔量比例为8:2;
将所述钙钛矿粉末放入所述有机溶剂后,使用超声震荡30min,超声震荡过程中,对所述混合溶液充入氩气或氖气,所述氩气或氖气的充入流量为2L/min。
4.一种钙钛矿电池的制备方法,其特征在于:包括有如下步骤:
步骤一:提供一硅衬底,在所述硅衬底的背面依次制备基底背面钝化层和P型基底掺杂层,在所述硅衬底的表面依次制备基底表面钝化层和N型基底掺杂层;
步骤二:在P型基底掺杂层的背面采用磁控溅射法制备第一透明电极层,其包括:
将完成步骤一的基底样片置于磁控溅射设备中,设置IZO靶材,设备工作功率60W,运行时间为1.5h,第一透明电极层厚度为100nm;
步骤三:在第一透明电极层的背面采用蒸镀法制备第一金属电极层,其包括:将完成步骤二的基底样片放置于掩模版上,放入蒸镀机腔室进行蒸镀,第一金属电极层的厚度为200nm;
步骤四:在N型基底掺杂层的表面采用磁控溅射法制备隧穿层,其包括:将完成步骤三的基底样片放置于磁控溅射设备中,设置IZO靶材,设备工作功率60W,运行时间为1h,隧穿层的厚度为40nm;
步骤五:在隧穿层的表面采用旋涂法制备空穴传输层,其包括:将完成步骤四的基底样片放置于UV-Ozone中清洗15min;将空穴传输层分散液涂覆在隧穿层的表面,旋涂转速为2000r/pm,旋涂时间为40s,旋涂结束后,将基底样片进行退火,退火温度为450℃,退火时间为30min,空穴传输层厚度为20nm;
步骤六:在所述空穴传输层的表面采用旋涂法制备钙钛矿吸收层,其包括:将完成步骤五的基底样片放置于旋涂仪的基台上,取钙钛矿溶液涂覆空穴传输层的表面,旋涂转速为3500r/pm,旋涂时间为30s;
旋涂结束后,将基底样片放置于闪蒸台上,闪蒸时间为30s,闪蒸温度为30℃;
闪蒸结束后进行退火处理,退火温度为100℃,退火时间为15 min,钙钛矿吸收层厚度为500nm;
以及,所述钙钛矿溶液为权利要求1至3中任一项所述的一种钙钛矿溶液的配制方法制得的钙钛矿溶液;
步骤七:在所述钙钛矿吸收层的表面采用蒸镀法制备钝化层,其包括:称取一定量的丙二胺碘放置于坩埚中,将完成步骤六的基底样片放置于掩模版上蒸镀,钝化层的厚度为4nm;
蒸镀结束后,将基底样片进行退火,退火温度为100℃,退火时间为8min;
步骤八:在所述钝化层的表面采用蒸镀法制备电子传输层,其包括:称取一定量的C60放置于坩埚中,将完成步骤七的基底样片放置于掩模版上蒸镀,电子传输层厚度为20nm;
步骤九:在所述电子传输层的表面采用原子层沉积法制备缓冲层,其包括:利用原子层沉积设备将缓冲层材料沉积至电子传输层的表面;
步骤十:在所述缓冲层的表面采用磁控溅射法制备第二透明电极层,其包括:将完成步骤九的基底样片置于磁控溅射设备中,设置IZO靶材,设备工作功率50W,运行时间为1h,第二透明电极层的厚度为100nm;
步骤十一:在所述第二透明电极层的表面采用蒸镀法制备第二金属电极层;其包括:
将完成步骤十的基底样片放置于掩模版上,放入蒸镀机腔室进行蒸镀,第一金属电极层的厚度为100nm;
步骤十二:在所述第二金属电极层的表面采用蒸镀法制备减反射层;其包括:将完成步骤十一的基底样片放置于掩模版上,放入蒸镀机腔室进行蒸镀,减反射层的厚度为100nm。
5.根据权利要求4所述的一种钙钛矿电池的制备方法,其特征在于:步骤三中,所述蒸镀机的蒸镀真空度为2×10-4Pa,蒸发速率2.5Å/S,所述第一透明电极层为金属银制得。
6.根据权利要求4所述的一种钙钛矿电池的制备方法,其特征在于:步骤七中,所述蒸镀机的蒸镀真空度为2×10-4Pa,蒸发速率0.1Å/S。
7.根据权利要求4所述的一种钙钛矿电池的制备方法,其特征在于:步骤八中,所述蒸镀机的蒸镀真空度为1×10-4Pa,蒸发速率0.1至0.15Å/S。
8.根据权利要求4所述的一种钙钛矿电池的制备方法,其特征在于:步骤九中,原子层沉积设备的真空度为0.5×10-4 Pa,沉积管道温度为60℃,沉积腔室温度为70℃,所述缓冲层为SnO2制得。
9.根据权利要求4所述的一种钙钛矿电池的制备方法,其特征在于:步骤十一中,所述蒸镀机的蒸镀真空度为2×10-4Pa,蒸发速率2.5Å/S,第二金属电极层的厚度为100nm,第二金属电极层为Ag;
步骤十二中,所述蒸镀机的蒸镀真空度为2×10-4Pa,蒸发速率2Å/S,所述减反射层为氟化镁。
CN202311187895.XA 2023-09-15 2023-09-15 一种钙钛矿溶液的配制方法及钙钛矿电池的制备方法 Active CN116920758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311187895.XA CN116920758B (zh) 2023-09-15 2023-09-15 一种钙钛矿溶液的配制方法及钙钛矿电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311187895.XA CN116920758B (zh) 2023-09-15 2023-09-15 一种钙钛矿溶液的配制方法及钙钛矿电池的制备方法

Publications (2)

Publication Number Publication Date
CN116920758A CN116920758A (zh) 2023-10-24
CN116920758B true CN116920758B (zh) 2023-12-22

Family

ID=88386389

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311187895.XA Active CN116920758B (zh) 2023-09-15 2023-09-15 一种钙钛矿溶液的配制方法及钙钛矿电池的制备方法

Country Status (1)

Country Link
CN (1) CN116920758B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609643A (zh) * 2015-12-21 2016-05-25 成都新柯力化工科技有限公司 一种钙钛矿型太阳能电池及制备方法
CN106622922A (zh) * 2016-12-27 2017-05-10 南京理工大学 全无机钙钛矿多孔薄膜的冷冻干燥制备方法
CN108276989A (zh) * 2018-01-10 2018-07-13 天津大学 一种具有高增益特性的2d钙钛矿量子阱薄膜的制备方法
CN109786718A (zh) * 2019-01-30 2019-05-21 合肥国轩高科动力能源有限公司 一种无机钙钛矿包覆MXene二维层状负极材料的制备方法
CN112063358A (zh) * 2020-07-29 2020-12-11 阜南县中信柳木工艺品有限公司 一种提高木制工艺品粘结强度的处理方法
CN114899325A (zh) * 2022-04-08 2022-08-12 南京大学 一种钙钛矿太阳能电池器件的制备方法
CN116669443A (zh) * 2023-07-21 2023-08-29 深圳黑晶光电技术有限公司 一种图形化电子传输层的叠层太阳能电池及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105609643A (zh) * 2015-12-21 2016-05-25 成都新柯力化工科技有限公司 一种钙钛矿型太阳能电池及制备方法
CN106622922A (zh) * 2016-12-27 2017-05-10 南京理工大学 全无机钙钛矿多孔薄膜的冷冻干燥制备方法
CN108276989A (zh) * 2018-01-10 2018-07-13 天津大学 一种具有高增益特性的2d钙钛矿量子阱薄膜的制备方法
CN109786718A (zh) * 2019-01-30 2019-05-21 合肥国轩高科动力能源有限公司 一种无机钙钛矿包覆MXene二维层状负极材料的制备方法
CN112063358A (zh) * 2020-07-29 2020-12-11 阜南县中信柳木工艺品有限公司 一种提高木制工艺品粘结强度的处理方法
CN114899325A (zh) * 2022-04-08 2022-08-12 南京大学 一种钙钛矿太阳能电池器件的制备方法
CN116669443A (zh) * 2023-07-21 2023-08-29 深圳黑晶光电技术有限公司 一种图形化电子传输层的叠层太阳能电池及制备方法

Also Published As

Publication number Publication date
CN116920758A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN112802965B (zh) 基于界面修饰的钙钛矿太阳能电池的制备方法
CN106025085A (zh) 基于Spiro-OMeTAD/CuXS复合空穴传输层的钙钛矿太阳能电池及其制备方法
CN111599923A (zh) 一种提高钙钛矿太阳能电池效率的方法
CN105810831A (zh) 一种铅锡混合钙钛矿薄膜、其制备方法及应用
CN114678472A (zh) 一种FAPbI3钙钛矿薄膜及其高效的钙钛矿太阳能电池的方法
CN113972323A (zh) 一种掺杂硫氰酸钠的高效稳定钙钛矿太阳能电池及其制备方法
CN117715485A (zh) 一种多孔溶解制备钙钛矿薄膜的方法及叠层太阳能电池
CN117119860A (zh) 一种三元共蒸制备钙钛矿薄膜的方法及叠层太阳能电池
CN117279464A (zh) 一种梯度共蒸制备钙钛矿吸收层的方法及叠层太阳能电池
CN220023501U (zh) 一种晶硅/钙钛矿叠层太阳能电池
CN116634823A (zh) 一种制备钝化层的方法及晶硅/钙钛矿叠层太阳能电池
CN111129310B (zh) 一种引入辣椒素的钙钛矿薄膜制备方法
CN109888100B (zh) 一种铷掺杂氧化镍薄膜的制备及作为空穴传输层在钙钛矿太阳能电池中的应用
CN116920758B (zh) 一种钙钛矿溶液的配制方法及钙钛矿电池的制备方法
CN113328040B (zh) 一种ZnO掺杂Fe2O3为阴极界面层材料的有机太阳能电池制备方法
Wang Comparison of development prospects between silicon solar cells and perovskite solar cells
CN117998938B (zh) 一种钙钛矿薄膜制备方法及叠层太阳能电池
CN117939978B (zh) 一种钙钛矿/电子传输层一体化成膜方法及叠层电池
CN116847704B (zh) 一种钙钛矿薄膜制备方法及叠层太阳能电池
CN220359678U (zh) 一种晶硅/钙钛矿叠层太阳能电池
CN118647243B (zh) 一种自氧化层制备方法、叠层太阳能电池及制备方法
CN220307715U (zh) 一种具有双吸光层结构的钙钛矿太阳电池
CN117642034A (zh) 一种钙钛矿薄膜制备方法、叠层太阳能电池及制备方法
CN118829332A (zh) 一种钙钛矿吸收层的制备方法及叠层电池
Chen Characteristic analysis and comparison of perovskite solar cell

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant