CN116904331A - 重组宿主细胞中碳源调节的蛋白的产生 - Google Patents

重组宿主细胞中碳源调节的蛋白的产生 Download PDF

Info

Publication number
CN116904331A
CN116904331A CN202310749149.9A CN202310749149A CN116904331A CN 116904331 A CN116904331 A CN 116904331A CN 202310749149 A CN202310749149 A CN 202310749149A CN 116904331 A CN116904331 A CN 116904331A
Authority
CN
China
Prior art keywords
host cell
protein
expression
flo8
poi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310749149.9A
Other languages
English (en)
Inventor
B·加塞尔
C·雷布涅格
M·C·弗洛里斯·维勒加斯
D·马塔诺维赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lonza AG
Original Assignee
Lonza AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65268724&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN116904331(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Lonza AG filed Critical Lonza AG
Publication of CN116904331A publication Critical patent/CN116904331A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/001Vector systems having a special element relevant for transcription controllable enhancer/promoter combination
    • C12N2830/005Vector systems having a special element relevant for transcription controllable enhancer/promoter combination repressible enhancer/promoter combination, e.g. KRAB
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/84Pichia

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

一种重组宿主细胞,其包括编码FLO8蛋白的内源基因,所述FLO8蛋白包括鉴定为SEQ ID NO:1的氨基酸序列或其同源物,所述宿主细胞通过一种或多种基因修饰进行工程改造,以与所述一种或多种基因修饰之前的宿主细胞相比减少所述基因的表达,并且所述宿主细胞包括异源表达盒,所述异源表达盒包括受表达盒启动子(ECP)控制的目的基因(GOI),所述ECP可被非甲醇碳源抑制;以及使用所述重组宿主细胞生产目的蛋白的方法。

Description

重组宿主细胞中碳源调节的蛋白的产生
分案申请
本申请为申请号202080008585.5、申请日2020年1月10日、题为“重组宿主细胞中碳源调节的蛋白的产生”的分案申请。
技术领域
本发明涉及在重组宿主细胞中目的蛋白(POI)的产生,所述重组宿主细胞包括异源表达盒以表达编码POI的目的基因(GOI),所述宿主细胞经工程改造以减少FLO8蛋白的表达。
背景技术
在重组宿主细胞培养物中产生的蛋白质作为诊断和治疗剂已经变得越来越重要。为此,工程改造和/或选择细胞以产生异常高水平的目的重组蛋白或目的异源蛋白。细胞培养条件的优化对于成功商业化生产重组蛋白或异源蛋白非常重要。
在细胞培养中,利用原核宿主细胞和真核宿主细胞均已经成功生产目的蛋白(POI)。真核宿主细胞,特别是哺乳动物宿主细胞、酵母或丝状真菌或细菌,通常用作用于生物制药蛋白以及用于散装化学品(bulk chemicals)的生产宿主。最突出的示例是酵母如酿酒酵母(Saccharomyces cerevisiae)、巴斯德毕赤酵母(Pichia pastoris)或多形汉逊酵母(Hansenula polymorpha),丝状真菌如泡盛曲霉(Aspergillus awamori)或里氏木霉(Trichoderma reesei),或哺乳动物细胞如CHO细胞。甲基营养酵母(Methylotrophicyeast)(诸如巴斯德毕赤酵母)因高效分泌异源蛋白而闻名。巴斯德毕赤酵母已经被重新分类为一个新属孔玛氏酵母(Komagataella),并且被分为三个物种,巴斯德孔玛氏酵母(K.pastoris)、菲氏孔玛氏酵母(K.phaffii)和假巴斯德孔玛氏酵母(K.pseudopastoris)。通常用于生物技术应用的菌株属于两个提出的物种,巴斯德孔玛氏酵母和菲氏孔玛氏酵母。菌株GS115、X-33、CBS2612和CBS7435为菲氏孔玛氏酵母,而SMD系列蛋白酶缺陷型菌株(例如SMD1168)被归为巴斯德孔玛氏酵母型物种,它是所有可用的巴斯德毕赤酵母菌株的参考菌株(Kurtzman 2009,《工业微生物学与生物技术杂志(J Ind MicrobiolBiotechnol.)》36(11):1435-8)。Mattanovich等人(《微生物细胞工厂(Microbial CellFactories)》2009,8:29doi:10.1186/1475-2859-8-29)描述了巴斯德孔玛氏酵母型菌株DSMZ 70382的基因组测序,并且分析了其分泌蛋白和糖转运蛋白。
WO2015/158808A2公开了一种经工程改造以过表达辅助蛋白的重组宿主细胞。
WO2015/158800A1公开了通过工程改造以低表达某些蛋白质(称为KO蛋白质)来提高宿主细胞表达和/或分泌POI的能力,所述蛋白质对宿主细胞是内源的并且已被证明在过表达时降低蛋白质生产的产量。因此,这些KO蛋白已经被选择作为用于提高产量的敲除靶。反过来,发现在巴斯德毕赤酵母宿主细胞系中低表达KO蛋白可使模型蛋白的产量增加1.2倍至2.4倍。已经使用了诱导型(pAOX1)启动子或组成型(pGAP)启动子。KO蛋白已被鉴定为酿酒酵母FLO8蛋白的巴斯德毕赤酵母同源物、酿酒酵母HCH1蛋白的巴斯德毕赤酵母同源物和酿酒酵母SCJ1蛋白的KO3 a巴斯德毕赤酵母同源物。
Rebnegger等人(《应用与环境微生物学(Applied and EnvironmentalMicrobiology)》2016,82(15):4570-4583)描述了巴斯德毕赤酵母flo8缺失突变体的葡萄糖限制的恒化器培养物,以防止过滤器堵塞。
用于重组宿主细胞中蛋白质生产的启动子被调节(例如,在向培养基中加入甲醇时诱导,受甲醇控制),或者保持活性(组成型)。甲醇控制的启动子导致技术限制,诸如反应器中的废热或氧气供应。
WO20137050551A1公开了巴斯德毕赤酵母的一系列碳源可调节启动子(被命名为pG1-pG8),以及在细胞培养物中限制碳源时诱导蛋白质产生。
WO2017021541A1公开了巴斯德毕赤酵母的碳源可调节启动子(被指定为pG1)的变体,其由除甲醇之外的碳源调节,即不受甲醇控制,例如在生长阶段期间在碳源的存在下被抑制,并且通过在生产阶段限制碳源来诱导。
Prielhofer等人(《微生物细胞工厂》,2013;12(5):1-10)描述了在没有甲醇的情况下可调节和诱导的巴斯德毕赤酵母启动子。
Prielhofer等人(《生物技术与生物工程(Biotechnology and Bioengineering)》2018;115:2479–2488)描述了葡萄糖调节的PGTH1启动子和工程改造的变体,其具有与野生型启动子的诱导特性相比大大增强的诱导特性。
EP2669375A1公开了通过MPP1同源物的高水平表达而具有改善的蛋白质表达的酵母。
Hye Young Kim等人(《生物化学与生物物理研究通讯(Biochemical andBiophysical Research Communications)》2014,449:202-207)描述了Flo8激活因子的两个结构域在一组靶基因的转录激活中的作用,以及Flo8通过与Mss11激活因子相互作用的作用模式。
EP2952584A1公开了通过过表达某些多核苷酸而改善的蛋白质生产。
EP2258855A1公开了巴斯德毕赤酵母的某些前导和分泌信号序列。
WO2010099195A1公开了基因修饰的巴斯德毕赤酵母菌株以及异源蛋白和伴侣蛋白的共表达。
发明内容
本发明的目的是改善重组宿主细胞中的蛋白质产生并提高蛋白质生产的产量。本发明的另一个目的是提供用于在宿主细胞中生产重组蛋白或异源蛋白的方法,其中降低了在生产过程期间宿主细胞的形态改变的风险。
该目的通过如所要求保护的主题来解决。
根据本发明,提供了包含编码FLO8蛋白的内源基因的重组宿主细胞,所述FLO8蛋白包括鉴定为SEQ ID NO:1的氨基酸序列或其同源物,所述宿主细胞通过一种或多种基因修饰进行工程改造,以与所述一种或多种基因修饰之前的宿主细胞相比减少(或消除)所述多核苷酸的表达,并且所述宿主细胞包括异源表达盒,所述异源表达盒包括目的基因(GOI),以在表达盒启动子(ECP)的控制下表达所述GOI。
具体地,ECP可通过非甲醇碳源而被调节。
具体地,ECP可通过非甲醇碳源而被抑制。
具体地,ECP可通过抑制碳源而被抑制,例如不是甲醇的抑制碳源,诸如葡萄糖或甘油,并且可通过减少抑制碳源的量而诱导(去抑制)。
具体地,ECP不是通过甲醇诱导的。
具体地,非甲醇碳源是除甲醇之外的适合用于宿主细胞培养的任何碳源。具体地,非甲醇碳源不是甲醇。
具体地,非甲醇碳源是除甲醇之外的碳源。特别是,ECP不受甲醇控制。尽管细胞培养物或细胞培养基可以包含甲醇或可以不包含甲醇,但如本文所使用的ECP不受任何量的甲醇调节,特别是不受甲醇诱导,因此不受甲醇控制。具体地,ECP可以在无甲醇的细胞培养物或细胞培养基中被完全诱导。
为了本文所述的目的,术语“FLO8蛋白”应指两者,包括鉴定为SEQ ID NO:1的氨基酸序列的蛋白,或与SEQ ID NO:1具有一定同源性的氨基酸序列。但是,同源序列也称为FLO8同源物。
具体地,FLO8同源物与SEQ ID NO:1具有25%、30%或35%的序列同一性中的任何一种,例如,具有40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%或95%的序列同一性中的任何一种,或者与SEQ ID NO:1具有100%同一性。具体地,如本文进一步公开的,例如当比较全长序列时,确定序列同一性。
具体地,FLO8蛋白或相应的同源物包括LisH结构域,其包括与SEQ ID NO:50的50%、60%、65%、70%、75%、80%、85%、90%或95%序列同一性中的至少一个,或者与SEQID NO:50具有100%同一性。
根据一个具体方面,FLO8蛋白的LisH结构域包括与真核生物体的FLO8蛋白的任何天然存在的LisH结构域或相应的FLO8直系同源物具有80%、85%、90%或95%序列同一性中的至少一个,或者与此类天然存在的LisH结构域具有100%同一性,所述LisH结构域具体是酵母或真菌,特别是丝状真菌的LisH结构域,诸如包含以下任何一种或由以下任何一种组成的LisH结构域:
a)SEQ ID NO:50,其是菲氏孔玛氏酵母的FLO8蛋白的LisH结构域(SEQ ID NO:50);
b)SEQ ID NO:51,巴斯德孔玛氏酵母的FLO8蛋白的LisH结构域(BLASTp:与SEQ IDNO:50(23/24aa)具有96%同一性);
c)SEQ ID NO:52,其是酿酒酵母菌株的FLO8直系同源物的LisH结构域(BLASTp:与SEQ ID NO:50(13/24aa)具有54%同一性);
d)SEQ ID NO:53,其是另一个酿酒酵母菌株的FLO8直系同源物的LisH结构域(BLASTp:与SEQ ID NO:50(13/24aa)具有54%同一性);
e)SEQ ID NO:54,其是解脂耶氏酵母(Yarrowia lipolytica)菌株的FLO8直系同源物的LisH结构域(BLASTp:与SEQ ID NO:50(12/17aa)具有71%同一性);
f)SEQ ID NO:55,其是多形亨利绪方酵母(Ogataea polymorpha)的FLO8直系同源物的LisH结构域(BLASTp:与SEQ ID NO:50(8/13aa)具有62%同一性);或者
g)SEQ ID NO:56,其是黑曲霉菌(Aspergillus niger)菌株的FLO8直系同源物的LisH结构域(BLASTp:与SEQ ID NO:50(8/11aa)具有73%同一性)。
通常,FLO8蛋白的LisH结构域具有25-27个氨基酸的长度,并且与人蛋白LIS1具有一定的序列同一性,如在数据库Pfam、ID号PF08513及相应的序列中所述。在分子生物学中,LisH结构域是在大量具有广泛功能的真核蛋白质中发现的蛋白质结构域。LIS1的N末端区域中的LisH结构域的结构将其描述为二聚化基序(LIS1的二聚化机制及其对含有LisH基序的蛋白质的影响(The dimerization mechanism of LIS1 and its implication forproteins containing the LisH motif).Mateja A,Cierpicki T,Paduch M,DerewendaZS,Otlewski J.2006.《分子生物学杂志(J Mol Biol.)》357(2):621-31)。
特别理解的是,FLO8同源物对于用作产生如本文进一步描述的POI的重组宿主细胞的宿主细胞是内源的。特别是,FLO8蛋白是对宿主细胞物种的物种内源的直系同源物。
具体地,如果宿主细胞是巴斯德毕赤酵母,特别分别是巴斯德孔玛氏酵母和菲氏孔玛氏酵母,则FLO8蛋白是巴斯德毕赤酵母,特别是巴斯德孔玛氏酵母或菲氏孔玛氏酵母来源的。可替代地,FLO8蛋白包括巴斯德毕赤酵母,特别是巴斯德孔玛氏酵母或菲氏孔玛氏酵母来源的此类FLO8蛋白的同源(或直系同源)序列,该同源(直系同源)序列对于野生型宿主细胞是内源的,如果是其他来源或物种的话。例如,如果宿主细胞是菲氏孔玛氏酵母,则内源性FLO8蛋白包括鉴定为SEQ ID NO:1的氨基酸序列或由鉴定为SEQ ID NO:1的氨基酸序列组成。根据另一个示例,如果宿主细胞是巴斯德孔玛氏酵母,则内源性FLO8蛋白包括鉴定为SEQ ID NO:3的氨基酸序列或由鉴定为SEQ ID NO:3的氨基酸序列组成,其与SEQIDNO:1具有91%同一性。但是,如果宿主细胞是不同的物种(除了巴斯德孔玛氏酵母和/或菲氏孔玛氏酵母),则对宿主细胞内源的FLO8蛋白序列是SEQ ID NO:1的同源物,并且出于本文所述的目的,宿主细胞中此类同源物的表达(SEQ ID NO:1的同源序列)减少。
具体地,任何或每种同源序列的特征在于相应野生型宿主细胞中的FLO8蛋白与巴斯德毕赤酵母,特别是巴斯德孔玛氏酵母或菲氏孔玛氏酵母中的FLO8蛋白具有相同的定性功能,例如作为转录因子,特别是参与细胞粘附、絮凝、侵入性生长或淀粉分解代谢的调节的DNA结合转录激活因子,尽管与野生型巴斯德孔玛氏酵母或菲氏孔玛氏酵母中的FLO8蛋白相比,其定量活性可能不同。
具体地,相应的同源序列具有不同于巴斯德毕赤酵母的物种,特别是巴斯德孔玛氏酵母或菲氏孔玛氏酵母,例如另一种酵母或丝状真菌细胞,优选孔玛氏酵母属或毕赤酵母属的酵母,或酿酒酵母属(Saccharomyces genus)或任何甲基营养酵母。但是,宿主细胞可以是动物细胞、脊椎动物细胞、哺乳动物细胞、人细胞、植物细胞、细菌细胞、线虫细胞、无脊椎动物细胞诸如昆虫细胞或软体动物细胞或干细胞,并且本文所述的相应的FLO8蛋白及其同源物对于相应的宿主细胞是内源的,但是其表达如本文所述被减少或消除。
具体地,FLO8蛋白同源物是内源性的或来源于毕赤酵母物种,或内源性的或来源于任何其他酵母、真菌或细菌,并且与SEQ ID NO:1或SEQ ID NO:2具有25%的序列同一性,在特定情况下35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%中的至少任何一种,或者与SEQ ID NO:1或SEQ ID NO:2具有100%同一性。具体地,在将外源性FLO8蛋白(或编码外源性FLO8蛋白的基因)添加到毕赤酵母(巴斯德毕赤酵母)或酿酒酵母(酿酒酵母)菌株的flo8敲除菌株的培养物中时,如果外源性FLO8蛋白具有功能性,则外源性FLO8蛋白被确定为FLO8蛋白同源物,所述敲除菌株与外源性FLO8蛋白的来源不同,从而证明缺失的内源性FLO8蛋白具有功能性替换。
具体地,FLO8蛋白是巴斯德毕赤酵母来源的,特别是由宿主细胞内源的基因编码的,其中宿主细胞是巴斯德毕赤酵母。
具体地,FLO8蛋白是菲氏孔玛氏酵母来源的,其包括SEQ ID NO:1或由SEQ ID NO:1组成。具体地,此类FLO8蛋白由对宿主细胞内源的基因编码,其中宿主细胞是菲氏孔玛氏酵母。具体地,FLO8蛋白由鉴定为SEQ ID NO:2的核苷酸序列编码。
具体地,FLO8蛋白是孔玛氏酵母来源的,其与SEQ ID NO:1具有至少90%或91%的序列同一性。具体地,FLO8蛋白是巴斯德孔玛氏酵母来源的,其包括SEQ ID NO:3或由SEQID NO:3组成。具体地,此类FLO8蛋白由对宿主细胞内源的基因编码,其中宿主细胞是巴斯德孔玛氏酵母。
具体地,FLO8蛋白是酿酒酵母来源的,其包括与SEQ ID NO:1的至少35%的序列同一性。具体地,FLO8蛋白是酿酒酵母来源的,其包括SEQ ID NO:5或SEQ ID NO:6或者由SEQID NO:5或SEQ ID NO:6组成。具体地,此类FLO8蛋白由对宿主细胞内源的基因编码,其中宿主细胞是酿酒酵母。
具体地,FLO8蛋白是解脂耶氏酵母来源的,其包括与SEQ ID NO:1的至少40%或44%的序列同一性。具体地,FLO8蛋白是解脂耶氏酵母来源的,其包括SEQ ID NO:7或由SEQID NO:7组成。具体地,此类FLO8蛋白由对宿主细胞内源的基因编码,其中宿主细胞是解脂耶氏酵母。
具体地,FLO8蛋白是亨利绪方酵母来源的,其包括与SEQ ID NO:1的至少30%或34%的序列同一性。具体地,FLO8蛋白是多形亨利绪方酵母来源的,其包括SEQ ID NO:8或由SEQ ID NO:8组成。具体地,此类FLO8蛋白由对宿主细胞内源的基因编码,其中宿主细胞是多形亨利绪方酵母。
具体地,FLO8蛋白是曲霉属来源的,其包括与SEQ ID NO:1的至少25%或26%的序列同一性。具体地,FLO8蛋白是黑曲霉来源的,其包括SEQ ID NO:9或由SEQ ID NO:9组成。具体地,此类FLO8蛋白由对宿主细胞内源的基因编码,其中宿主细胞是黑曲霉。
具体地,宿主细胞通过一种或多种包括(一种或多种)染色体组突变的基因修饰进行基因修饰,所述基因修饰分别减少编码所述FLO8蛋白的所述多核苷酸的转录和/或翻译,和/或以其他方式减少所述多核苷酸的表达和减少所述FLO8蛋白的产生。
具体地,所述一种或多种基因修饰包括(i)一种或多种内源多核苷酸或其一部分;或(ii)表达控制序列的破坏、取代、缺失或敲除。
根据一个具体方面,所述一种或多种基因修饰是本文所述的宿主细胞的一种或多种内源性多核苷酸的基因修饰,所述内源性多核苷酸为诸如编码多核苷酸,包括例如编码FLO8蛋白的所述多核苷酸(或基因),特别是野生型(未修饰的或天然的)蛋白,其在宿主细胞物种、类型或菌株中天然存在。
根据一个具体方面,所述一个或多个基因修饰是表达控制序列(包括例如启动子、核糖体结合位点、转录或翻译起始和终止序列),或增强子或激活子序列的基因修饰。
可以采用多种工程改造宿主细胞的方法来降低内源性多核苷酸诸如编码FLO8蛋白的基因的表达,包括例如破坏编码FLO8蛋白的多核苷酸,破坏与此类多核苷酸可操作连接的启动子,用具有较低启动子活性的另一启动子替换此类启动子,修饰或调节(例如激活、上调、失活、抑制或下调)调节此类多核苷酸的表达的调节序列,诸如使用在基于CRISPR的修饰宿主细胞的方法中使用的由RNA引导核糖核酸酶靶向至相关序列的相应转录调节因子,例如选自由启动子、核糖体结合位点、转录起始或终止序列、翻译起始或终止序列、增强子或激活子序列、抑制子或抑制子序列、信号或前导序列组成的组的调节序列,特别是控制蛋白质的表达和/或分泌的那些。
具体地,与没有此类基因修饰的相应宿主相比,所述一种或多种基因修饰包括一种或多种基因组突变,所述基因组突变包括基因或基因组序列的缺失或失活,所述基因或基因组序列将基因或基因的一部分的表达降低至少50%、60%、70%、80%、90%或95%,或甚至通过例如基因的敲除完全消除其表达。
具体地,所述一种或多种基因修饰包括组成性地削弱或以其他方式减少一种或多种内源性多核苷酸的表达的基因组突变。
具体地,所述一种或多种基因修饰包括引入一种或多种可诱导或可抑制的调节序列的基因组突变,所述调节序列条件性地削弱或以其他方式减少一种或多种内源性多核苷酸的表达。此类条件性活性修饰特别针对那些根据细胞培养条件具有活性和/或表达的调节元素和基因。
具体地,当产生POI时,所述一种或多种内源性多核苷酸的表达降低,从而降低编码FLO8蛋白的多核苷酸的表达。具体地,在基因修饰时,所述FLO8蛋白的表达在产生POI的宿主细胞培养物的条件下降低。
具体地,与没有所述修饰的宿主细胞相比,对宿主细胞进行基因修饰以将所述FLO8蛋白的量(例如,水平或浓度)减少50%、60%、70%、80%、90%或95%(mol/mol)中的至少任何一个,或甚至减少100%,例如减少至不可检测的量,从而例如通过敲除所述基因而完全消除FLO8蛋白的产生。根据一个具体的实施方案,宿主细胞被基因修饰以包括(一个或多个)基因组序列的一个或多个缺失,特别是编码FLO8蛋白或其相应同源物的基因组序列。此类宿主细胞通常作为缺失或敲除菌株提供。
根据一个具体的实施方案,一旦本文所述的宿主细胞在细胞培养物中培养,与由在此类基因修饰之前或没有此类基因修饰的宿主细胞表达或产生的参考量相比,或与在相应的宿主细胞培养物中产生的参考量相比,或与在所述修饰之前或没有所述修饰的宿主细胞相比,宿主细胞或宿主细胞培养物中总FLO8蛋白的量减少50%、60%、70%、80%、90%或95%(mol/mol)中的至少任何一个,或甚至减少100%,例如减少到不可检测的量。
当比较本文所述的宿主细胞的所述基因修饰降低所述FLO8蛋白的产生的效果时,通常将其与在此类基因修饰之前或者没有此类基因修饰的可比宿主细胞进行比较。通常用没有此类基因修饰的相同宿主细胞物种或类型进行比较,所述宿主细胞物种或类型经工程化以产生重组或异源POI,特别是当在产生所述POI的条件下培养时。但是,也可以与未经进一步工程改造以产生重组或异源POI的相同宿主细胞物种或类型进行比较。
根据一个具体方面,所述FLO8蛋白或其相应的同源物的减少由细胞中所述FLO8蛋白的量(例如,水平或浓度)的减少来确定。具体地,通过合适的方法来确定所述FLO8蛋白或其相应同源物的量,诸如采用蛋白质印迹法、免疫荧光成像、流式细胞术或质谱法,特别是其中质谱法是液相色谱法-质谱法(LC-MS)或液相色谱法串联质谱法(LC-MS/MS),例如如Doneanu等人(MAbs.2012;4(1):24–44)所描述的。
根据一个具体方面,重组宿主细胞仅包括一个或多个异源表达盒,例如所述表达盒的多个拷贝,诸如至少2、3、4或5个拷贝(基因拷贝数,GCN)。例如,重组宿主细胞包括至多2、3、4或5个拷贝。每个拷贝可以包括相同或不同的序列或者由相同或不同的序列组成,但包括与GOI可操作地连接的ECP。
根据一个具体方面,所述异源表达盒包括多核苷酸的人工融合体或由多核苷酸的人工融合体组成,所述多核苷酸包括与GOI可操作地连接的ECP,和任选的其他序列,诸如信号序列、前导序列或终止序列。具体地,使用对宿主细胞是异源的或人工的表达盒,特别是其中所述表达盒包括启动子(ECP)和GOI,其中所述启动子和GOI彼此是异源的,在自然界中不以这种组合存在,例如其中启动子和GOI中的任何一个(或仅一个)是人工的或对本文所述的另一个和/或对宿主细胞是异源的;所述启动子是内源启动子,并且所述GOI是异源GOI;或者所述启动子是人工或异源启动子并且所述GOI是内源GOI;其中启动子和GOI都是人工的、异源的或来自不同的来源,诸如来自与本文所述的宿主细胞相比不同的物种或类型(菌株)的细胞。具体地,在用作本文所述的宿主细胞的细胞中,ECP不与所述GOI天然相关和/或不与所述GOI可操作地连接。
根据一个具体方面,在存在生长限制量的非甲醇碳源的情况下,优选在不存在甲醇的情况下,ECP是可诱导的;并且在高于生长限制量的过量非甲醇碳源的存在下是可抑制的。具体地,通过异源表达盒的GOI表达可被诱导型ECP诱导。
优选地,ECP是碳源可调节的,诸如在高于细胞培养基或上清液中的1、1.5、2、2.5或3g/L的碳源中任一种的量(本文称为启动子-抑制量)的存在下被抑制,并且在没有可检测的碳源的存在下被诱导或去抑制,或在细胞培养基或上清液中的至多0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9或1.0g/L碳源的任一种的量(本文称为启动子诱导量)的存在下被诱导或去抑制。细胞培养基或上清液中的此类量被特别理解为在宿主细胞的喂养和被宿主细胞的消耗时可检测到的量。通常,当在生长限制条件下产生POI时,通过添加补充碳源来喂养细胞培养物,但其量在POI产生期间立即被细胞消耗,因此,在细胞培养基或上清液中没有留下或仅留下少量的剩余量,例如至多1.0g/L的量。
具体地,调节ECP的碳源是除甲醇之外的任何碳源,并且在本文中称为非甲醇碳源。
具体地,非甲醇碳源是碳水化合物。
具体地,非甲醇碳源选自糖类、多元醇、醇类或任何一种或多种前述的混合物。
具体地,糖类可以是单糖中的任何一种或多种,诸如己糖,例如葡萄糖、果糖、半乳糖或甘露糖,或二糖,诸如蔗糖;或醇或多元醇例如乙醇,或任何二醇,或三醇例如甘油,或任何前述的混合物。具体地,任何此类非甲醇碳源可以在细胞培养物中以在ECP的控制下产生所述POI的量使用。
根据一个具体方面,ECP包括至少一个第一核心调节区和至少一个第二核心调节区。具体地,ECP包括所述第一核心调节区和/或第二核心调节区中的至少两个。具体地,ECP包括有限数量的所述第一核心调节区和第二核心调节区,其中所述第一核心调节区的数量仅为一个、两个或三个,并且所述第二核心调节区的数量仅为一个、两个或三个。具体地,ECP包括相等数量的所述第一核心调节区和第二核心调节区,例如,其中所述第一核心调节区的数量是1个,并且所述第二核心调节区的数量是1个;其中所述第一核心调节区的数目是2个,并且所述第二核心调节区的数目是2个,或者其中所述第一核心调节区的数目是3个,并且所述第二核心调节区的数目是3个。
具体地,第一核心调节区与SEQ ID NO:17具有至少75%的序列同一性,诸如至少80%或至少90%的序列同一性中的至少任何一个,和/或第二核心调节区与SEQ ID NO:18具有至少75%的序列同一性,诸如至少80%或至少90%的序列同一性中的至少任何一个。
具体地,第一核心调节区和第二核心调节区各自具有8nt-16nt的长度。
具体地,第一核心调节区具有8nt至10nt,特别是9nt的长度。具体地,第一核心调节区包括SEQ ID NO:17或鉴定为SEQ ID NO:17的核苷酸序列的修饰,或者由SEQ ID NO:17或鉴定为SEQ ID NO:17的核苷酸序列的修饰组成,其中所述修饰至多为一个或两个点突变,特别是其中一个点突变为一个核苷酸的取代、插入或缺失中的任一种。
具体地,第二核心调节区具有14nt至16nt,特别是15nt的长度。具体地,所述第二核心调节区包括SEQ ID NO:18或鉴定为SEQ ID NO:18的核苷酸序列的修饰,或者由SEQ IDNO:18或鉴定为SEQ ID NO:18的核苷酸序列的修饰组成,其中所述修饰是至多一个、两个或三个点突变,特别是其中一个点突变是一个核苷酸的取代、插入或缺失中的任一种。
具体地,ECP包括以任何顺序的至少一个第一核心调节区和至少一个第二核心调节区,优选地彼此非常接近,例如在最接近的第一核心调节区与第二核心调节区之间具有至多20nt、19nt、18nt、17nt、16nt、15nt、14nt、13nt、12nt、11nt或10nt中的任何一个。
具体地,ECP包括一个第一核心调节区和一个第二核心调节区,它们通过间隔子连接,特别是被核苷酸序列(本文称为“间隔子核心区”)分隔,所述核苷酸序列的长度为5nt、6nt、7nt、8nt、9nt、10nt中的至少任何一个,和/或至多20、19、18、17、16、15、14、13、12、11或10中的任何一个。特别地,间隔子核心区与SEQ ID NO:36具有至少75%的序列同一性,诸如至少80%或至少90%的序列同一性中的至少任何一个,和/或包括SEQ ID NO:36或鉴定为SEQ ID NO:36的核苷酸序列的修饰,或者由SEQ ID NO:36或鉴定为SEQ ID NO:36的核苷酸序列的修饰组成,其中所述修饰是多达四个点突变中的一个、两个、三个,特别是其中一个点突变是一个核苷酸的取代、插入或缺失中的任一者。具体地,间隔子核心区包括核苷酸序列或由核苷酸序列组成,其中大部分核苷酸(至少50%或至少60%)选自G、C或T。
具体地,ECP包括至少一个由核苷酸序列组成的区域,所述核苷酸序列从5’端至3’端由以下三个连续元素组成,(i)第一核心调节区,(ii)间隔子核心区,和(iii)第二核心调节区,其在本文中称为“主调节区”。
具体地,ECP包括至少一个或两个,或仅一个或两个主调节区,每个主调节区包括核苷酸序列或由核苷酸序列组成,所述核苷酸序列与SEQ ID NO:35具有85%、90%或95%序列同一性中的至少任何一个。此类主调节区优选地由第一核心调节区、间隔子核心区和第二核心调节区组成。
具体地,ECP包括至少一个多核苷酸序列,其与SEQ ID NO:35具有85%、90%或95%序列同一性中的至少任何一个。
具体地,如本文所述,ECP仅包括一个、两个或三个主调节区,特别是其中主调节区的数量是两个或三个,其中所述两个或三个调节区可以彼此相同或不同。具体地,ECP仅包括两个主调节区,它们由长度为50nt、60nt、70nt、80nt、90nt、100nt中的任何一个和/或至多500nt、450nt、400nt、350nt或300nt中的任何一个,特别是在100nt与300nt之间范围的核苷酸序列(本文称为“间隔子主要区”)分隔。具体地,所述间隔子主要区包括长度为50nt、60nt、70nt、80nt、90nt、100nt中的至少任何一个的核苷酸序列,所述核苷酸序列与SEQ IDNO:37具有至少60%的序列同一性,诸如至少70%、75%、80%、85%、90%或95%的序列同一性中的至少任何一个,和/或包括SEQ ID NO:37或鉴定为SEQ ID NO:37的核苷酸序列的修饰,或者由SEQ ID NO:37或鉴定为SEQ ID NO:37的核苷酸序列的修饰组成,其中所述修饰是多个点突变,其是一个或多个,至多30、25、20、15或10个点突变中的任何一个,特别是其中一个点突变是一个核苷酸的取代、插入或缺失中的任何一个。
根据一个具体方面,ECP包括至少一个由核苷酸序列组成的T基序,其中大部分核苷酸是胸腺嘧啶(T),优选地50%、60%、70%、80%、90%或100%中的至少任何一个是T,例如,包括SEQ ID NO:19-34中的任何一个或由SEQ ID NO:19-34中的任何一个组成,任选地在所述T基序的5’端或3’端的任何一个处没有通过一个或多个另外的(或相邻的)胸腺嘧啶的所述T基序的延伸。
具体地,ECP仅包括一个或两个所述T基序,或至少两个所述T基序,至多4个或3个T基序,其中所述T基序彼此相同或不同。
具体地,ECP包括在主调节区上游或下游的至少一个T基序,例如主调节区上游的一个(或仅一个或两个)T基序和下游的一个(或仅一个或两个)T基序。但是,根据一个具体实施方案,ECP包括至少一个所述T基序,特别是在间隔子主区内仅包括一个或两个T基序。
具体地,ECP具有350bp、400bp、450bp、500bp、550bp、600bp、650bp、700bp、850bp、900bp、950bp或1000bp中的至少任何一个,例如至多2000bp或至多1500bp的长度。
具体地,ECP包括3’-末端核苷酸序列,例如,长度至多50nt、40nt、30nt、20nt、10nt、9nt、8nt、7nt、6nt或5nt,包括3’-末端,其包括翻译起始位点的至少一部分,例如,与SEQ ID NO:38、SEQ ID NO:39或SEQ ID NO:40中的任何一个具有60%、70%、80%、85%或至少90%同一性中的至少任何一个的序列。翻译起始位点可以是真核生物中的Kozak共有序列和支持基因表达的合适的启动子序列。
根据一个具体方面,ECP包括与至少300(连续)nt,特别是300nt、350nt、400nt、450nt、500nt、550nt、600nt、650nt、700nt、850nt、900nt、950nt或1000nt中的至少任何一个具有60%、65%、70%、75%或80%序列同一性中的至少任何一个,特别是85%、90%或95%序列同一性中的至少任何一个,或者具有100%同一性,例如在包含转录因子结合位点(TFBS)的区域内,和/或在序列SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ ID NO:14、SEQ ID NO:15或SEQ ID NO:16中的任何一个或者SEQ ID NO:41-45中的任何一个的包括3’端的3’末端序列内,直到任何前述核苷酸序列的全长,特别是如果全长小于1000nt。
根据一个具体方面,ECP包括与全长序列SEQ ID NO:10、SEQ ID NO:11、SEQ IDNO:12、SEQ ID NO:13、SEQ ID NO:14、SEQ ID NO:15或SEQ ID NO:16中的任何一个或SEQID NO:41-45中的任何一个60%、65%、70%、75%或80%序列同一性中的至少任何一个,特别是85%、90%或95%序列同一性中的至少任何一个,或者具有100%同一性。
一个具体的实施方案是指ECP,其包括SEQ ID NO:10或SEQ ID NO:11或者由SEQID NO:10或SEQ ID NO:11组成,或者其包括核苷酸序列或由核苷酸序列组成,所述核苷酸序列与SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13、SEQ ID NO:14、SEQ IDNO:15或SEQ ID NO:16的全长序列中的任何一个或SEQ ID NO:41-45中的任何一个具有60%、65%、70%、75%、80%、85%、90%或95%序列同一性中的至少任何一个,或者具有100%同一性。
具体地,ECP启动子包括SEQ ID NO:10或SEQ ID NO:11的至少一部分或片段,或者由SEQ ID NO:10或SEQ ID NO:11的至少一部分或片段组成,其长度为300bp、400bp、500bp、600bp、700bp、800bp、900bp或1000bp中的至少任何一个,特别是包括TFBS和/或3’末端。
具体地,ECP的第一核心调节区和第二核心调节区中的任何一个,或ECP的主调节区,都包含一个或多个TFBS。具体地,所述第一核心调节区和第二核心调节区中的每一个,或所述第一核心调节区和第二核心调节区两者一起,或ECP的所述主调节区中的每一个,包括被认为是功能性的并被相应的转录因子识别的TFBS或其至少一部分。
具体地,TFBS被选自由Rgt1(例如,包括SEQ ID NO:47或由SEQ ID NO:47组成)、Cat8-1(例如,包括SEQ ID NO:48或由SEQ ID NO:48组成)和Cat8-2(例如,包括SEQ ID NO:49或由SEQ ID NO:49组成)组成的组中的任何一种或多种转录因子识别。
TFBS通过某些共有序列来表征,对于同一因素,这些共有序列可以变化。具体的转录因子鉴定为如下:
Rgt1是一种葡萄糖反应性转录激活因子和抑制因子,并且其调节若干种葡萄糖转运蛋白(HXT)基因的表达。巴斯德毕赤酵母的Rgt1包括氨基酸序列SEQ ID NO:47。
Cat8-1和Cat8-2是与碳源应答元素结合的锌簇转录激活因子,在非发酵生长条件下对于多种基因的去表达是必需的。巴斯德毕赤酵母的Cat8-1和Cat8-2分别包括氨基酸序列SEQ ID NO:48和SEQ ID NO:49。
根据一个具体方面,ECP包括至少两个、三个、四个、五个、六个、七个或八个TFBS,其中每个TFBS被Rgt1、Cat8-1或Cat8-2中的任何一个单独识别。
具体地,所述ECP的特征在于与参考启动子相比增加的启动子强度,其中
-启动子强度与参考启动子的启动子强度相同或高于参考启动子的启动子强度,特别是当在诱导的状态时增加1.1倍、1.2倍、1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2倍、2.1倍、2.2倍、2.3倍、2.4倍、2.5倍、2.6倍、2.7倍、2.8倍、2.9倍、3倍、3.3倍、3.5倍、3.8倍、4倍、4.5倍、5倍、5.5倍或至少6倍中的至少任何一个。
具体地,宿主细胞的天然pGAP启动子(特别是对用于重组POI生产的宿主细胞是内源的并且在所述宿主细胞中天然存在的pGAP启动子,例如如用于控制GAPDH在巴斯德毕赤酵母中的表达的巴斯德毕赤酵母的天然pGAP启动子,其包括SEQ ID NO:46或由SEQ ID NO:46组成)可以用作巴斯德毕赤酵母宿主细胞中的参考,以确定改进的ECP启动子强度。此类参考启动子可以用于使用相同宿主细胞和表达系统的平行对照实验中,或者用作相同宿主细胞培养物内的内部对照。与参考启动子相比,此类定量启动子功能的对照实验优选地在巴斯德毕赤酵母宿主细胞培养物中进行,特别是在表达模型蛋白诸如GFP或eGFP的重组巴斯德毕赤酵母中进行。与参考启动子强度相比的启动子强度可以通过以下标准测定来确定:在待测试的启动子控制下表达eGFP的巴斯德毕赤酵母菌株在24深孔板中在25℃下在280rpm的振荡下以每孔2mL培养物进行筛选。葡萄糖进料珠(6mm,Kuhner,CH)用于产生葡萄糖限制生长条件。分析细胞在诱导状态下的eGFP表达(YP+1进料珠,持续20-28小时)。
根据一个具体方面,将本文所述的ECP的相对启动子或转录强度或速率与用作用于产生POI的宿主的相同物种或菌株的细胞的天然pGAP启动子进行比较。
具体地,参考启动子是宿主细胞的天然pGAP启动子。例如,巴斯德毕赤酵母的天然pGAP启动子(其为巴斯德毕赤酵母中未修饰的内源启动子序列,如用于控制GAPDH在巴斯德毕赤酵母(GS115)中的表达,例如包括鉴定为SEQ ID NO:46的序列或由鉴定为SEQ ID NO:46的序列组成)可以用作巴斯德毕赤酵母中的参考启动子。如果将巴斯德毕赤酵母用作用于产生如本文所述的POI的重组宿主细胞,则将本文所述的ECP的转录强度或速率与巴斯德毕赤酵母的此类天然pGAP启动子方便地进行比较。
巴斯德毕赤酵母(GS115)的示例性天然pGAP启动子序列(SEQ ID NO:46)
# 名称 PAS* PIPA* GS115描述
pGAP TDH3 PAS_chr2-1_0437 PIPA02510 甘油醛-3-磷酸脱氢酶
*PAS:巴斯德毕赤酵母GS115中的ORF名称;PIPA:巴斯德毕赤酵母型菌株DSMZ70382中的ORF名称
根据另一个实施例,酿酒酵母的天然pGAP启动子可以用作参考启动子,其是酿酒酵母中未修饰的内源启动子序列,如用于控制酿酒酵母中GAPDH的表达。如果将酿酒酵母用作用于产生如本文所述的POI的重组宿主细胞,则将本文所述的ECP的转录强度或速率与酿酒酵母的此类天然pGAP启动子方便地进行比较。
具体地,与参考启动子相比,启动子强度由POI(诸如模型蛋白(例如绿色荧光蛋白,GFP,包括例如增强的GFP,eGFP,基因库登记号U57607))的表达水平和/或转录强度来确定。优选地,转录分析是定量的或半定量的,优选地使用qRT-PCR、DNA微阵列、RNA测序和转录组分析。
具体地,ECP通过启动子诱导比率来进一步表征,启动子诱导比率通过与在被抑制状态下的低水平相比在完全诱导状态下的高转录强度来表征。
启动子诱导比率,具体地是指转录的诱导,具体地包括所述POI的进一步翻译和任选表达。转录通常被确定为启动子强度的量度,并且具体地是指在完全诱导所述启动子时获得的转录物的量。所述转录物丰度可以由在完全诱导状态下的转录强度来确定,所述转录强度例如在葡萄糖限制的恒化器培养条件下获得并相对于参考启动子的转录速率表达。
诱导比率是决定ECP的碳源调节的关键参数,并且相对于抑制状态下的启动子活性或强度来设定诱导状态下的启动子活性或强度。例如,在通过过量甘油抑制后测定报告蛋白(例如GFP或eGFP)的表达水平和/或处于抑制状态的转录水平,并且在通过限制葡萄糖进料诱导后在诱导状态下测定模型蛋白的表达水平和/或转录水平。
如果培养条件提供约最大诱导,例如在低于0.4g/L,优选地低于0.04g/L,具体地低于0.02g/L的葡萄糖浓度下,ECP启动子被认为是去抑制的和完全诱导的。与天然pGAP启动子相比,完全诱导的启动子优选地显示出至少20%,更优选地至少30%、40%、50%、60%、70%、80%、90%和至少100%的转录水平/强度,或者甚至更高的至少150%或至少200%的转录水平/强度。转录水平/强度可以例如通过在液体培养物中培养克隆时报告基因(诸如eGFP)的转录物的量来确定。可替代地,可以通过微阵列上天然控制的基因的转录强度来确定转录速率,其中微阵列数据显示与对照相比,受抑制状态与去抑制状态之间的表达水平的差异以及完全诱导状态下的高信号强度。
具体地,诱导比率可以通过诱导状态相对于抑制状态下的表达水平(例如,模型蛋白,诸如GFP或eGFP的表达水平)的比率来确定。与参考启动子相比的诱导比率可以通过以下标准测定来确定:在待测试的启动子控制下表达eGFP的巴斯德毕赤酵母菌株在24深孔的平板中在25℃下在280rpm的振荡下以每孔2mL培养物进行筛选。葡萄糖进料珠(6mm,Kuhner,CH)用于产生葡萄糖限制生长条件。分析细胞在抑制(YP+1%甘油,指数期)和诱导(YP+1进料珠,持续20-28小时)期间的eGFP表达。
具体地,ECP启动子在去抑制(诱导)状态下具有启动子活性或强度(例如,转录活性或转录强度),其是比在抑制状态下高1.5、2.0、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5或10倍中的至少任何一个。因此,相应的诱导率可以是1.5、2.0、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5或10中的至少任何一个。
已经令人惊奇地发现,与包括flo8基因座并产生FLO8蛋白的野生型菌株相比,flo8敲除菌株中本文所述的ECP(当完全诱导时,例如在葡萄糖限制诱导条件下)的转录活性(或转录强度)要高得多,诸如高1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍或10倍中的至少任何一个。发现本文所述的宿主细胞中的转录强度显著增加,允许在flo8缺失突变体中在ECP控制下的GOI的较高的表达水平。相反,在flo8缺失突变体中,来自pGAP或pAOX的转录没有增加(如比较例中所测定的)。
根据一个具体方面,异源表达盒被包含在自主复制载体或质粒中,或被整合在所述宿主细胞的染色体内。
可以将表达盒导入到宿主细胞中并整合到宿主细胞基因组(或其任何染色体)中作为染色体内元素,例如在整合的特定位点或随机整合,由此选择高生产者宿主细胞系。可替代地,表达盒可以被整合在染色体外遗传因子(诸如质粒或人工染色体,例如酵母人工染色体(YAC))中。根据一个具体实施例,通过载体,特别是通过表达载体将表达盒引入到宿主细胞中,所述载体通过合适的转化技术被引入到宿主细胞中。为此,可以将GOI连接到表达载体中。
优选的酵母表达载体(其优选地用于在酵母中表达)选自由衍生自pPICZ、pGAPZ、pPIC9、pPICZalfa、pGAPZalfa、pPIC9K、pGAPHis、pPUZZLE或GoldenPiCS的质粒组成的组。
用于转染或转化宿主细胞以用于引入载体或质粒的技术在本领域中是众所周知的。这些可以包括电穿孔、原生质球、脂质囊泡介导的摄取、热休克介导的摄取、磷酸钙介导的转染(磷酸钙/DNA共沉淀)、病毒感染,并且特别是使用修饰的病毒诸如例如修饰的腺病毒、显微注射和电穿孔。
如本文所描述的转化体可以通过将表达盒、载体或质粒DNA引入到宿主中并选择表达相关蛋白或选择标记物的转化体而获得。可以通过常规用于转化宿主细胞的方法(诸如电脉冲法、原生质体法、乙酸锂法及其修饰方法)来处理宿主细胞以引入异源或外源DNA。优选地通过电穿孔来转化巴斯德毕赤酵母。用于通过微生物摄取重组DNA片段的优选的转化方法包括化学转化、电穿孔或通过原生质体(protoplastation)的转化。
具体地,表达盒包括可操作地连接到编码POI的GOI的ECP,并且任选地进一步包括信号和前导序列,这是表达和产生作为分泌的蛋白的POI所必需的。
根据一个具体方面,表达盒进一步包括编码能够分泌POI的信号肽的核苷酸序列,优选地其中编码信号肽的核苷酸序列与GOI的5’端相邻地融合或者直接融合。
具体地,信号肽选自由以下组成的组:来自酿酒酵母α-交配因子前体肽的信号序列、来自巴斯德毕赤酵母酸性磷酸酶基因(PHO1)的信号肽和细胞外蛋白X(EPX1)(Heiss,S.,V.Puxbaum,C.Gruber,F.Altmann,D.Mattanovich&B.Gasser,《微生物学(Microbiology)》2015;161(7):1356-68)。
具体地,可以使用如在WO2014067926 A1中描述的任何信号和/或前导序列,特别是SEQ ID NO:59或SEQ ID NO:60。
具体地,可以使用如在WO2012152823 A1中描述的信号序列,特别是鉴定为SEQ IDNO:61的酿酒酵母的天然α交配因子的信号序列或其突变体。
根据一个具体方面,本文所述的宿主细胞可以经历一种或多种进一步的基因修饰,例如,用于改善蛋白质产生。
具体地,宿主细胞经进一步工程改造以修饰一个或多个影响蛋白水解活性的基因,所述蛋白水解活性用于产生蛋白酶缺陷型菌株,特别是羧肽酶Y活性的缺陷型菌株。在WO1992017595A1中描述了具体的实施例。在US6153424A中描述了在空泡蛋白酶诸如蛋白酶A或蛋白酶B中具有功能缺陷的蛋白酶缺陷型毕赤酵母菌株的另外的实施例。另外的实施例是具有ade2缺失的毕赤酵母菌株,和/或蛋白酶基因PEP4和PRB1中的一个或两个的缺失,由例如赛默飞世尔科技公司(ThermoFisher Scientific)提供。
具体地,如在WO2010099195A1中公开的,宿主细胞经工程改造以修饰至少一个编码功能性基因产物,特别是蛋白酶的核酸序列,所述功能性基因产物选自由PEP4、PRB1、YPS1、YPS2、YMP1、YMP2、YMP1、DAP2、GRHI、PRD1、YSP3和PRB3组成的组。
编码辅助因子的基因的过表达或低表达被特异性地应用于增强GOI的表达,例如如在WO2015158800A1中所述。
下列基因的过表达被证明增加巴斯德毕赤酵母中的POI分泌:PP7435_Chr3-0607、PP7435_Chr3-0933、PP7435_Chr2-0220、PP7435_Chr3-0639、PP7435_Chr4-0108、PP7435_Chr1-1232、PP7435_Chr1-1225、PP7435_Chr1-0667和PP7435_Chr4-0448。
下列基因的低表达被证明增加巴斯德毕赤酵母中的POI分泌:PP7435_Chr1-0176、PP7435_Chr3-1062和PP7435_Chr4-0252。
特别地,宿主细胞可以经工程改造以过表达任何一种或多种辅助因子并增加由SEQ ID NO:62-71中任何一个鉴定的相应蛋白质的产生,从而进一步增加POI产量。POI可以是真核、原核或合成的肽、多肽、蛋白质或宿主细胞的代谢物中的任何一种。
具体地,POI对于宿主细胞物种是异源的。
具体地,POI是分泌的肽、多肽或蛋白质,即从宿主细胞分泌到细胞培养物上清液中。
具体地,POI是真核蛋白质,优选哺乳动物来源的或相关的蛋白质,诸如人蛋白质或包括人蛋白质序列的蛋白质,或细菌蛋白质或细菌来源的蛋白质。
优选地,POI是在哺乳动物中起作用的治疗性蛋白。
在特定的情况下,POI是多聚体蛋白,特别是二聚体或四聚体。
根据一个具体的方面,POI是选自由抗原结合蛋白、治疗性蛋白、酶、肽、蛋白抗生素、毒素融合蛋白、碳水化合物-蛋白缀合物、结构蛋白、调节蛋白、疫苗抗原、生长因子、激素、细胞因子、过程酶和代谢酶组成的组的肽或蛋白。
具体地,抗原结合蛋白选自由以下组成的组:
a)抗体或抗体片段,诸如嵌合抗体、人源化抗体、双特异性抗体、Fab、Fd、scFv、双体、三体、Fv四聚体、微小抗体(minibodies)、单结构域抗体如VH、VHH、IgNAR或V-NAR中的任一种;
b)抗体模拟物,诸如Adnectins、亲和体(Affibodies)、Affilins、Affimers、Affitins、α体(Alphabodies)、Anticalins、Avimers、DARPins、Fynomers、Kunitz结构域肽、单体或NanoCLAMPS;或者
c)包括一个或多个免疫球蛋白折叠结构域、抗体结构域或抗体模拟物的融合蛋白。
特异性POI是抗原结合分子,诸如抗体或其片段,特别是包括抗原结合结构域的抗体片段。在特异性POI中有抗体,诸如单克隆抗体(mAb)、免疫球蛋白(Ig)或免疫球蛋白G类(IgG)、重链抗体(HcAb)或其片段,诸如片段-抗原结合(Fab)、Fd、单链可变片段(scFv),或其工程改造的变体,诸如例如Fv二聚体(双体)、Fv三聚体(三体)、Fv四聚体或微小抗体,以及单结构域抗体,如VH、VHH、IgNAR或V-NAR,或任何包括免疫球蛋白折叠结构域的蛋白质。另外的抗原结合分子可以选自抗体模拟物或(替代的)支架蛋白,诸如例如工程改造的Kunitz结构域、Adnectins、亲和体、Affiline、Anticalins或DARPins。
根据一个具体方面,所述POI是例如BOTOX、肉毒杆菌(Myobloc)、肉毒毒素制剂(Neurobloc)、丽舒妥(Dysport)(或其他肉毒菌神经毒素的血清型)、阿糖苷酶α(alglucosidase alpha)、达托霉素、YH-16、绒毛膜促性腺激素α、非格司亭(filgrastim)、西曲瑞克(cetrorelix)、白细胞介素-2、阿地白介素(aldesleukin)、替西白介素(teceleulin)、地尼白介素(denileukin diftitox)、干扰素α-n3(注射)、干扰素α-nl、DL-8234、干扰素、桑托里(Suntory)(γ-1a)、干扰素γ、胸腺素α1、他索纳明(tasonermin)、DigiFab、ViperaTAb、EchiTAb、CroFab、奈西立肽(nesiritide)、阿巴西普(abatacept)、阿来塞普(alefacept)、利比(Rebif)、阿法艾托特明(eptoterminalfa)、特立帕肽(骨质疏松症)、降钙素可注射(骨病)、降钙素(鼻腔注射、骨质疏松症)、依那西普(etanercept)、血红蛋白谷氨酸250(牛)、多确克津α(drotrecogin alpha)、胶原酶、卡培立肽(carperitide)、重组人表皮生长因子(局部凝胶、伤口愈合)、DWP401、达贝泊汀α(darbepoetin alpha)、促红细胞生成素Ω(epoetin omega)、促红细胞生成素β(epoetin beta)、促红细胞生成素α、地西卢定(desirudin)、重组水蛭素(lepirudin)、比伐卢定(bivalirudin)、诺纳革α(nonacog alpha)、霉诺耐(Mononine)、依他凝血素(eptacog alpha)(激活的)、重组因子VIII+VWF、重组体(Recombinate)、重组因子VIII、因子VIII(重组)、阿法美特(Alphnmate)、奥特革α(octocog alpha)、因子VIII、帕利夫明(palifermin)、英迪激酶(Indikinase)、替奈普酶(tenecteplase)、阿替普酶(alteplase)、派替普酶(pamiteplase)、瑞替普酶(reteplase)、那替普酶(nateplase)、孟替普酶(monteplase)、促卵泡素α(follitropinalpha)、rFSH、hpFSH、米卡芬净(micafungin)、培非格司亭(pegfilgrastim)、来格司亭(lenograstim)、那托芬净(nartograstim)、舍莫瑞林(sermorelin)、胰高血糖素、艾塞那肽(exenatide)、普兰林肽(pramlintide)、阿糖脑苷酶(iniglucerase)、加硫酶(galsulfase)、乐克托品(Leucotropin)、莫革斯汀(molgramostirn)、醋酸曲普瑞林(triptorelin acetate)、组氨瑞林(histrelin)(皮下植入物,Hydron)、地洛瑞林(deslorelin)、组氨瑞林(histrelin)、那法瑞林(nafarelin)、亮丙瑞林缓释储库(ATRIGEL)、亮丙瑞林植入物(DUROS)、戈舍瑞林(goserelin)、欧托品(Eutropin)、KP-102计划、生长激素、美卡舍明(mecasermin)(成长失败)、恩法韦肽(enlfavirtide)、Org-33408、甘精胰岛素、谷氨酸胰岛素、胰岛素(吸入)、赖脯胰岛素、德特尼胰岛素(insulindeternir)、胰岛素(口腔,RapidMist)、美卡舍明林菲培(mecasermin rinfabate)、阿那白滞素、西莫白介素(celmoleukin)、99mTc-阿普西肽注射液、麦乐贝齐(myelopid)、倍泰龙(Betaseron)、醋酸格拉替雷(glatiramer acetate)、格旁(Gepon)、沙格司亭(sargramostim)、奥普瑞白介素(oprelvekin)、人白细胞衍生的α干扰素、倍尔来福(Bilive)、胰岛素(重组)、重组人胰岛素、门冬胰岛素(insulin aspart)、美卡色宁(mecasenin)、罗扰素-A(Roferon-A)、干扰素-α2、阿尔法扰素(Alfaferone)、复合α干扰素-1、干扰素α、阿温耐克斯(Avonex)重组人黄体生成素、阿法链道酶(dornase alpha)、曲弗明(trafermin)、齐考诺肽(ziconotide)、他替瑞林(taltirelin)、阿法地博特明(diboterminalfa)、阿托西班(atosiban)、贝卡普勒明(becaplermin)、依替巴肽(eptifibatide)、扎马拉(Zemaira)、CTC-111、夏伐克(Shanvac)-B、HPV疫苗(四价)、奥曲肽、兰瑞肽、安克斯丁(ancestirn)、阿加西酶β(agalsidase beta)、阿加糖酶α、拉罗尼酶(laronidase)、醋肽铜(prezatide copper acetate)(局部凝胶)、拉布立酶(rasburicase)、兰尼单抗(ranibizumab)、阿提姆尼(Actimmune)、PEG-内含子、确可宁(Tricomin)、重组屋尘螨过敏脱敏注射液、重组人甲状旁腺激素(PTH)1-84(sc、骨质疏松症)、红细胞生成素δ(epoetin delta)、转基因抗凝血酶III、格兰迪托品(Granditropin)、透明质酸酶(Vitrase)、重组胰岛素、干扰素-α(口服含片)、GEM-21S、伐普肽(vapreotide)、艾度硫酸酯酶(idursulfase)、奥纳帕确特(omnapatrilat)、重组血清白蛋白、赛妥珠单抗佩革(certolizumab pegol)、羧肽酶(glucarpidase)、人重组C1酯酶抑制剂(血管神经性水肿)、拉诺普酶(lanoteplase)、重组人生长激素、恩夫韦肽(enfuvirtide)(无针注射、Biojector 2000)、VGV-1、干扰素(α)、卢辛坦特(lucinactant)、艾帕它迪(aviptadil)(吸入,肺病)、艾替班特(icatibant)、艾卡拉肽(ecallantide)、欧米甘安(omiganan)、奥革比(Aurograb)、醋酸培西加南(pexiganan acetate)、ADI-PEG-20、LDI-200、加瑞克(degarelix)、白介假单胞菌外毒素(cintredelinbesudotox)、Favld、MDX-1379、ISAtx-247、利拉鲁肽(liraglutide)、特立帕肽(teriparatide)(骨质疏松症)、组织因子通路抑制剂(tifacogin)、AA4500、T4N5脂质体乳液、卡妥索单抗(catumaxomab)、DWP413、ART-123、魁萨琳(Chrysalin)、去氨普酶、安地普酶(amediplase)、绒促卵泡素α(corifollitropinalpha)、TH-9507、替度鲁肽(teduglutide)、戴麦德(Diamyd)、DWP-412、生长激素(持续释放注射)、重组G-CSF、胰岛素(吸入,空气)、胰岛素(吸入,Technosphere)、胰岛素(吸入,AERx)、RGN-303、DiaPep277、干扰素β(丙型肝炎病毒感染(HCV))、干扰素α-n3(口服)、贝拉西普(belatacept)、透皮胰岛素贴片、AMG-531、MBP-8298、西雷西普(Xerecept)、奥培巴康(opebacan)、AIDSVAX、GV-1001、LymphoScan、瑞皮核糖核酸酶(ranpirnase)、利普散(Lipoxysan)、鲁丝普利肽(lusupultide)、MP52(β-三磷酸盐载体,骨再生)、黑色素瘤疫苗、西普勒塞尔-T(sipuleucel-T)、CTP-37、英色革(Insegia)、维特斯朋(vitespen)、人凝血酶(冷冻,手术出血)、凝血酶、TransMID、蛇毒纤溶酶(alfimeprase)、普瑞凯希(Puricase)、特利加压素(静脉,肝肾综合征)、EUR-1008M、重组FGF-I(可注射,血管疾病)、BDM-E、罗替盖普肽(rotigaptide)、ETC-216、P-113、MBI-594AN、耐力霉素(duramycin)(吸入,囊性纤维化)、SCV-07、OPI-45、内皮抑素(Endostatin)、血管抑素(Angiostatin)、ABT-510、包曼比瑞克(Bowman Birk)抑制剂浓缩液、XMP-629、99mTc-Hynic-膜联蛋白V、卡海拉利肽F(kahalalide F)、CTCE-9908、替维瑞克(teverelix)(延迟释放)、奥扎瑞克(ozarelix)、罗咪酯肽(rornidepsin)、BAY-504798、白介素4、PRX-321、佩斯坎(Pepscan)、依波介素(iboctadekin)、重组人乳铁蛋白(rhlactoferrin)、TRU-015、IL-21、ATN-161、西仑吉肽(cilengitide)、阿布富伦(Albuferon)、比费西克斯(Biphasix)、IRX-2、Ω干扰素、PCK-3145、CAP-232、帕瑞肽、huN901-DMI、卵巢癌免疫治疗疫苗、SB-249553、Oncovax-CL、OncoVax-P、BLP-25、CerVax-16、多表位肽黑色素瘤疫苗(MART-1、gp100、酪氨酸酶)、奈米非肽(nemifitide)、rAAT(吸入)、rAAT(皮肤科)、CGRP(吸入,哮喘)、培那西普(pegsunercept)、胸腺素β4、普厉肽平辛(plitidepsin)、GTP-200、雷莫拉宁(ramoplanin)、GRASPA、OBI-1、AC-100、鲑鱼降钙素(口服,埃利根(eligen))、降钙素(口服,骨质疏松症)、艾沙瑞林(examorelin)、卡莫瑞林(capromorelin)、Cardeva、韦拉繁明(velafermin)、131I-TM-601、KK-220、T-10、乌拉立肽(ularitide)、地来司他(depelestat)、海明肽(hematide)、克瑞沙林(Chrysalin)(局部)、rNAPc2、重组因子V111(聚乙二醇化脂质体)、bFGF、聚乙二醇化的重组葡萄球菌激酶变体、V-10153、超声波降解尿激酶原(SonoLysis Prolyse)、NeuroVax、CZEN-002、胰岛细胞新生疗法、rGLP-1、BIM-51077、LY-548806、艾塞那肽(控释、Medisorb)、AVE-0010、GA-GCB、阿伏瑞林(avorelin)、ACM-9604、乙酸利那洛肽(linaclotid eacetate)、CETi-1、赫莫斯盘(Hemospan)、VAL(可注射)、速效胰岛素(注射用,Viadel)、鼻内胰岛素、胰岛素(吸入)、胰岛素(口服,埃利根)、重组甲硫氨酰人瘦素、皮创克纳(pitrakinra)皮下注射、湿疹)、皮创克纳(吸入干粉,哮喘)、多白介素(Multikine)、RG-1068、MM-093、NBI-6024、AT-001、PI-0824、Org-39141、Cpn10(自身免疫性疾病/炎症)、塔拉特弗利(talactoferrin)(局部)、rEV-131(眼科)、rEV-131(呼吸系统疾病)、口服重组人胰岛素(糖尿病)、RPI-78M、奥普瑞白介素(oprelvekin)(口服)、CYT-99007CTLA4-Ig、DTY-001、伐拉司特(valategrast)、干扰素α-n3(局部)、IRX-3、RDP-58、塔弗隆(Tauferon)、胆盐刺激脂肪酶、美瑞帕酶(Merispase)、丙氨酸磷酸酶、EP-2104R、美拉诺坦-II、布美诺肽(bremelanotide)、ATL-104、重组人微纤溶酶、AX-200、SEMAX、ACV-1、Xen-2174、CJC-1008、强啡肽A、SI-6603、LAB GHRH、AER-002、BGC-728、疟疾疫苗(病毒体,PeviPRO)、ALTU-135、细小病毒B19疫苗、流感疫苗(重组神经氨酸酶)、疟疾/HBV疫苗、炭疽疫苗、Vacc-5q、Vacc-4x、HIV疫苗(口服)、HPV疫苗、Tat类毒素、YSPSL、CHS-13340、PTH(1-34)脂质体乳膏(Novasome)、奥斯塔柏林-C(Ostabolin-C)、PTH类似物(局部,银屑病)、MBRI-93.02、MTB72F疫苗(结核病)、MVA-Ag85A疫苗(结核病)、FARA04、BA-210、重组瘟疫FIV疫苗、AG-702、OxSODrol、rBetV1、Der-p1/Der-p2/Der-p7过敏原靶向疫苗(尘螨过敏)、PR1肽抗原(白血病)、突变ras疫苗、HPV-16E7脂肽疫苗、迷路(labyrinthin)疫苗(腺癌)、CML疫苗、WT1-肽疫苗(癌症)、IDD-5、CDX-110、朋曲斯(Pentrys)、诺雷林(Norelin)、CytoFab、P-9808、VT-111、伊克卡品肽(icrocaptide)、替柏明(telbermin)(皮肤病学,糖尿病足溃疡)、芦平曲韦(rupintrivir)、瑞替克鲁(reticulose)、rGRF、HA、α-半乳糖苷酶A、ACE-011、ALTU-140、CGX-1160、血管紧张素治疗性疫苗、D-4F、ETC-642、APP-018、rhMBL、SCV-07(口服,结核)、DRF-7295、ABT-828、ErbB2特异性免疫毒素(抗癌)、DT3SSIL-3、TST-10088、PRO-1762、Combotox、胆囊收缩素-B/胃泌素受体结合肽、111In-hEGF、AE-37、曲妥珠单抗(trasnizumab)-DM1、拮抗剂G、IL-12(重组)、PM-02734、IMP-321、rhIGF-BP3、BLX-883、CUV-1647(局部)、基于L-19的放射免疫治疗药(癌症)、Re-188-P-2045、AMG-386、DC/1540/KLH疫苗(癌症)、VX-001、AVE-9633、AC-9301、NY-ESO-1疫苗(多肽)、NA17.A2肽、黑色素瘤疫苗(脉冲抗原治疗)、前列腺癌疫苗、CBP-501、重组人乳铁蛋白(干眼症)、FX-06、AP-214、WAP-8294A(可注射)、ACP-HIP、SUN-11031、肽YY[3-36](肥胖,鼻内)、FGLL、阿塞西普(atacicept)、BR3-Fc、BN-003、BA-058、人甲状旁腺激素1-34(鼻腔,骨质疏松症)、F-18-CCR1、AT-1100(乳糜泻/糖尿病)、JPD-003、PTH(7-34)脂质体乳膏(Novasome)、耐力霉素(眼科,干眼)、CAB-2、CTCE-0214、GlycoPEG化促红细胞生成素、EPO-Fc、CNTO-528、AMG-114、JR-013、因子XIII、氨基康定(aminocandin)、PN-951、716155、SUN-E7001、TH-0318、BAY-73-7977、teverelix(速释)、EP-51216、hGH(控释,生物圈)、OGP-I、西夫韦肽(sifuvirtide)、TV4710、ALG-889、ORG-41259、rhCC10、F-991、胸腺五肽(肺病)、r(m)CRP、肝选择性胰岛素、苏靶林(subalin)、L19-IL-2融合蛋白、弹力素(elafin)、NMK-150、ALTU-139、EN-122004、rhTPO、血小板生成素受体激动剂(血小板减少症)、AL-108、AL-208、神经生长因子拮抗剂(疼痛)、SLV-317、CGX-1007、INNO-105、口服特立帕肽(艾力更(eligen))、GEM-OS1、AC-162352、PRX-302、LFn-p24融合疫苗(Therapore)、EP-1043、肺炎球菌儿科疫苗、疟疾疫苗、脑膜炎奈瑟氏菌B组疫苗、新生儿B组链球菌疫苗、炭疽疫苗、HCV疫苗(gpE1+gpE2+MF-59)、中耳炎疗法、HCV疫苗(核心抗原+ISCOMATRIX)、hPTH(1-34)(透皮,ViaDerm)、768974、SYN-101、PGN-0052、阿维库明(aviscumnine)、BIM-23190、结核疫苗、多表位酪氨酸酶肽、癌症疫苗、恩卡斯替母(enkastim)、APC-8024、GI-5005、ACC-001、TTS-CD3、血管靶向TNF(实体瘤)、去氨加压素(口腔控释)、奥那西普或TP-9201、阿达木单抗(adalimumab)(HUMIRA)、英利昔单抗(infliximab)(REMICADETM)、利妥昔单抗(rituximab)(RITUXANTM/MAB THERATM)、依那西普(ENBRELTM)、贝伐单抗(bevacizumab)(AVASTINTM)、曲妥珠单抗(trastuzumab)HERCEPTINTM)、派革利革斯丁(pegrilgrastim)(NEULASTATM)或任何其他合适的POI,包括生物类似物和生物改良剂。
根据一个具体方面,宿主细胞可以是任何动物细胞、脊椎动物细胞、哺乳动物细胞、人细胞、植物细胞、线虫细胞、无脊椎动物细胞诸如昆虫细胞或软体动物细胞、衍生自任何前述的干细胞或真菌细胞或酵母细胞。具体地,宿主细胞是选自由毕赤酵母、汉逊酵母、孔玛氏酵母、酵母属(Saccharomyces)、克鲁维酵母属(Kluyveromyces)、假丝酵母属、亨利绪方酵母(Ogataea)、耶氏酵母(Yarrowia)和地丝菌(Geotrichum)组成的组的属的细胞,特别是酿酒酵母、巴斯德毕赤酵母、小亨利绪方酵母(Ogataea minuta)、乳酸克鲁维酵母(Kluyveromces lactis)、马克思克鲁维酵母(Kluyveromes marxianus)、解脂耶氏酵母(Yarrowia lipolytica)或多形汉逊酵母,或丝状真菌如泡盛曲霉或里氏木霉的细胞。优选地,宿主细胞是甲基营养酵母,优选巴斯德毕赤酵母。在本文中,巴斯德毕赤酵母被同义地用于所有巴斯德孔玛氏酵母、菲氏孔玛氏酵母和假巴斯德孔玛氏酵母。
根据一个具体方面,宿主细胞是
a)选自由毕赤酵母、汉逊酵母、孔玛氏酵母、酿酒酵母、克鲁维酵母、假丝酵母、亨利绪方酵母、耶氏酵母和地丝菌组成的组的属的酵母细胞,诸如毕赤酵母属(例如巴斯德毕赤酵母、甲醇毕赤酵母(Pichia methanolica)、克鲁维毕赤酵母(Pichia kluyveri)和安格斯毕赤酵母(Pichia angusta))、孔玛氏酵母属(例如,巴斯德孔玛氏酵母、假巴斯德孔玛氏酵母或菲氏孔玛氏酵母)、酿酒酵母属(例如酿酒酵母、克鲁维酵母(Saccharomyceskluyveri)、葡萄汁酵母(Saccharomyces uvarum))、克鲁维酵母属(例如,乳酸克鲁维酵母(Kluyveromyces lactis)、马克斯克鲁维酵母(Kluyveromyces marxianus))、假丝酵母属(例如,产朊假丝酵母(Candida utilis)、卡卡假丝酵母(Candida cacaoi)、博伊丁假丝酵母(Candida boidinii))、地丝菌属(例如,发酵地丝菌)、多形汉逊酵母(Hansenulapolymorpha)、解脂耶氏酵母或粟酒裂殖酵母(Schizosaccharomyces pombe);或者
b)丝状真菌诸如泡盛曲霉或里氏木霉的细胞。
优选的是巴斯德毕赤酵母种。具体地,宿主细胞是巴斯德毕赤酵母菌株,其选自由CBS 704、CBS 2612、CBS 7435、CBS 9173-9189、DSMZ 70877、X-33、GS115、KM71、KM71H和SMD1168组成的组。
来源:CBS 704(=NRRL Y-1603=DSMZ 70382)、CBS 2612(=NRRL Y-7556)、CBS7435(=NRRL Y-11430)、CBS 9173-9189(CBS菌株:CBS-KNAW真菌生物多样性中心(CBS-KNAW Fungal Biodiversity Centre),斯基希米尔科文化中心(Centraalbureau voorSchimmelculturen),荷兰乌得勒支(Utrecht,The Netherlands))和DSMZ 70877(德国微生物和细胞培养物保藏中心(German Collection of Microorganisms and CellCultures));来自Invitrogen的菌株,诸如X-33、GS115、KM71、KM71H和SMD1168。
优选的酿酒酵母菌株的示例包括W303、CEN.PK和BY-系列(EUROSCARF集)。上述所有菌株都已被成功用于产生转化体和表达异源基因。
根据一个具体方面,真核宿主细胞可以是真菌细胞(例如,曲霉菌(Aspergillus)(诸如,黑曲霉菌(A.niger)、烟曲霉菌(A.fumigatus)、欧氏曲霉菌(A.orzyae)、尼杜拉曲霉菌(A.nidula))、支顶孢菌(Acremonium)(诸如,嗜热支顶菌(A.thermophilum))、毛壳菌(Chaetomium)(诸如,嗜热毛壳菌(C.thermophilum))、金孢子菌(Chrysosporium)(诸如,嗜热金孢子菌(C.thermophile))、虫草菌(Cordyceps)(诸如,蛹虫草(C.militaris))、棒囊壳菌(Corynascus)、栉霉菌(Ctenomyces)、镰刀菌(Fusarium)(诸如,尖孢镰刀菌(F.oxysporum))、小丛壳菌(Glomerella)(诸如,禾生小丛壳菌(G.graminicola))、肉座菌(Hypocrea)(诸如,红褐肉座菌(H.jecorina))、稻瘟菌(Magnaporthe)(诸如,欧氏稻瘟菌(M.orzyae))、毁丝霉(Myceliophthora)(诸如,嗜热毁丝霉(M.thermophile))、丛赤壳菌(Nectria)(诸如,红球丛赤壳菌(N.heamatococca))、脉孢菌(Neurospora)(诸如,粗糙脉孢菌(N.crassa))、青霉菌(Penicillium)、孢子丝菌(Sporotrichum)(诸如,嗜热孢子丝菌(S.thermophile))、梭孢壳菌(Thielavia)(诸如,泰瑞斯梭孢壳菌(T.terrestris)、异梭孢壳菌(T.heterothallica))、木霉菌(Trichoderma)(诸如,里氏木霉(T.reesei))或黄萎病菌(Verticillium)(诸如,大丽花黄萎病菌(V.dahlia))。
根据一个具体方面,哺乳动物细胞是人或啮齿动物或牛细胞、细胞系或细胞株。适合作为本文所述的宿主细胞的特定哺乳动物细胞的示例是小鼠骨髓瘤(NSO)-细胞系、中国仓鼠卵巢(CHO)-细胞系、HT1080、H9、HepG2、MCF7、MDBK Jurkat、MDCK、NIH3T3、PC12、BHK(幼仓鼠肾细胞)、VERO、SP2/0、YB2/0、Y0、C127、L细胞、COS(例如COS1和COS7)、QC1-3、HEK-293、VERO、PER.C6、HeLA、EBl、EB2、EB3、溶瘤或杂交瘤细胞系。优选地,哺乳动物细胞是CHO细胞系。在一个实施方案中,所述细胞是CHO细胞。在一个实施方案中,所述细胞是CHO-K1细胞、CHO-K1 SV细胞、DG44 CHO细胞、DUXB11CHO细胞、DUKX CHO细胞、CHO-S、CHO FUT8敲除CHOGS敲除细胞、CHO FUT8 GS敲除细胞、CHOZN或CHO衍生细胞。CHO GS敲除细胞(例如GSKO细胞)是例如CHO-K1SV GS敲除细胞。CHO FUT8敲除细胞是例如CHOK1 SV(隆察生物制品公司(Lonza Biologics,Inc.))。真核细胞还包括禽类细胞、细胞系或细胞株,诸如例如/>细胞、EB14、EB24、EB26、EB66或EBvl3。
根据另一个具体方面,真核细胞是昆虫细胞(例如,Sf9、MimicTMSf9、Sf21、HighFiveTM(BT1-TN-5B1-4)或BT1-Ea88细胞)、藻类细胞(例如,双眉藻属(Amphora)、硅藻属(Bacillariophyceae)、杜氏藻属(Dunaliella)、小球藻属(Chlorella)、衣藻属(Chlamydomonas)、蓝绿藻属(Cyanophyta)(蓝藻细菌)、微拟球藻属(Nannochloropsis)、螺旋藻属(Spirulina)或棕鞭藻属(Ochromonas))或植物细胞(例如,来自单子叶植物(例如,玉米、水稻、小麦或狗尾草(Setaria),或来自双子叶植物(例如,木薯、土豆、大豆、番茄、烟草、紫花苜蓿、小立碗藓(Physcomitrella patens)或拟南芥(Arabidopsis)的细胞))。
根据一个具体方面,宿主细胞是原核细胞,例如细菌细胞。具体地,宿主细胞是革兰氏阳性细胞,诸如芽孢杆菌(Bacillus)、链球菌(Streptomyces Streptococcus)、葡萄球菌(Staphylococcus)或乳酸菌(Lactobacillus)。可以使用的芽孢杆菌是例如枯草芽孢杆菌(B.subtilis)、解淀粉芽孢杆菌(B.amyloliquefaciens)、地衣芽孢杆菌(B.licheniformis)、纳豆芽孢杆菌(B.natto)或巨大芽孢杆菌(B.megaterium)。在实施方案中,细胞是枯草芽孢杆菌,诸如枯草芽孢杆菌3NA和枯草芽孢杆菌168。芽孢杆菌可获自例如,枯草芽孢杆菌遗传储存中心(Bacillus Genetic Stock Center),《生物科学(Biological Sciences)》556,484西第12大道,哥伦布市,俄亥俄州43210-1214。
在一个实施方案中,原核细胞是革兰氏阴性细胞,诸如沙门氏菌属或大肠杆菌,诸如例如,TG1、TG2、W3110、DH1、DHB4、DH5a、HMS 174、HMS174(DE3)、NM533、C600、HB101、JM109、MC4100、XL1-Blue和Origami,以及衍生自大肠杆菌B菌株的那些,诸如例如BL-21或BL21(DE3),它们所有都是商业上可获得的。
根据一个具体实施方案,原核细胞选自由大肠杆菌、枯草芽孢杆菌和假单胞菌组成的组。
合适的宿主细胞是商业上可获得的,例如,来自培养物收藏单位诸如DSMZ(德意志微生物和细胞培养物保藏中心有限公司(Deutsche Sammlung von Mikroorganismen andZellkulturen GmbH)),德国布伦瑞克(Braunschweig,Germany))或美国典型培养物保藏中心(American Type Culture Collection)(ATCC)。
根据一个具体方面,本发明提供了用于通过减少编码FLO8蛋白的基因在宿主细胞中的表达来增加目的蛋白(POI)的产量的方法,所述目的蛋白(POI)由在启动子的控制下表达编码所述POI的目的基因(GOI)的宿主细胞产生,所述启动子可被非甲醇碳源(特别是本文所述的ECP)调节或抑制,所述FLO8蛋白包括鉴定为SEQ ID NO:1的氨基酸序列或其同源物,特别是编码所述FLO8蛋白的基因,所述FLO8蛋白对宿主细胞是内源性的。
具体地,与表达所述GOI的比较宿主细胞相比,产量增加1.2倍、1.3倍、1.4倍、1.5倍、1.6倍、1.7倍、1.8倍、1.9倍、2.0倍、2.1倍、2.2倍、2.3倍、2.4倍、2.5倍、2.6倍、2.7倍、2.8倍、2.9倍、3倍、3.5倍、4倍、5倍、5.5倍、6倍、6.5倍、7倍、7.5倍、8倍、8.5倍、9倍、9.5倍、10倍、10.5倍、11倍、11.5倍或12倍中的至少任一种,
a)其未经工程改造以降低编码内源性FLO8蛋白的所述基因的表达,或其中编码内源性FLO8蛋白的所述基因的表达未被修饰;并且任选地
b)其中控制所述GOI的表达的启动子是组成型启动子,特别是GAP启动子,或甲醇诱导型启动子,特别是AOX1启动子。
具体地,本文所述的增加POI生产的产量的方法使用如本文进一步所述的重组宿主细胞。
根据另外的具体方面,本发明提供了用于通过在产生目的蛋白(POI)的条件下培养如本文进一步描述的重组宿主细胞来产生由目的基因(GOI)编码的所述POI的方法。
根据另外的具体实施方案,本发明提供了本文所述的宿主细胞用于产生POI的用途。
具体地,宿主细胞是在细胞培养物中培养的细胞系,特别是生产宿主细胞系。
根据一个具体实施方案,细胞系在分批、补料分批或连续培养条件下培养。培养可以在微量滴定板、摇瓶或生物反应器中进行,并且任选地从作为第一步骤的分批阶段开始,随后是作为第二步骤的补料分批阶段或连续培养阶段。
具体地,所述方法包括以下步骤:
a)在生长条件下培养宿主细胞;以及进一步的步骤
b)在生长限制条件下,在至多1g/L的第二非甲醇碳源的存在下培养所述宿主细胞,使得所述GOI的表达以产生所述POI。
具体地,第二步骤b)在第一步骤a)之后。
具体地,第一碳源是本文称为基础碳源的非甲醇碳源。
具体地,在第一步骤中,在包含第一碳源的细胞培养基中在生长条件下培养宿主细胞,例如以足以使宿主细胞在细胞培养物中生长的量,任选地直到碳源的量被消耗,并且进一步的培养可以在生长限制条件下进行。
具体地,第二碳源是本文称为补充碳源的非甲醇碳源。
具体地,所述第一碳源和/或第二碳源选自糖类、多元醇、醇类或前述任何一种或多种的混合物,如本文进一步所述。
根据一个具体实施方案,基础碳源不同于补充碳源,例如在数量和/或质量上不同。定量差异通常提供了抑制或去抑制启动子活性的不同条件。
根据另外的具体实施方案,基础碳源和补充碳源包括相同类型的分子或碳水化合物,优选地以不同的浓度。根据另外的具体实施方案,碳源是两种或更多种不同碳源的混合物。
可以使用任何类型的有机碳源,特别是通常用于宿主细胞培养,特别是用于真核宿主细胞培养的那些。根据一个具体实施方案,碳源是己糖诸如葡萄糖、果糖、半乳糖或甘露糖,二糖诸如蔗糖,醇诸如甘油或乙醇,或其混合物。
根据特别优选的实施方案,基础碳源选自由葡萄糖、甘油、乙醇或其混合物组成的组。根据优选的实施方案,基础碳源是甘油。
根据另外的具体实施方案,补充碳源是己糖诸如葡萄糖、果糖、半乳糖和甘露糖,二糖诸如蔗糖,醇诸如甘油或乙醇,或其混合物。根据优选的实施方案,补充碳源是葡萄糖。
具体地,
a)基础碳源选自由葡萄糖、甘油、乙醇、它们的混合物组成的组;和
b)补充碳源是己糖诸如葡萄糖、果糖、半乳糖或甘露糖,二糖诸如蔗糖,醇诸如甘油或乙醇,或任何前述的混合物。
两个所述培养步骤具体地包括在所述碳源的存在下培养所述细胞系。例如,所述在生长条件下培养宿主细胞(步骤a)是使用基础碳源进行的;并且所述在生长限制条件下培养宿主细胞(步骤b)是使用补充碳源进行的,例如以有限的量,使得细胞培养基在培养期间(步骤b)在细胞培养基或上清液中包括至多1g/L或甚至没有可检测量的补充碳源。
去抑制(或诱导)条件合适地可以通过特定的手段来实现。第二步骤b)任选地采用在细胞培养基或上清液中不提供或提供有限量的补充碳源的进料介质。具体地,进料介质为化学定义的且不含甲醇。
具体地,第二步骤b)采用以生长限制量提供补充碳源的进料介质,以将比生长速率保持在0.0001h-1至0.2h-1、优选地0.005h-1至0.15h-1的范围内。
可以将进料介质以液体形式或以替代形式(诸如固体,例如作为片剂或其他持续释放手段,或气体)添加到培养基中。但是,根据一个优选的实施方案,添加到细胞培养基中的补充碳源的有限量甚至可以是零。优选地,在有限碳底物的条件下,培养基中补充碳源的可检测浓度为0-1g/L,优选地小于0.9g/L、0.8g/L、0.7g/L、0.6g/L、0.5g/L、0.4g/L、0.3g/L、0.2g/L、0.1g/L中的任何一个,优选地小于90mg/L、80mg/L、70mg/L、60mg/L、50mg/L、40mg/L、30mg/L、20mg/L或10mg/L中的任何一个,或甚至小于9mg/L、8mg/L、7mg/L、6mg/L、5mg/L、4mg/L、3mg/L、2mg/L或1mg/L,或具体地1-50mg/L或1-10mg/L,具体地优选的1mg/L或甚至更低,例如低于如用合适的标准测定法测量的检测限值,例如被确定为在由生长细胞培养物消耗时培养基中的残留浓度。
在优选的方法中,有限量的补充源提供了细胞培养物中的残留量,其低于如在生产阶段结束时或在发酵过程的输出中,优选在收获发酵产物时在发酵液中测定的检测限值。
具体地,所述步骤a)培养在分批阶段进行;并且所述步骤b)培养在补料分批或连续培养阶段中进行。
具体地,宿主细胞在富含碳源的培养基中生长,所述富含碳源的培养基在高生长速率的阶段(在生长条件下)步骤a)(例如至少50%或至少60%、至少70%、至少80%、至少90%、至少95%、至少98%、至少99%或直到最大生长速率)期间包含基础碳源,并在低生长速率的阶段(在生长限制条件下)步骤b)(例如小于最大生长速率的90%,优选地小于80%、小于70%、小于60%、小于50%或小于40%、小于30%、小于20%、小于10%、小于5%、小于3%、小于2%、小于1%、小于0.5%、小于0.4%、小于0.3%或小于0.2%)期间产生POI,同时限制碳源,特别是通过供给限定的基本培养基,该培养基仅包含在生产阶段维持细胞培养时被完全消耗的碳源的量。
具体地,POI在所述生长限制条件下表达,例如通过以低于最大生长速率的生长速率培养细胞系,通常低于细胞的最大生长速率的90%,优选地低于80%、低于70%、低于60%、低于50%、低于40%、低于30%、低于20%、低于10%、低于5%、低于3%、低于2%、低于1%、低于0.5%、低于0.4%、低于0.3%或低于0.2%。通常,对每种类型的宿主细胞单独确定最大生长速率。
具体地,进行分批阶段,直到最初添加到细胞培养物中的基础碳源被细胞系消耗。溶解氧(DO)尖峰法可以用于确定分批阶段期间的基础碳源消耗量。
根据一个具体实施方案,分批阶段通过氧分压(pO2)信号的连续降低来表征,并且其中分批阶段的结束通过pO2的增加来表征。通常,当在分批阶段期间消耗基础碳源并且没有如分批阶段通常添加另外的碳源时,氧分压(pO2)信号将连续降低直到例如低于65%,诸如例如30%。在消耗基础碳源时,pO2可以增加至例如高于30%,诸如例如高于65%,或更高,这表明在碳源受限的条件下切换至使用进料介质添加另外的碳源的补料分批系统的适当时间点。
具体地,在分批阶段期间,pO2的饱和度被降低到低于65%或更低,然后在分批结束时,饱和度升高到高于65%或更高。具体地,进行分批阶段直到氧分压(pO2)信号的增加超过65%饱和度,具体地超过70%、75%、80%或85%中的任何一个。
具体地,分批阶段进行约10至36小时。
关于培养时间的术语“约”应指+/-5%或+/-10%。
例如,约10至36小时的特定批次性能时间可以是18至39.6小时,具体地是19至37.8小时。
根据一个具体实施方案,使用40-50g/L的甘油,特别是45g/L的甘油作为分批培养基中的基础碳源进行分批阶段,并且在25℃下进行培养约27-30小时,或在30℃下进行培养约23-36小时,或在25℃至30℃之间的任何温度下在23-36小时的培养时间期间进行培养。降低分批培养基中的甘油浓度会缩短分批阶段的长度,而增加分批培养基中的甘油浓度甚至会延长分批阶段。作为甘油的替代物,可以使用例如约相同量的葡萄糖。
在细胞培养和POI表达的典型系统中,其中分批阶段之后是补料分批阶段,具体地,补料分批阶段中的培养进行约15至80小时、约15至70小时、约15至60小时、约15至50小时、约15至45小时、约15至40小时、约15至35小时、约15至30小时、约15至35小时、约15至25小时或约15至20小时中的任何一个;优选地约20至40小时。具体地,补料分批阶段中的培养进行约80小时、约70小时、约60小时、约55小时、约50小时、约45小时、约40小时、约35小时、约33小时、约30小时、约25小时、约20小时或约15小时中的任何一个。
少于120小时或少于100小时或至多80小时的任何补料分批培养(其导致成功的POI生产从而获得高产率)在本文中称为“快速发酵”。具体地,体积比产品形成率(rP)是每单位体积(L)和单位时间(小时)形成的产品量(mg)(mg(L h)-1)。体积比产品形成率也称为时空产率(STY)或体积生产率。
具体地,进行本文所述方法的补料分批培养,使得时空产率为约30mg(L h)-1(意味着30mg(L h)-1+/-5%或+/-10%)。具体地,在约30小时补料分批内获得约30mg(L h)-1的时空产率,具体地,可以在少于33小时、32小时、31小时、30小时、29小时、28小时、27小时、26小时或25小时补料分批时间的任何一个内获得27mg(L h)-1、28mg(L h)-1、29mg(L h)-1、30mg(L h)-1、31mg(L h)-1、32mg(L h)-1或33mg(L h)-1中的至少任何一个。
具体地,分批阶段作为第一步骤a)进行,并且补料分批阶段作为第二步骤b)进行。
具体地,第二步骤b)采用补料分批阶段中的进料介质,其提供生长限制量的补充碳源以将比生长速率保持在0.0001h-1至0.2h-1的范围内,优选地小于0.2h-1、0.15h-1、0.1h-1或0.15h-1中的任何一个。
具体地,包括分批和补料分批培养步骤的培养方法可以特别地使用酵母宿主细胞,例如任何酿酒酵母属或毕赤酵母属或孔玛氏酵母属的酵母,或来自除毕赤酵母之外的属的酵母,诸如乳酸克鲁维酵母、鲁氏接合酵母(Z.rouxii)、树干毕赤酵母(P.stipitis)、多形汉逊酵母(H.polymorpha)或解脂耶氏酵母(Y.lipolytica),优选巴斯德毕赤酵母或巴斯德孔玛氏酵母。
根据另外的具体方面,本发明提供了用于在宿主细胞中产生目的蛋白(POI)的方法,包括以下步骤:
a)对宿主细胞进行基因工程改造,以减少编码FLO8蛋白的内源性基因的表达,所述FLO8蛋白包括鉴定为SEQ ID NO:1的氨基酸序列或其同源物;
b)将异源表达盒引入到宿主细胞中,所述异源表达盒包括在表达盒启动子(ECP)的控制下编码或表达所述POI的目的基因(GOI),所述表达盒启动子可操作地连接到GOI,所述ECP可通过非甲醇碳源调节或抑制;
c)在产生所述POI的条件下培养所述宿主细胞;
d)任选地从细胞培养物中分离所述POI;和
e)任选地纯化所述POI。
具体地,本文所述的方法的步骤a)在步骤b)之前、之后或伴随步骤b)进行。
根据一个具体方面,在经工程化用于产生POI之前,首先对宿主细胞进行基因修饰以减少所述FLO8蛋白或其相应同源物的表达。根据一个具体实施例,野生型宿主细胞根据本文所述的方法的步骤a)进行基因修饰。具体地,在将所述一种或多种基因修饰引入到野生型宿主细胞株以用于减少所述FLO8蛋白或其相应的同源物时提供宿主细胞。
根据另外的方面,首先对宿主细胞进行工程改造以用于产生异源或重组POI,然后进一步进行基因修饰以减少所述FLO8蛋白或其相应的同源物。根据一个具体实施例,野生型宿主细胞可以首先经工程改造以包含用于POI生产的表达盒。然后可以进一步修饰此类工程改造的宿主细胞,以减少如本文所述的所述FLO8蛋白或其相应的同源物。
根据另外的方面,宿主细胞在一个方法步骤中经历用于POI生产的工程改造和用于减少所述FLO8蛋白或其相应同源物的基因修饰,例如在一种或多种反应混合物中使用相应的表达盒、试剂和工具。
具体地,所述方法采用方法步骤来产生如本文进一步描述的重组宿主细胞。
具体地,异源表达盒包含如本文进一步描述的ECP。
具体地,可以通过以下来生产POI:在合适的培养基中培养宿主细胞,在分离细胞时从细胞培养物,特别是从细胞培养物上清液或培养基中分离表达的POI,并通过适合于所表达产物的方法对其进行纯化,特别是在从细胞中分离POI并通过合适的方法纯化之后。由此,可以制备纯化的POI制剂。
附图说明
图1:本文所指的序列。
具体实施方式
如在整个说明书中使用的特定术语具有以下含义。
如本文所用的术语“碳源”(也称为“碳底物”)应指可发酵的碳底物,通常是源碳水化合物,其适合作为微生物(诸如能够被宿主生物体或生产细胞系代谢的微生物)的能量源,特别是选自由单糖、寡糖、多糖、醇(包括甘油)组成的组的源,以纯化的形式,在最少的介质中或在原料中提供,诸如复合营养材料。碳源可以如本文所述用作单一碳源或用作不同碳源的混合物。
非甲醇碳源在本文中理解为一定量的除甲醇以外的任何碳源,特别是不含甲醇的碳源。
如本文所述使用的“基础碳源”通常是适合于细胞生长的碳源,诸如用于宿主细胞,特别是用于真核细胞的营养物。基础碳源可以在介质(诸如基础介质或复合介质)中提供,但也可以在含有纯化的碳源的化学定义的介质中提供。基础碳源通常以提供细胞生长的量提供,特别是在培养过程中的生长阶段期间,例如以获得至少5g/L细胞干质量、优选地至少10g/L细胞干质量或至少15g/L细胞干质量的细胞密度,例如在标准亚培养步骤期间显示大于90%、优选地大于95%的存活率。
基础碳源通常以过量或过剩量使用,其被理解为过量提供能量以增加生物质,例如在具有高比生长速率的细胞系的培养期间,诸如在分批或补料分批培养过程中的细胞系的生长阶段期间。该过剩量特别超过有限量的补充碳源(如在生长受限条件下使用的),以实现发酵液中的残余浓度,该残余浓度是可测量的,并且通常比进料有限量的补充碳源期间高至少10倍,优选地高至少50倍或高至少100倍。
诸如本文所述的“补充碳源”通常是促进通过生产细胞系生产发酵产物的补充底物,特别是在培养过程的生产阶段中。生产阶段具体遵循生长阶段,例如在分批、补料分批和连续培养过程中。补充碳源具体地可以被包含在补料分批工艺的进料中。补充碳源通常在碳底物受限的条件下用于细胞培养,即以有限的量使用碳源。
碳源的“有限量”或“有限的碳源”在本文中理解为具体地指促进通过生产细胞系生产发酵产物的碳底物的类型和量,特别是在具有小于最大生长速率的受控生长速率的培养过程中。生产阶段具体遵循生长阶段,例如在分批、补料分批和连续培养过程中。细胞培养过程可以采用分批培养、连续培养和补料分批培养。分批培养是一种培养过程,通过该过程,向培养基中加入少量的种子培养液,并在培养期间不添加额外的培养基或排出培养液的情况下而使细胞生长。连续培养是在培养期间不断添加和排出培养基的培养过程。连续培养也包括灌注培养。补料分批培养(其是分批培养与连续培养之间的中间体,并且也称为半分批培养)是这样的培养过程,通过该培养过程,在培养期间连续或顺序地加入培养基,但与连续培养不同,培养液不连续地排出。
特别优选的是基于将生长限制营养底物进料至培养物的补料分批工艺。补料分批策略(包括单补料分批或重复补料分批发酵)通常用于生物工业过程中,以在生物反应器中达到高细胞密度。碳底物的受控添加直接影响培养物的生长速率,并且有助于避免代谢溢出或形成不需要的代谢副产物。在碳源受限的条件下,碳源具体地可以被包含在补料分批工艺的进料中。因此,以有限的量提供碳底物。
同样在如本文所述的恒化器或连续培养中,生长速率可以被严格控制。
碳源的有限量在本文中特别地被理解为将生产细胞系保持在生长受限条件下(例如在生产阶段或生产模式中)所必需的碳源的量。此类有限的量可以用于补料分批工艺中,其中碳源被包含在进料介质中,并以低进料速率供应到培养物中,用于持续的能量递送,例如以产生POI,同时将生物质保持在低比生长速率。通常在细胞培养物的生产阶段期间将进料培养基加入到发酵液中。
碳源的有限量可以例如通过细胞培养液中碳源的残留量来确定,其低于预定的阈值或甚至低于如在标准(碳水化合物)测定中测量的检测限值。通常在收获发酵产物时在发酵液中测定残留量。
碳源的有限量也可以通过定义碳源到发酵罐的平均进料速率来确定,例如如通过在每个培养时间的整个培养过程(例如补料分批阶段)中添加的量来确定,以确定每次计算的平均量。该平均进料速率被保持较低,以确保通过细胞培养完全利用补充碳源,例如在0.6g L-1h-1(每L初始发酵体积和h时间的g碳源)至25g L-1h-1之间,优选地在1.6g L-1h-1至20g L-1h-1之间。
碳源的有限量也可以通过测量比生长速率来确定,在生产阶段期间,该比生长速率被保持较低,例如低于最大比生长速率,例如在预定的范围内,诸如在0.001h-1至0.20h-1或0.005h-1至0.20h-1的范围内,优选地在0.01h-1至0.15h-1之间。
具体地,使用化学定义且不含甲醇的进料介质。
关于细胞培养基(诸如在补料分批工艺中的基本培养基或进料培养基)的术语“化学定义的”应指适合于生产细胞系的体外细胞培养的培养基,其中所有化学组分和(聚)肽是已知的。通常,化学定义的培养基完全不含动物源性组分并且代表纯且一致的细胞培养环境。
如本文所使用的术语“宿主细胞”应指单细胞、单细胞克隆或宿主细胞的细胞系。
如本文所使用的术语“细胞系”是指特定细胞类型的已建立的克隆,其已获得在延长的时间段内增殖的能力。细胞系通常用于表达内源或重组基因,或代谢途径的产物,以产生多肽或由此类多肽介导的细胞代谢物。“生产宿主细胞系”或“生产细胞系”通常被理解为准备用于在生物反应器中进行细胞培养以获得生产过程的产物诸如POI的细胞系。
如本文所述产生POI的宿主细胞也称为“生产宿主细胞”,并且相应的细胞系称为“生产细胞系”。
本文所述的具体实施方案是指生产宿主细胞系,其经工程改造以低表达编码FLO8蛋白的内源基因,和/或具有此类基因的降低的表达,并且其特征在于在碳源可调节启动子(诸如本文所述的ECP启动子)的控制下POI生产的高产率,所述启动子尤其是可以在不需要向细胞培养物中添加甲醇的情况下被诱导的启动子。此类宿主细胞被证明稳定地表达POI,而没有显著改变形态。
术语“宿主细胞”应特别适用于任何真核或原核细胞或生物体,其适合用于重组目的以产生POI或宿主细胞代谢物。众所周知,术语“宿主细胞”不包括人类。具体地,如本文所述的宿主细胞是人造生物体和天然(野生型)宿主细胞的衍生物。众所周知,本文所述的宿主细胞、方法和用途(例如,特别是指那些包含一种或多种基因修饰、所述异源表达盒或构建体、所述转染的或转化的宿主细胞和重组蛋白的宿主细胞、方法和用途)是非天然存在的、“人造的”或合成的,并且因此不认为是“自然法则”的结果。
如本文所使用的关于宿主细胞的术语“细胞培养”或“培养(culturing或cultivation)”是指在人工的例如体外环境中,在有利于细胞的生长、分化或持续存活的条件下,在细胞的活性或静止状态下,特别是受控的生物反应器中,根据本领域已知的方法,来维持细胞。
当使用合适的培养基培养细胞培养物时,在适于支持在细胞培养物中培养细胞的条件下,使细胞与培养容器中的培养基或与底物接触。如本文所述,提供了可以用于宿主细胞例如真核细胞,特别是酵母或丝状真菌的生长的培养基。标准细胞培养技术是本领域中众所周知的。
如本文所述的细胞培养物特别使用提供分泌的POI的产生的技术,诸如以在细胞培养基中获得POI,所述POI可与细胞生物质分离,本文称为“细胞培养物上清液”,并且可以被纯化以获得较高纯度的POI。当在细胞培养物中通过宿主细胞产生并分泌蛋白质(诸如例如POI)时,本文中应当理解,此类蛋白质被分泌到细胞培养物上清液中,并且可通过将细胞培养物上清液与宿主细胞生物质分离,并任选地进一步纯化该蛋白质以产生纯化的蛋白质制剂而获得。
细胞培养基提供在受控的、人工和体外环境中维持和生长细胞所需的营养物。细胞培养基的特性和组成根据特定的细胞要求而变化。重要的参数包括渗透压(osmolality)、pH和营养配方。营养物的进料可以根据本领域已知的方法以连续或不连续的模式进行。
而分批过程是细胞培养模式,其中培养细胞所需的所有营养物都被包含在初始培养基中,而在发酵期间不另外供应其他营养物,在补料分批过程中,在分批阶段之后,发生补料阶段,其中通过进料向培养物供应一种或多种营养物。尽管在大多数过程中,进料的模式是关键且重要的,但本文所述的宿主细胞和方法不限于某一种细胞培养模式。
使用本文所述的宿主细胞和相应的细胞系,通过在合适的培养基中培养,从培养物中分离表达的产物或代谢物,并任选地通过合适的方法对其进行纯化,可以产生重组POI。
如本文所述的用于产生POI的几种不同方法是优选的。可以通过用含有编码相关蛋白的重组DNA的表达载体转染或转化宿主细胞,制备转染的或转化的细胞的培养物,使培养物生长,诱导转录和POI产生,以及回收POI来表达、加工和任选地分泌POI。
在某些实施方案中,细胞培养过程是补料分批过程。具体地,在生长阶段中培养用编码所需的重组POI的核酸构建体转化的宿主细胞,并过渡到生产阶段,以生产所需的重组POI。
在另一个实施方案中,本文所述的宿主细胞以连续模式(例如使用恒化器)培养。连续发酵过程的特征在于将新鲜的培养基进料到生物反应器中的限定的、恒定的和连续的速率,由此培养液同时以相同的限定的、恒定的和连续的去除速率从生物反应器中去除。通过将培养基、进料速率和去除速率保持在相同的恒定水平,生物反应器中的细胞培养参数和条件保持恒定。
如本文所述的稳定细胞培养物具体地被理解为是指保持基因性质的细胞培养物,特别是将POI产生保持为高水平,例如至少保持在μg水平,甚至在约20代培养之后,优选地至少30代,更优选地至少40代,最优选地至少50代之后。具体地,提供了稳定的重组宿主细胞系,当用于工业规模生产时,这被认为是一大优势。
本文所述的细胞培养物对于工业生产规模的方法特别有利,例如就体积和技术系统而言,与基于营养物的进料的培养模式相结合,特别是补料分批或分批工艺,或连续或半连续工艺(例如恒化器)。
本文所述的宿主细胞通常测试其表达用于POI产生的GOI的能力,通过以下测试中的任一种测试POI产量:ELISA、活性测定、HPLC或其他合适的测试,诸如SDS-PAGE和蛋白质印迹技术,或质谱法。
为了确定基因修饰对编码FLO8蛋白或其同源物的基因在相应的细胞培养物中的低表达或减少的影响,例如对其对POI产生的影响,与在相应的细胞中没有此类基因修饰的菌株相比,可以使用补料分批或恒化器发酵在微量滴定板、摇瓶或生物反应器中培养宿主细胞系。
本文所述的生产方法特别允许在中试或工业规模下发酵。工业过程规模将优选地采用至少10L,特别是至少50L,优选地至少1m3,优选至少10m3,最优选至少100m3的体积。
工业规模的生产条件是优选的,其指例如在100L至10m3或更大的反应器体积中的补料分批培养(采用若干天的典型工艺时间),或在约50-1000L或更大的发酵罐体积中的连续工艺,其中稀释速率为约0.02-0.15h-1
用于本文所述目的的装置、设施和方法特别适合用于培养任何所需的细胞系,包括原核和/或真核细胞系。此外,在实施方案中,所述装置、设施和方法适合于培养任何细胞类型,包括悬浮细胞或锚定依赖性(贴壁)细胞,并且适合于被配置成用于生产药物和生物制药产品(诸如多肽产品(POI)、核酸产品(例如DNA或RNA),或细胞和/或病毒,诸如用于细胞和/或病毒疗法的那些)的生产操作。
在某些实施方案中,细胞表达或产生产物,诸如重组治疗或诊断产物。如本文更详细描述的,由细胞产生的产物的示例包括,但不限于,诸如本文例举的POI,包括抗体分子(例如,单克隆抗体、双特异性抗体)、抗体模拟物(特异性地结合至抗原但在结构上不与抗体相关的多肽分子,诸如例如DARPins、亲和体、adnectins或IgNAR)、融合蛋白(例如,Fc融合蛋白、嵌合细胞因子)、其他重组蛋白(例如,糖基化蛋白、酶、激素)或病毒治疗剂(例如,抗癌溶瘤病毒、用于基因疗法和病毒免疫疗法的病毒载体)、细胞治疗剂(例如,多能干细胞、间充质干细胞和成体干细胞)、疫苗或脂质包封的颗粒(例如,外来体、病毒样颗粒)、RNA(诸如,siRNA)或DNA(诸如例如,质粒DNA)、抗生素或氨基酸。在实施方案中,所述装置、设施和方法可以用于生产生物仿制药。
如上所述,在某些实施方案中,装置、设施和方法允许生产真核细胞,例如哺乳动物细胞或低等真核细胞,诸如例如酵母细胞或丝状真菌细胞,或原核细胞,诸如革兰氏阳性细胞或革兰氏阴性细胞,和/或真核细胞或原核细胞的产物,例如POI,包括蛋白质、肽或抗生素,氨基酸,核酸(诸如DNA或RNA),其由所述细胞以大规模方式合成。除非本文另有说明,否则装置、设施和方法可以包括任何所需的体积或生产能力,包括但不限于小规模、中试规模和全生产规模的能力。
此外,并且除非本文另有说明,否则装置、设施和方法可以包括任何合适的反应器,包括但不限于搅拌罐、气升式反应器、纤维、微纤维、中空纤维、陶瓷基质、流化床、固定床和/或喷动床生物反应器。如本文所使用的,“反应器”可以包括发酵罐或发酵单元,或任何其他反应容器,并且术语“反应器”可与“发酵罐”互换使用。例如,在一些方面中,示例性的生物反应器单元可以执行以下中的一个或多个或全部:营养物和/或碳源的进料、合适的气体(例如氧气)的注射、发酵或细胞培养基的入口和出口流、气相和液相的分离、温度的维持、氧气和CO2水平的维持、pH水平的维持、搅动(例如搅拌)和/或清洁/灭菌。示例性的反应器单元(诸如发酵单元)可以包含单元内的多个反应器,例如单元可以具有在每个单元中的1、2、3、4、5、10、15、20、25、30、35、40、45、50、60、70、80、90或100个或更多个生物反应器,和/或设施可以包含在设施内具有单个或多个反应器的多个单元。在各种实施方案中,生物反应器可以适合于分批、半补料分批、补料分批、灌注和/或连续发酵过程。可以使用任何合适的反应器直径。在实施方案中,生物反应器可以具有在约100mL至约50,000L之间的体积。非限制性的示例包括100mL、250mL、500mL、750mL、1升、2升、3升、4升、5升、6升、7升、8升、9升、10升、15升、20升、25升、30升、40升、50升、60升、70升、80升、90升、100升、150升、200升、250升、300升、350升、400升、450升、500升、550升、600升、650升、700升、750升、800升、850升、900升、950升、1000升、1500升、2000升、2500升、3000升、3500升、4000升、4500升、5000升、6000升、7000升、8000升、9000升、10,000升、15,000升、20,000升和/或50,000升的体积。此外,合适的反应器可以是多用途的、单用途的、一次性的或非一次性的,并且可以由任何合适的材料形成,所述材料包括金属合金,诸如不锈钢(例如,316L或任何其他合适的不锈钢)和铬镍铁合金、塑料和/或玻璃。
在实施方案中,并且除非本文另有说明,否则本文所述的装置、设施和方法还可以包括未另外提及的任何合适的单元操作和/或设备,诸如用于分离、纯化和分离此类产物的操作和/或设备。可以使用任何合适的设施和环境,诸如传统的固定设施、模块化设施、移动设施和临时设施,或任何其他合适的结构、设施和/或布局。例如,在一些实施方案中,可以使用模块化洁净室。此外,并且除非另有说明,否则本文所述的装置、系统和方法可以在单个位置或设施中容纳和/或执行,或者可替代地,可以在单独的或多个位置和/或设施中容纳和/或执行。
合适的技术可以包括在生物反应器中培养,从分批阶段开始,随后是以高比生长速率的短指数补料分批阶段,进一步随后是以低比生长速率的补料分批阶段。另一种合适的培养技术可以包括分批阶段,随后是补料分批阶段,以任何合适的比生长速率或比生长速率的组合,诸如随着POI生产时间从高到低的生长速率,或者随着POI生产时间从低到高的生长速率。另一种合适的培养技术可以包括分批阶段,随后是在低稀释速率下的连续培养阶段。
一个优选的实施方案包括提供生物质的分批培养,随后是用于高产量POI生产的补料分批培养。
优选在生长条件下在生物反应器中培养如本文所述的宿主细胞,以获得至少1g/L细胞干重、更优选地至少10g/L细胞干重、优选地至少20g/L细胞干重、优选地30g/L、40g/L、50g/L、60g/L、70g/L或80g/L细胞干重中的至少任何一种的细胞密度。在中试或工业规模下提供生物质生产的此类产量是有利的。
允许积累生物质的生长培养基(特别是基础生长培养基)通常包括碳源、氮源、硫源和磷酸盐源。通常,此类培养基还包括微量元素和维生素,并且可以进一步包括氨基酸、蛋白胨或酵母提取物。
优选的氮源包括NH4H2PO4或NH3或(NH4)2SO4
优选的硫源包括MgSO4或(NH4)2SO4或K2SO4
优选的磷酸盐源包括NH4H2PO4或H3PO4或NaH2PO4、KH2PO4、Na2HPO4或K2HPO4
其他典型的培养基组分包括KCl、CaCl2和微量元素,诸如:Fe、Co、Cu、Ni、Zn、Mo、Mn、I、B;
优选地,培养基补充有维生素B7
用于巴斯德毕赤酵母的典型生长培养基包括甘油、山梨醇或葡萄糖、NH4H2PO4、MgSO4、KCl、CaCl2、生物素和微量元素。
在生产阶段,生产介质仅与有限量的补充碳源一起专门使用。
优选地,宿主细胞系在具有合适碳源的矿物培养基中培养,从而进一步显著地简化分离过程。优选的矿物培养基的示例是含有可利用的碳源(例如葡萄糖、甘油或山梨醇)、含有常量元素(钾、镁、钙、铵、氯化物、硫酸盐、磷酸盐)和微量元素(铜、碘、锰、钼酸盐、钴、锌和铁盐以及硼酸)的盐,以及任选的维生素或氨基酸的培养基,例如以补充营养缺陷型。
具体地,在适于实现所需POI的表达的条件下培养细胞,所述POI可以从细胞或培养基中纯化,这取决于表达系统和所表达的蛋白质的性质,例如蛋白质是否与信号肽融合以及蛋白质是可溶的还是膜结合的。如本领域技术人员将理解的,培养条件将根据包括宿主细胞的类型和所采用的特定表达载体的因素而变化。
典型的生产培养基包括补充碳源,以及另外的NH4H2PO4、MgSO4、KCl、CaCl2、生物素和微量元素。
例如,添加到发酵中的补充碳源的进料可以包括具有至多50重量%的可利用糖的碳源。
发酵优选地在3至8范围的pH下进行。
典型的发酵时间为约24至120小时,其中温度范围为20℃至35℃,优选22℃-30℃。
优选地使用产生至少1mg/L、优选地至少10mg/L、优选地至少100mg/L、最优选地至少1g/L的产率的条件来表达POI。
如本文使用的术语“表达”或“表达盒”是指含有所需编码序列和可操作连接的控制序列的核酸分子,使得用这些序列转化或转染的宿主能够产生编码的蛋白质或宿主细胞代谢物。为了实现转化,表达系统可以被包含在载体中;但是,相关DNA也可以被整合到宿主细胞染色体中。表达可以是指分泌的或非分泌的表达产物,包括多肽或代谢物。
表达盒方便地作为表达构建体提供,例如以“载体”或“质粒”的形式,其通常是在合适的宿主生物体中转录克隆的重组核苷酸序列(即重组基因)和翻译其mRNA所需的DNA序列。表达载体或质粒通常包括用于自主复制的起点或用于在宿主细胞中基因组整合的位点、选择性的标记物(例如,氨基酸合成基因或赋予抗生素抗性的基因,所述抗生素为诸如齐奥菌素、卡那霉素、G418或潮霉素、诺尔斯菌素)、多个限制酶切割位点、合适的启动子序列和转录终止子,这些组分可操作地连接在一起。如本文使用的术语“质粒”和“载体”包括自主复制的核苷酸序列以及整合核苷酸序列的基因组,诸如人工染色体,例如酵母人工染色体(YAC)。
表达载体可以包括但不限于克隆载体、修饰的克隆载体和特别设计的质粒。本文所述的优选的表达载体是适合于在真核宿主细胞中表达重组基因的表达载体,并根据宿主生物体进行选择。合适的表达载体通常包括适合于在真核宿主细胞中表达编码POI的DNA的调节序列。调节序列的示例包括启动子、操作子、增强子、核糖体结合位点以及控制转录和翻译起始和终止的序列。调节序列通常与待表达的DNA序列可操作地连接。
为了允许重组核苷酸序列在宿主细胞中表达,本文所述的表达盒或载体包括ECP,通常是邻近编码序列的5’端的启动子核苷酸序列,例如,在目的基因(GOI)的上游和邻近目的基因(GOI),或者如果使用信号或前导序列,则分别在所述信号和前导序列的上游和邻近所述信号和前导序列,以促进POI的表达和分泌。启动子序列通常调节和启动与其可操作连接的下游核苷酸序列(特别地包括GOI)的转录。
本文所述的特异性表达构建体包括启动子,该启动子在所述启动子的转录控制下可操作地连接到编码POI的核苷酸序列上。具体地,启动子不是与POI的编码序列天然相关的。
本文所述的特异性表达构建体包括编码与前导序列相连的POI的多核苷酸,该前导序列导致POI从宿主细胞中分泌。当用于重组表达和分泌的POI是非天然分泌的蛋白质,并且因此缺乏天然分泌前导序列,或者其核苷酸序列在没有其天然分泌前导序列的情况下已经被克隆时,通常需要在表达载体中存在此类分泌前导序列。一般来说,可以使用任何有效引起从宿主细胞中分泌POI的分泌前导序列。分泌前导序列可以来源于酵母源,例如来源于酵母α因子诸如酿酒酵母的MFa,或酵母磷酸酶,来源于哺乳动物或植物源,或其他。
在具体实施方案中,可以使用多克隆载体,其是具有多克隆位点的载体。具体地,可以在多克隆位点处整合或掺入所需的异源基因,以制备表达载体。在多克隆载体的情况下,启动子通常位于多克隆位点的上游。
本文所述的重组宿主细胞被特别工程改造成减少宿主细胞中宿主细胞的内源性FLO8蛋白或相应同源物或直系同源物的量,特别是通过降低相应的编码基因序列的表达,从而使基因低表达。
如本文所使用的术语“基因表达”或“表达多核苷酸”是指包括至少一个选自由以下组成的组的步骤:将DNA转录成mRNA、mRNA加工、mRNA成熟、mRNA输出、翻译、蛋白质折叠和/或蛋白质转运。
术语“降低表达”通常是指“低表达”,并且通常是指低于由参考标准所呈现的表达水平的任何量,所述参考标准是在工程改造以降低某一多核苷酸的表达之前的宿主细胞,或者其在没有经工程改造以降低所述多核苷酸的表达的相同类型或种类的宿主细胞中以其他方式表达的。如本文所述的表达的减少具体地是指编码所限定的FLO8蛋白的多核苷酸或基因,特别是对在工程改造之前的宿主细胞内源性的基因。特别地,相应的基因产物是如本文所述的限定的FLO8蛋白。在通过基因修饰工程改造宿主细胞以降低所述基因的表达时,所述基因产物或多肽的表达水平低于在宿主细胞的基因修饰之前或在未经基因修饰的可比宿主中相同基因产物或多肽的表达水平。“低于”包括例如10%、20%、30%、40%、50%、60%、70%、80%、90%或更高。术语“表达的减少”或“低表达”也包括基因产物或多肽的无表达。
根据本文所述的具体实施方案,宿主细胞经工程改造以敲低或敲除(用于基因或其部分的失活或缺失)编码FLO8蛋白(如本文所定义,包括例如相应的同源物或直系同源物),或赋予宿主细胞表达或产生所述FLO8蛋白的能力的其他(编码或非编码)核苷酸序列的内源宿主细胞基因。
具体地,提供了缺失菌株,其中核苷酸序列被破坏。
如本文所用的术语“破坏”是指宿主细胞中一种或多种内源蛋白的表达的显著降低至完全消除,诸如通过敲低或敲除。这可以通过在宿主细胞的细胞培养物或培养基中存在该一种或多种内源蛋白质来测量,诸如例如通过质谱法,其中内源蛋白质的总含量可以小于阈值或不可检测。
术语“破坏”具体地是指通过选自由基因沉默、基因敲低、基因敲除、显性阴性构建体的递送、条件性基因敲除组成的组中的至少一个步骤和/或通过关于特定基因的基因改变的基因工程改造的结果。
如本文所使用的在基因表达背景下的术语“敲低”、“减少”或“耗尽”是指与在对照细胞中的表达相比导致给定基因的表达减少的实验方法。基因的敲低可以通过各种实验手段实现,诸如将核酸分子引入到细胞中,使其与导致其降解的基因的mRNA的部分(例如,shRNA、RNAi、miRNA)杂交,或以导致减少的转录、降低的mRNA稳定性或减少的mRNA翻译的方式改变基因的序列。
给定基因的表达的完全抑制称为“敲除”。基因的敲除是指没有功能性转录物从所述基因合成,导致由该基因正常提供的功能的丧失。基因敲除通过改变导致基因或其调节序列,或此类基因或调节序列的一部分的破坏或缺失的DNA序列来实现的。敲除技术包括使用同源重组技术来替换、中断或删除关键部分或整个基因序列,或者使用DNA修饰酶诸如锌指酶或巨核酸酶将双链断裂引入到靶基因的DNA中,例如由Gaj等人(《生物技术趋势(Trends Biotechnol.)》2013;31(7):397-405)所述。
具体的实施方案使用一种或多种被转化或被转染到宿主细胞中的敲除质粒或盒。通过同源重组,宿主细胞中的靶基因可以被破坏。该程序通常被重复,直到靶基因的所有等位基因被稳定去除。
如本文所述的用于敲除特定基因的一种特定方法是如在例如Weninger等人,(《生物技术杂志(J.Biotechnol.)》2016,235:139-49)中所述的CRISPR-Cas9方法。另一种方法包括如在例如Heiss等人,2013(《应用微生物学和生物技术(Appl MicrobiolBiotechnol.)》97(3):1241-9)中所述的分裂标记物方法。
另一个实施方案是指通过使用小干扰RNA(siRNA)转染宿主细胞并靶向编码由所述宿主细胞内源性地表达的靶蛋白的mRNA进行的靶mRNA降解。
可以通过直接干扰基因表达的方法来抑制或减少基因的表达,包括但不限于抑制或减少DNA转录(例如通过使用特异性启动子相关的抑制物,通过给定启动子的位点特异性诱变,通过启动子交换),或抑制或减少翻译(例如通过RNAi或非编码RNA诱导的转录后基因沉默)。具有降低的活性的功能失调的或无活性的基因产物的表达可以例如通过编码基因内的位点特异性或随机诱变、插入或缺失来实现。
基因产物的活性的抑制或降低可以例如通过在蛋白表达之前或与蛋白表达同时对相应的酶施用抑制剂或与其一起孵育来实现。此类抑制剂的示例包括但不限于抑制肽、抗体、适体、针对所述酶的融合蛋白或抗体模拟物或其配体或受体或抑制肽或核酸或具有类似结合活性的小分子。
基因沉默、基因敲低和基因敲除是指通过基因修饰或通过用具有与mRNA转录物或基因互补的序列的寡核苷酸处理来降低基因的表达的技术。如果对DNA进行基因修饰,结果是敲低或敲除生物体。如果基因表达的变化是由与mRNA结合或与基因暂时结合的寡核苷酸引起的,则这导致基因表达的暂时变化,而不会改变染色体DNA,并且这称为瞬时敲低。
在瞬时敲低(也被上述术语涵盖)中,该寡核苷酸与活性基因或其转录物的结合通过阻断转录(在基因结合的情况下)、mRNA转录物的降解(例如,通过小干扰RNA(siRNA)或反义RNA)或阻断mRNA翻译导致表达降低。
本领域技术人员从相应的文献中已知进行基因沉默、敲低或敲除的其他方法,并且它们在本发明的背景下的应用被认为是常规的。基因敲除是指基因的表达被完全阻断,即相应的基因不起作用,或者甚至被去除的技术。实现这一目标的方法学方法是多种多样的,并且是技术人员已知的。示例是对给定的基因呈显性阴性的突变体的产生。此类突变体可以通过定点诱变(例如缺失、部分缺失、插入或核酸取代)、通过使用合适的转座子或通过本领域技术人员从相应的文献中已知的其他方法来产生,因此在本发明的背景下其应用被认为是常规的。一个示例是通过使用靶向的锌指核酸酶进行敲除。相应的试剂盒由西格玛奥德里奇(Sigma Aldrich)作为“CompoZR敲除ZFN”提供。另一种方法包括使用转录激活因子样效应核酸酶(TALEN)。
显性阴性构建体的递送涉及引入编码功能失调的基因表达产物的序列,例如通过转染。所述编码序列在功能上与强启动子偶联,使得功能失调酶的基因表达超过基因表达产物的天然表达,这又导致所述基因表达产物的相应活性的有效生理缺陷。
条件性基因敲除允许以组织或时间特异性方式阻断基因表达。例如,这可以通过在目的基因周围引入称为loxP位点的短序列来实现。同样,其他方法是本领域技术人员从相应的文献中已知的,并且它们在本发明的背景下的应用被认为是常规的。
另一种方法是基因改变,这可能导致功能失调的基因产物或具有降低的活性的基因产物。该方法涉及引入框架移位突变、无义突变(即引入过早终止密码子)或导致氨基酸取代的突变,所述氨基酸取代使整个基因产物功能失调,或导致活性降低。此类基因改变可以例如通过诱变(例如缺失、部分缺失、插入或核酸取代)、非特异性(随机)诱变或定点诱变产生。描述基因沉默、基因敲低、基因敲除、显性阴性构建体的递送、条件性基因敲除和/或基因改变的实际应用的方案通常可由技术人员获得,并且在其常规范围内。因此,就导致基因产物的基因表达的抑制或降低,或导致功能失调的或无活性的基因产物的表达,或具有降低的活性的所有可想到的方法而言,本文提供的技术教导是完全能够实现的。
本文所述的基因修饰可以采用本领域中已知的工具、方法和技术,诸如J.Sambrook等人,《分子克隆:实验室手册(Molecular Cloning:A Laboratory Manual)》(第3版),冷泉港实验室(Cold Spring Harbor Laboratory),冷泉港实验室出版社(ColdSpring Harbor Laboratory Press),纽约(2001)所述。
如本文所使用的术语“内源的”是指包括那些分子和序列,特别是内源基因或蛋白质,其在野生型(天然)宿主细胞的修饰以减少相应的内源基因的表达和/或减少内源蛋白质的产生之前存在于野生型(天然)宿主细胞中。特别地,如在自然界中所发现的,确实存在于特定宿主细胞中(并且可以从特定宿主细胞中获得)的内源核酸分子(例如,基因)或蛋白质被理解为“宿主细胞内源的”或“对宿主细胞是内源的”。此外,“内源性地表达”核酸或蛋白质的细胞表达该核酸或蛋白质,如同在自然界中发现的相同特定类型的宿主一样。此外,“内源性地产生(endogenously producing或endogenously produces)”核酸、蛋白质或其他化合物的宿主细胞产生所述核酸、蛋白质或化合物,如同在自然界中发现的相同特定类型的宿主细胞一样。
因此,即使内源蛋白质不再由宿主细胞产生,诸如在宿主细胞的敲除突变体中,其中蛋白质编码基因被失活或缺失,该蛋白质在本文中仍称为“内源的”。
如本文中关于核苷酸序列、构建体诸如表达盒、氨基酸序列或蛋白质使用的术语“异源的”是指对给定的宿主细胞是外源的化合物,即“外源的”,诸如在所述宿主细胞中在自然界中没有发现的化合物;或在给定的宿主细胞中天然发现的,例如是“内源的”,但是,在异源构建体的背景下或被整合在此类异源构建体中,例如,使用与内源核酸融合或结合的异源核酸,从而使所述构建体异源。如内源性发现的异源核苷酸序列也可以在细胞中以非天然的,例如大于预期的或大于天然发现的量产生。异源核苷酸序列,或包含异源核苷酸序列的核酸,可能在序列上不同于内源核苷酸序列,但编码与内源发现的相同蛋白质。具体地,异源核苷酸序列是在自然界中没有发现的与宿主细胞具有相同关系的核苷酸序列。任何重组或人工核苷酸序列被理解为是异源的。异源多核苷酸的示例是与启动子非天然相关的核苷酸序列,例如,以获得杂合启动子,或可操作地连接至编码序列的核苷酸序列,如本文所述。结果,可以获得杂交体或嵌合体多核苷酸。异源化合物的另外的示例是可操作地连接到转录控制元素(例如启动子)的编码POI的多核苷酸,内源的、天然存在的POI编码序列通常不可操作地连接到所述转录控制元素。
如本文所使用的术语“可操作地连接”是指单个核酸分子(例如载体或表达盒)上核苷酸序列的缔合,使得一个或多个核苷酸序列的功能受到存在于所述核酸分子上的至少一个其他核苷酸序列的影响。通过可操作地连接,核酸序列与同一核酸分子上的另一个核酸序列处于功能关系。例如,当启动子能够影响编码序列的表达时,它与重组基因的编码序列可操作地连接。作为另外的示例,当编码信号肽的核酸能够表达分泌形式的蛋白质,诸如成熟蛋白质的预型体或成熟蛋白质时,所述核酸被可操作地连接到编码POI的核酸序列。具体地,彼此可操作地连接的此类核酸可以立即连接,即在编码信号肽的核酸与编码POI的核酸序列之间没有另外的元素或核酸序列。
如果启动子控制编码序列的转录,则“启动子”序列通常被理解为与编码序列可操作地连接。如果启动子序列与编码序列非天然相关,则其转录在天然(野生型)细胞中不受启动子的控制,或者该序列与不同的连续序列重组。
可通过非甲醇碳源调节(特别是可抑制的)并用于本文所述的目的启动子在本文中称为“ECP”。因此,关于“ECP”的本公开还应指“可通过非甲醇碳源调节(或抑制)的启动子”,并且反之亦然。
如本文所述的ECP特别启动、调节或以其他方式介导或控制POI编码DNA的表达。启动子DNA和编码DNA可以来自相同的基因或来自不同的基因,并且可以来自相同或不同的生物体。
如本文所述的ECP具体地被理解为可调节启动子,特别是在被抑制和被诱导状态下具有不同启动子强度的碳源可调节启动子,特别是非甲醇碳源可调节启动子,诸如可被非甲醇碳源抑制,并且特别是不可被甲醇诱导的ECP。具体地,通过使用在不存在甲醇的情况下具有转录活性的ECP,在ECP的转录控制下,不需要将甲醇添加到宿主细胞培养物来产生POI。
ECP的强度具体是指其转录强度,所述转录强度由以高或低频率在该启动子处发生的转录的起始效率表示。转录强度越高,转录在该启动子上将发生的频率就越高。启动子强度是启动子的一个典型特征,因为它决定了给定的mRNA序列转录的频率,有效地赋予某些基因比其他基因更高的转录优先级,导致转录物的浓度更高。例如,编码大量需要的蛋白质的基因通常具有相对强的启动子。RNA聚合酶一次只能执行一项转录任务,并且因此必须对其工作进行优先排序才能有效。选择启动子强度的差异以实现这种优先化。
本文所用的ECP在完全诱导状态下相对较强,其通常被理解为约最大活性的状态。相对强度通常是相对于比较启动子(本文称为参考启动子)测定的,该启动子可以是标准启动子,诸如如用作宿主细胞的细胞的相应pGAP启动子。
转录的频率通常被理解为转录速率,例如如通过在合适的测定(例如RT-PCR或Northern印迹)中转录物的量所确定的。例如,在作为巴斯德毕赤酵母的宿主细胞中测定根据本发明的启动子的转录强度,并与巴斯德毕赤酵母的天然pGAP启动子进行比较。
启动子表达目的基因的强度通常被理解为表达强度或支持高表达水平/速率的能力。例如,在作为巴斯德毕赤酵母的宿主细胞中测定本发明的启动子的表达和/或转录强度,并与巴斯德毕赤酵母的天然pGAP启动子进行比较。
与参考启动子相比的比较转录强度可以通过标准方法来确定,诸如通过测量转录物的量,例如使用微阵列,或者在细胞培养物中确定,诸如通过测量重组细胞中相应的基因表达产物的量。特别地,转录速率可以通过微阵列、Northern印迹上的转录强度或使用定量实时PCR(qRT-PCR)或使用RNA测序(RNA-seq)来确定,其中数据显示在具有高生长速率的条件与具有低生长速率的条件之间,或使用不同培养基组成的条件之间的表达水平的差异,以及与参考启动子相比的高信号强度。
表达速率可以例如通过报告基因(诸如eGFP)的表达的量来确定。
如本文所述的ECP发挥相对高的转录强度,例如,与宿主细胞中的天然pGAP启动子(也称为“同源pGAP启动子”)相比,通过至少15%的转录速率或转录强度反映。优选地,与天然pGAP启动子相比,转录速率或强度为20%、30%、40%、50%、60%、70%、80%、90%或100%或甚至更高中的至少任何一种,诸如110%、120%、130%、140%、150%、160%、170%、180%、190%或200%中的至少任何一种,诸如在选择作为用于重组目的以产生POI的宿主细胞的(例如真核)宿主细胞中所确定的。
天然pGAP启动子通常启动编码甘油醛-3-磷酸脱氢酶(GAPDH)的gap基因的表达,GAPDH是在大多数活生物体中存在的组成型启动子。GAPDH(EC 1\2\1\12)(糖酵解和糖异生的关键酶)在分解代谢和合成代谢性碳水化合物代谢中起关键作用。
天然pGAP启动子在重组真核细胞中的特异性活性与在相同物种或菌株的天然真核细胞中的活性相似,包括未修饰的(非重组的)或重组的真核细胞。此类天然pGAP启动子通常被理解为内源性启动子,因此与宿主细胞同源,并且可以用作标准或参考启动子用于比较目的。通常将如本文所述的启动子的相对表达或转录强度与用作用于产生POI的宿主的同一物种或菌株的细胞的天然pGAP启动子进行比较。
关于可诱导或可抑制的调节元素,诸如本文所述的启动子,术语“可调节的”应指在过量底物(诸如细胞培养基中的营养物)的存在下,例如在分批培养的生长阶段,在宿主细胞中被抑制,并根据补料分批策略,例如在生产阶段(诸如在减少营养物的量时,或在进料补充底物时)被去抑制以诱导强活性的元素。调节元素也可以被设计为可调节的,使得该元素在不添加细胞培养添加剂的情况下是无活性的,并且在存在此类添加剂的情况下是活性的。因此,在此类调节元素的控制下的POI的表达可以在加入此类添加剂时被诱导。
如本文所述的ECP是相对强的可调节启动子,其通常在细胞生长条件下(生长阶段)被沉默或抑制,并且在生产条件下(生产阶段)被激活或去抑制,并且因此适合于通过限制碳源在生产细胞系中诱导POI的产生。
具体地,如本文所述的启动子是可用差异启动子强度调节的碳源,所述差异启动子强度如在比较其在葡萄糖存在和葡萄糖限制下的强度的测试中所测定的,显示其在相对高的葡萄糖浓度下(优选地在至少10g/L的浓度下,优选地在至少20g/L的浓度下)仍被抑制。具体地,本文所述的启动子在有限的葡萄糖浓度下被完全诱导,考虑到葡萄糖阈值浓度完全诱导启动子,该阈值通常小于20g/L,优选地小于10g/L,小于或至多1g/L,甚至小于0.1g/L或小于50mg/L,优选地在葡萄糖浓度小于40mg/L时具有例如至少50%的天然同源pGAP启动子的全转录强度。
如本文在本公开的背景下使用(例如,用于表征本文所述的碳源可调节启动子)的术语“抑制”或“被抑制的”是指处于启动子的转录控制下的目的基因(编码目的蛋白)的转录的干扰,所述启动子被理解为是可抑制的,导致细胞对目的蛋白的表达减少。
当抑制剂存在于细胞培养基中时,本文所述的ECP的抑制是特异性发生的。抑制剂可以是特定碳源或碳源的抑制量,例如高于特定阈值量。当从培养基中除去抑制剂,或被降低至低于不再抑制的阈值量时,目的基因或目的蛋白的表达称为“去抑制的”。在去抑制时,ECP被理解为被完全诱导,并且目的蛋白的表达通常是在启动子抑制条件下由细胞表达的基础水平的至少1.5倍。
具体地,与在去抑制或完全诱导ECP时所述基因的转录相比,在本文所述的ECP控制下的目的基因的转录可以被抑制30%、40%、50%、60%、70%、80%、85%、90%或95%中的至少任何一个,或被完全抑制(100%被抑制)。
比较在抑制和去抑制条件下的启动子强度的差异启动子强度确定了启动子的可调节性质和相应的诱导比率。根据某些实施方案,诱导比率被理解为差异启动子强度,其通过在切换至在低于预定碳源阈值的诱导条件时POI产生的起始来确定,并与处于抑制状态的强度进行比较。转录强度通常被理解为在完全诱导状态下的强度,即在去抑制条件下显示出约最大的活性。差异启动子强度例如是根据与抑制条件相比在去抑制条件下重组宿主细胞系中POI生产的效率或产量确定的,或者由转录物的量确定的。如本文所述的可调节启动子具有优选的差异启动子强度(诱导比率),其在去抑制(完全诱导)状态下与抑制状态相比是至少1.5倍或至少2倍,更优选地至少5倍,甚至更优选地至少10倍,更优选地至少20倍,更优选地至少30倍、40倍、50倍或100倍,也理解为倍数诱导。
如本文所使用的术语“诱变”应指提供核苷酸序列的突变体的方法,例如通过一个或多个核苷酸的插入、缺失和/或取代,从而获得其在非编码或编码区具有至少一个变化的变体。诱变可以通过随机、半随机或定点突变进行。本文所述的特定ECP和相应的核苷酸序列可以用于产生变体,所述变体同样是可以用于如本文所述目的的可调节启动子。此类变体可以通过使用本文提供的ECP核苷酸序列作为亲本序列的合适的诱变方法产生。此类诱变方法包括利用相应的亲本启动子序列信息作为模板来工程改造核酸或从头合成核苷酸序列的那些方法。特定的诱变方法应用合理的启动子工程改造。
本文所述的示例性ECP可以例如被修饰以产生具有改变的表达水平和调节性质的启动子变体。例如,可以通过诱变所选择的启动子序列来制备启动子文库,所述启动子序列可以用作亲本分子,例如,通过分析在不同发酵策略下其表达的变体并选择合适的变体来微调真核细胞中的基因表达。可以使用变体的合成文库,例如以选择与用于产生所选POI的要求匹配的启动子。此类变体在(例如,真核)宿主细胞中可以具有增加的表达效率以及在富含碳源和限制性条件下的差异表达。通常,产生具有高基因多样性的大的随机化基因库,其可以根据特定期望的基因型或表型进行选择。
某些ECP变体可以是本文提供的ECP核苷酸序列的大小变体,和/或包括本文描述的启动子的多于一个的元素或区域(诸如核心调节区、主调节区或T基序),和/或包括ECP核苷酸序列的一个或多个(相同或不同的)片段。
特定的诱变方法提供了序列中一个或多个核苷酸的点突变,特别是串联点突变,诸如以改变启动子的核苷酸序列中的至少2、3、4、5、6、7、8、9、10个或甚至更多个连续核苷酸。点突变通常是一个或多个核苷酸的缺失、插入和/或取代中的至少一种。启动子序列可以在远端突变,特别是在5’-区域内突变,其达到全长启动子序列的至多50%,该5’-区域可以是高度可变的,而基本上不损失启动子活性。启动子序列可以在主调节区内特异性地突变,但是,可以优选的是,与示例性的主调节区并且特别是与示例性的核心调节区的序列同一性高,诸如例如80%、85%、90%或95%中的至少任何一种。在任何核心或主调节区之外,序列的可变性可能更高,并且ECP仍然是功能性的,例如,其中序列同一性小于80%或小于85%。
核心或主调节区内的任何突变通常是保守的,即诸如以保持(或甚至改善)通过特定转录因子的识别。
具体地,本文所述的ECP可以包括杂合核苷酸序列,例如包括本文所述的核心或主调节区,并且此外还包括一个或多个区或替代(天然或人工)启动子序列,诸如在3’-区(具体是3’-端),其包括至少10或15个3’-末端核苷酸序列,包括不同启动子(例如任何组成型或可调节的(或其他可诱导的)启动子)的3’-末端(例如,至多20nt、25nt或30nt)的翻译起始位点,从而取代ECP启动子的翻译起始位点。
本文使用的术语“核苷酸序列”或“核酸序列”是指DNA或RNA。“核酸序列”或“多核苷酸序列”或简单地“多核苷酸”是指从5’至3’端读取的脱氧核糖核苷酸或核糖核苷酸碱基的单链或双链聚合物。它包括表达盒、自我复制质粒、DNA或RNA的感染性聚合物以及非功能性DNA或RNA。
如本文所使用的术语“目的蛋白(POI)”是指通过重组技术在宿主细胞中产生的多肽或蛋白质。更具体地,所述蛋白质可以是不是天然存在于宿主细胞中的多肽,即异源蛋白质,或者可以对宿主细胞是天然的,即与宿主细胞同源的蛋白质,但是例如通过用含有编码POI的核酸序列的自我复制载体转化而产生,或在通过重组技术将编码POI的核酸序列的一个或多个拷贝整合到宿主细胞的基因组中时,或通过控制编码POI的基因的表达的一个或多个调节序列的重组修饰,例如启动子序列的重组修饰。在某些情况下,如本文使用的术语POI也指由如通过重组表达的蛋白质介导的宿主细胞的任何代谢产物。
如本文使用的术语“支架”描述了一组多面的紧凑且稳定折叠的蛋白质(在大小、结构和来源方面不同),其用作用于产生抗原结合分子的起点。受抗体(免疫球蛋白)的结构-功能关系的启发,此类替代蛋白支架提供了稳健、保守的结构框架,其支持相互作用位点,该相互作用位点可以被重塑用于紧密和特异性识别给定的(生物)分子靶。
与亲本核苷酸或氨基酸序列相比,术语变体、同源物或直系同源物的“序列同一性”表示两个或更多个序列的同一性程度。两个或更多个氨基酸序列在相应的位置可以具有相同或保守的氨基酸残基,在一定程度上高达100%。两个或更多个核苷酸序列可以在相应的位置具有相同或保守的碱基对,在一定程度上高达100%。
序列相似性搜索是用于鉴定具有过量(例如,至少50%)序列同一性的同源物的有效且可靠的策略。常用的序列相似性搜索工具为例如BLAST、FASTA和HMMER。
序列相似性搜索可以通过检测过度相似性以及反映共同祖先的具有统计学意义的相似性来鉴定此类同源蛋白质或基因。同源物可以包括直系同源物,其在本文中理解为不同生物体中的相同蛋白质,例如,此类蛋白质在不同的不同生物体或物种中的变体。
不同生物体或物种中相同蛋白质的直系同源序列通常与蛋白质序列同源,特别是源自同一属的直系同源物。通常,直系同源物具有至少约25%、30%、35%、40%、50%、60%、70%、80%、85%、90%或95%的同一性,高达100%的序列同一性中的任何一种。具体地,可以在宿主细胞中通过直系同源序列替换FLO8蛋白或编码FLO8蛋白的基因时确定直系同源物,所述直系同源序列被修饰以敲除内源性FLO8蛋白。例如,如果推定的FLO8蛋白在巴斯德毕赤酵母或酿酒酵母宿主细胞中具有功能,取代了由分别在此类巴斯德毕赤酵母和酿酒酵母宿主细胞中已经被敲除的基因所编码的内源性FLO8蛋白,则为了本文所述的目的,此类推定的FLO8蛋白可以被认为是FLO8蛋白同源物。
包括鉴定为SEQ ID NO:1的氨基酸序列或由鉴定为SEQ ID NO:1的氨基酸序列组成的FLO8蛋白是菲氏孔玛氏酵母来源的。众所周知,在其他真核或原核宿主细胞中存在同源序列。例如,酵母细胞包括相应的同源序列,特别是在巴斯德毕赤酵母的酵母中,该巴斯德毕赤酵母已被重新分类为一个新属孔玛氏酵母,并被分成三个种:巴斯德孔玛氏酵母、菲氏孔玛氏酵母和假巴斯德孔玛氏酵母。特定的同源序列例如在巴斯德孔玛氏酵母(例如,SEQ ID NO:3,诸如由包括SEQ ID NO:4或由SEQ ID NO:4组成的核苷酸序列编码)、酿酒酵母(例如,SEQ ID NO:5或SEQ ID NO:6)、解脂耶氏酵母(例如,SEQ ID NO:7)、多形亨利绪方酵母(例如,SEQ ID NO:8)或黑曲霉菌(例如,SEQ ID NO:9)中发现。
具有本文所述的特定序列同一性的FLO8蛋白的任何同源序列,特别是为巴斯德毕赤酵母FLO8蛋白的直系同源物的任何FLO8蛋白,均被包括在本文所述的FLO8蛋白的定义中。
关于本文所述的氨基酸序列、同源物和直系同源物的“氨基酸序列同一性百分比(%)”定义为候选序列中与特定多肽序列中的氨基酸残基相同的氨基酸残基的百分比,在对齐序列并引入间隙(如有必要)以获得最大百分比的序列同一性之后,并且不将任何保守取代视为序列同一性的一部分。本领域技术人员可以确定用于测量比对的适当参数,包括在被比较的序列的全长上实现最大比对所需的任何算法。
为了本文所述的目的,使用NCBI BLAST程序版本BLASTP 2.8.1利用以下示例性参数来确定两个氨基酸序列之间的序列同一性:程序:blastp,字长:6,期望值:10,Hitlist大小:100,Gapcosts:11.1,矩阵:BLOSUM62,过滤字符串:F,组成调整:条件组成分数矩阵调整。
关于核苷酸序列(例如启动子或基因)的“同一性百分比(%)”定义为候选DNA序列中与DNA序列中的核苷酸相同的核苷酸的百分比,在对齐序列并引入间隙(如有必要)以获得最大的序列同一性百分比后,且不将任何保守取代视为序列同一性的一部分。用于确定核苷酸序列同一性百分比的目的的比对可以以本领域技术范围内的各种方式实现,例如,使用公开可用的计算机软件。本领域技术人员可以确定用于测量比对的适当参数,包括在被比较的序列的全长上实现最大比对所需的任何算法。
如本文中关于POI使用的术语“分离的”或“分离”应指已经从其自然缔合的环境(特别是细胞培养物上清液)中充分分离从而以“纯化的”或“基本上纯的”形式存在的此类化合物。但是,“分离的”不一定意味着排除与其他化合物或材料的人工或合成混合物,或存在不干扰基本活性且可能存在(例如,由于不完全纯化)的杂质。可以进一步配制分离的化合物以制备其制剂,并且出于实际目的仍可分离-例如,当用于诊断或疗法时,可以将POI与药学上可接受的载体或赋形剂混合。
如本文使用的术语“纯化的”应指包括至少50%(mol/mol)、优选地至少60%、70%、80%、90%或95%的化合物(例如POI)的制剂。纯度通过适合该化合物的方法(例如色谱法、聚丙烯酰胺凝胶电泳、HPLC分析等)来测量。如本文所述的分离的纯化的POI可以通过纯化细胞培养物上清液以减少杂质来获得。
作为用于获得重组多肽或蛋白质产物的分离和纯化方法,可以使用各种方法,诸如利用溶解度差异的方法,诸如盐析和溶剂沉淀,利用分子量差异的方法,诸如超滤和凝胶电泳,利用电荷差异的方法,诸如离子交换色谱法,利用特异性亲和力的方法,诸如亲和色谱法,利用疏水性差异的方法,诸如反相高效液相色谱法,以及利用等电点差异的方法,诸如等电聚焦。
以下标准方法是优选的:通过微过滤或切向流过滤器(TFF)或离心的细胞(碎片)分离和洗涤,通过沉淀或热处理的POI纯化,通过酶促消化的POI活化,通过色谱法(诸如离子交换(IEX)、疏水相互作用色谱法(HIC)、亲和色谱法、尺寸排阻法(SEC)或HPLC色谱法)的POI纯化,通过超滤步骤的POI沉淀浓缩和洗涤。
高度纯化的产物基本上不含污染蛋白质,并且优选地具有至少90%,更优选地至少95%,或甚至至少98%,至多100%的纯度。纯化的产物可以通过纯化细胞培养物上清液或从细胞碎片中获得。
分离和纯化的POI可以通过常规方法(诸如蛋白质印迹法、HPLC、活性测定或ELISA)进行鉴定。
如本文使用的术语“重组”应指“通过基因工程改造制备或者是基因工程改造的结果”。重组宿主可以经工程改造以使一个或多个核苷酸或核苷酸序列缺失和/或失活,并且可以特异性地包括含有重组核酸序列(特别是采用宿主外源的核苷酸序列)的表达载体或克隆载体。通过在宿主中表达相应的重组核酸来生产重组蛋白。如本文所使用的关于POI的术语“重组的”包括通过重组手段制备、表达、产生或分离的POI,诸如从经转化以表达POI的宿主细胞分离的POI。根据本发明,可以使用本领域技术范围内的常规分子生物学、微生物学和重组DNA技术。此类技术在文献中被充分地解释。参见,例如Maniatis,Fritsch&Sambrook,“分子克隆:实验室手册”,冷泉港,(1982)。
某些重组宿主细胞是“工程改造的”宿主细胞,其被理解为已经使用基因工程改造,即通过人类干预进行操作的宿主细胞。当宿主细胞经工程改造以减少表达或低表达给定的基因或相应的蛋白质时,操纵宿主细胞,使得与操纵前在相同条件下的宿主细胞相比,或与未经工程改造以使得所述基因或蛋白质低表达的宿主细胞相比,宿主细胞不再具有分别表达此类基因和蛋白质的能力。
根据具体的实施例,已经令人惊讶地发现,宿主细胞中编码FLO8的基因表达的减少,特别是此类基因的缺失,对由非甲醇控制的诱导型启动子(ECP)控制的基因的表达水平具有积极的影响,因此允许更高的表达水平而不损失碳源启动子调节。因此,产生了具有和不具有编码FLO8蛋白的相应内源基因(flo8基因)的缺失的细胞,并测试了在ECP的控制下的基因的强度和调节。对于几种示例性的POI(其为细胞内或分泌的模型蛋白),显示出在缺失相应flo8基因的细胞中表达增加,这可追溯至增加的转录水平。在小规模筛选培养中和在生物反应器中的受控生产过程中均可以显示出增加的表达。因此,已经开发了一种新的表达系统,与先前存在的表达系统相比,该新的表达系统允许在无甲醇培养基中,例如在酵母诸如毕赤酵母中形成高得多的产物。
根据具体的实施例,将FLO8破坏对非甲醇碳源调节的启动子pG1、pG3、pG4、pG6(其由除甲醇之外的碳源调节)的表达强度的影响与组成型启动子pGAP或甲醇诱导的启动子pAOX1进行比较。在dFLO8菌株中,发现所有非甲醇碳源调节的启动子都具有具有统计学意义的较高转录,这是令人惊讶的,并且表明在这些启动子的控制下表达增加。相反,与野生型相比,甲醇诱导型pAOX1在dFLO8突变体中没有显示出显著增加的转录强度,并且对pGAP的转录强度也没有显著影响。因此,可以得出结论,pGAP或pAOX1启动子活性不受FLO8的低表达的影响。
令人惊讶地发现,与标准pGAP启动子相比,当使用不可被甲醇诱导的碳源可抑制启动子时,在敲除或破坏FLO8时,在细胞培养物中产生目的蛋白的异源目的基因的表达已被有效增加。例如,在dFLO8菌株中发现启动子pG1、pG1-3、pG3、pG4、pG6、pG7和pG8中的每一个的eGFP荧光的增加,其与野生型宿主细胞(没有FLO8破坏)中的表达相比增加了1.2至3.9倍。
以下项目是本文描述的实施方案:
1.重组宿主细胞,包括编码FLO8蛋白的内源基因,所述FLO8蛋白包括鉴定为SEQID NO:1的氨基酸序列或其同源物,所述宿主细胞通过一种或多种基因修饰进行工程改造,以与所述一种或多种基因修饰之前的宿主细胞相比减少所述基因的表达,并且所述宿主细胞包括异源表达盒,所述异源表达盒包括受表达盒启动子(ECP)控制的目的基因(GOI),所述ECP可通过非甲醇碳源调节。
2.根据项目1所述的宿主细胞,其中所述同源物与SEQ ID NO:1具有至少25%的序列同一性。
3.根据项目1至2中任一项所述的宿主细胞,其中所述一种或多种基因修饰包括(i)一种或多种内源多核苷酸或其一部分;或(ii)表达控制序列的破坏、取代、缺失或敲除。
4.根据项目3所述的宿主细胞,其中所述内源性多核苷酸是编码所述FLO8蛋白或所述同源物的基因。
5.根据项目4所述的宿主细胞,其中所述表达控制序列包括启动子、核糖体结合位点、转录或翻译起始和终止序列或增强子或激活子序列中的任一种。
6.根据项目1至4中任一项所述的宿主细胞,其中在存在生长限制量的非甲醇碳源的情况下,优选地在不存在甲醇的情况下,所述ECP是可诱导的;并且在高于所述生长限制量的过量的非甲醇碳源的存在下是可抑制的。
7.根据项目6所述的宿主细胞,其中所述非甲醇碳源的所述生长限制量为至多1g/L细胞培养基。
8.根据项目1至7中任一项所述的宿主细胞,其中所述ECP包括至少一个第一核心调节区和至少一个第二核心调节区,其中所述第一核心调节区与SEQ ID NO:17具有至少75%的序列同一性,并且所述第二核心调节区与SEQ ID NO:18具有至少75%的序列同一性。
9.根据项目1至8中任一项所述的宿主细胞,其中所述ECP包括至少一个与SEQ IDNO:35具有至少85%序列同一性的调节区。
10.根据项目8或9所述的宿主细胞,其中所述ECP包括至少两个所述第一核心调节区和/或第二核心调节区。
11.根据项目1至10中任一项所述的宿主细胞,其中所述ECP包括至少一个由SEQID NO:19-34中任何一个组成的T基序,任选地在所述T基序的5’或3’端不通过一个或多个胸腺嘧啶延伸所述T基序。
12.根据项目11所述的宿主细胞,其中所述ECP包括至少两个所述T基序。
13.根据项目1至7中任一项所述的宿主细胞,其中所述ECP包括与序列SEQ ID NO:10-16中的任何一个或SEQ ID NO:41-45中的任何一个的至少300nt的至少60%的序列同一性。
14.根据项目13所述的宿主细胞,其中所述ECP包括与全长序列SEQ ID NO:10-16中的任何一个或SEQ ID NO:41-45中的任何一个至少60%的序列同一性。
15.根据项目13或14所述的宿主细胞,其中所述ECP包括SEQ ID NO:10或SEQ IDNO:11或由SEQ ID NO:10或SEQ ID NO:11组成。
16.根据项目1至15中任一项所述的宿主细胞,其中所述表达盒被包含在自主复制载体或质粒中,或被包含在所述宿主细胞的染色体内。
17.根据项目1至16中任一项所述的宿主细胞,其中所述表达盒进一步包括编码能够分泌由所述GOI编码的目的蛋白(POI)的信号肽的核苷酸序列,优选地其中编码所述信号肽的所述核苷酸序列与所述GOI的5’端相邻融合。
18.根据项目1至17中任一项所述的宿主细胞,其中所述GOI编码目的蛋白(POI),所述目的蛋白是选自由抗原结合蛋白、治疗性蛋白、酶、肽、蛋白抗生素、毒素融合蛋白、碳水化合物-蛋白缀合物、结构蛋白、调节蛋白、疫苗抗原、生长因子、激素、细胞因子、过程酶和代谢酶组成的组的肽或蛋白。
19.根据项目1至18中任一项所述的宿主细胞,其中所述抗原结合蛋白选自由以下组成的组:
a)抗体或抗体片段,诸如嵌合抗体、人源化抗体、双特异性抗体、Fab、Fd、scFv、双体、三体、Fv四聚体、微小抗体、单结构域抗体如VH、VHH、IgNAR或V-NAR中的任一种;
b)抗体模拟物,诸如Adnectins、亲和体、Affilins、Affimers、Affitins、α体、Anticalins、Avimers、DARPins、Fynomers、Kunitz结构域肽、单体或NanoCLAMPS;或者
c)包括一个或多个免疫球蛋白折叠结构域、抗体结构域或抗体模拟物的融合蛋白。
20.根据项目1至19中任一项所述的宿主细胞,其是:
a)选自由毕赤酵母、汉逊酵母、孔玛氏酵母、酿酒酵母、克鲁维酵母、假丝酵母、亨利绪方酵母、耶氏酵母和地丝菌组成的组的属的酵母细胞,诸如巴斯德毕赤酵母、菲氏孔玛氏酵母、巴斯德孔玛氏酵母、假巴斯德孔玛氏酵母、酿酒酵母、小亨利绪方酵母、乳酸克鲁维酵母、马克斯克鲁维酵母、解脂耶氏酵母或多形汉逊酵母;或者
b)丝状真菌诸如泡盛曲霉或里氏木霉的细胞。
21.用于通过减少编码FLO8蛋白的基因在所述宿主细胞中的表达来增加目的蛋白(POI)的产量的方法,所述目的蛋白(POI)由在启动子的控制下表达编码所述POI的目的基因(GOI)的宿主细胞产生,所述启动子可通过非甲醇碳源调节或抑制,所述FLO8蛋白包括鉴定为SEQ ID NO:1的氨基酸序列或其同源物。
22.通过在产生目的蛋白(POI)的条件下培养项目1至20中任一项所述的宿主细胞来生产由目的基因(GOI)编码的所述POI的方法。
23.根据项目21或22所述的方法,包括以下步骤:
a)在生长条件下培养宿主细胞;以及另外的步骤
b)在生长限制条件下,在至多1g/L的第二非甲醇碳源的存在下培养所述宿主细胞,使得所述GOI的表达以产生所述POI。
24.根据项目23所述的方法,其中所述第一碳源或第二碳源选自糖、多元醇、醇或前述中的任何一种或多种的混合物。
25.根据项目23或24所述的方法,其中所述步骤a)培养在分批阶段中进行;并且所述步骤b)培养在补料分批或连续培养阶段中进行。
26.用于在宿主细胞中产生目的蛋白(POI)的方法,包括以下步骤:
a)对所述宿主细胞进行基因工程改造,以减少编码FLO8蛋白的内源基因的表达,所述FLO8蛋白包括鉴定为SEQ ID NO:1的氨基酸序列或其同源物;
b)将异源表达盒引入到所述宿主细胞中,所述异源表达盒包括可操作地连接到编码所述POI的目的基因(GOI)的非甲醇碳源可调节启动子(特别是本文所述的ECP启动子);
c)在产生所述POI的条件下培养所述宿主细胞;
d)任选地从细胞培养物中分离所述POI;和
e)任选地纯化所述POI。
参考以下实施例,将更充分地理解前面的描述。但是,此类实施例仅仅是实施本发明的一个或多个实施方案的方法的代表,并且不应该被理解为限制本发明的范围。
实施例
以下实施例将证明转录调节因子FLO8的破坏导致碳调节的启动子诸如pG1、pG3、pG4、pG6和pG8及其工程改造的变体的更高转录活性,从而能够在碳限制培养条件下提高重组蛋白的生产率。
实施例1:巴斯德毕赤酵母dFLO8菌株的构建
使用巴斯德毕赤酵母野生型菌株CBS7435或CBS2612(CBS-KNAW真菌生物多样性中心,斯基希米尔科文化中心,荷兰乌得勒支)作为宿主菌株。
为了产生dFLO8突变菌株,使用合适于巴斯德毕赤酵母(Gasser等人,2013)并在WO2015158800A1中描述的分裂标记物盒方法来破坏基因PP7435_Chr4-0252(FLO8)。简而言之,使用引物A_fw和A_bw以及D_fw和D_bw分别扩增了位于ORF的翻译起点的上游和下游约200bp的两个1.5kb区域(表1)。通过融合PCR,使用引物A_bw和D_fw上的与抗性标记物盒的相应的B和C部分的5’和3’端同源的突出物,将得到的片段A和B用于KanMX标记物盒(引物B_fw、B_bw、C_fw和C_bw)的两个约1kb长且重叠的部分(435bp)的侧翼。如(Gasser等人,2013)中所述,将两个融合的片段AB和CD同时转化到电感受态巴斯德毕赤酵母细胞中。成功的整合需要三个不同的重组事件,其导致通过KanMX盒替换PP7435_Chr4-0252及其启动子的5’端的0.4kb片段。
在含有500μg mL-1的遗传霉素的选择性YPD琼脂平板(每升:10g的酵母提取物,20g的蛋白胨,20g的葡萄糖,20g的琼脂-琼脂)上进行阳性转化体的选择。通过用位于分裂标记物盒外的引物进行PCR(Det_fw和Det_bw,表1)和凝胶电泳,验证了正确的缺失突变体。
表1:用于分裂标记物盒构建的引物
引物 序列
A_fw CGAACATCCATCACCAAAACAC(SEQ ID NO:72)
A_bw GTTGTCGACCTGCAGCGTACGGTGTTGCCGCGAAATG(SEQ ID NO:73)
D_fw TAGGTGATATCAGATCCACTGATCAATTTGCCCAAGAGACG(SEQ ID NO:74)
D_bw GACTGTTGCGATTGCTGGTG(SEQ ID NO:75)
B_fw CATTTCGCGGCAACACCGTACGCTGCAGGTCGACAAC(SEQ ID NO:76)
B_bw CGGTGAGAATGGCAAAAGCTTAT(SEQ ID NO:77)
C_fw AAGCCCGATGCGCCAGAGTTG(SEQ ID NO:78)
C_bw CGTCTCTTGGGCAAATTGATCAGTGGATCTGATATCACCTA(SEQ ID NO:79)
Det_fw ATCCAGGACACGCTCATCAAG(SEQ ID NO:80)
实施例2:FLO8的破坏对pG1和pG1-3驱动的细胞内eGFP生产率的影响
a)巴斯德毕赤酵母dFLO8菌株的构建
使用巴斯德毕赤酵母CBS2612_pG1_eGFP#8(在WO2013050551A1中描述的)和CBS2612_pG1-3_eGFP#1(在WO2017021541A1和Prielhofer等人,2018中被描述为CBS2612_pGTH1-D1240)作为宿主菌株。已证明这些菌株整合了单拷贝的Zeocin抗性盒和eGFP表达盒,eGFP表达盒由葡萄糖调节的启动子pG1(SEQ ID NO:12)或其工程改造的变体(pG1-3,SEQ ID NO:10)、GOI和酿酒酵母CYC1转录终止子组成。如实施例1所述构建相应的dFLO8突变菌株。
b)eGFP生产率的筛选
对于表达筛选,将dFLO8菌株的单个菌落以及它们相应的亲本菌株和非生产野生型菌株接种在含有25μg mL-1的Zeocin和500μg mL-1的遗传霉素(如果合适)的2mL液体YP培养基(每升:20g的蛋白胨,10g的酵母提取物)中。使预培养物在24-DWP中在25℃和280rpm下生长约24小时,并且随后用于接种2mL的合成筛选培养基ASMv6(培养基组成在下文给出)(该培养基包含50g L-1的多糖和1.5%的葡萄糖释放酶(使葡萄糖释放速率为约0.8mg mL- 1h-1;m2p培养基开发试剂盒))至5的起始OD600(诱导条件)。对于抑制条件,使用包含2%甘油的ASMv6。然后将主要培养物在25℃和280rpm下孵育另外48小时。为了测量eGFP-表达,在磷酸盐缓冲盐水(PBS)中将细胞稀释至0.1的OD600,并如Stadlmayr等人,2010中所述通过流式细胞术进行分析。对于每个样品,分析了15000个细胞。使用巴斯德毕赤酵母野生型细胞来测量巴斯德毕赤酵母的自荧光并从信号中减去。归一化的eGFP表达水平(与细胞大小相关的荧光强度)以pGAP控制的表达的百分比给出(表2)。
合成的筛选培养基ASMv6每升包含:22.0g的柠檬酸一水合物、6.30g的(NH4)2HPO4、0.49g的MgSO4*7H2O、2.64g的KCl、0.0535g的CaCl2*2H2O、1.470mL的PTM0微量盐贮备溶液、0.4mg的生物素;用KOH(固体)将pH设定为6.5。
PTM0微量盐贮备溶液每升包含:
6.0g的CuSO4*5H2O、0.08g的NaI、3.36g的MnSO4*H2O、0.2g的Na2MoO4*2H2O、0.02g的H3BO3、0.82g的CoCl2*6H2O、20.0g的ZnCl2、65.0g的FeSO4*7H2O和5.0ml的H2SO4(95%-98%)。
表2:在pG1或pG1-3的控制下dFLO8对eGFP的表达的影响。示出了在2%甘油(抑制)或限制性葡萄糖(诱导)中培养48小时后eGFP相对于pGAP的表达水平,以及与野生型中的pG1或pG1-3相比,在诱导条件下dFLO8菌株中eGFP荧光的增加。
*通过如实施例2中所述的方法制备。
FLO8的缺失对pG1驱动的表达具有积极影响,导致在诱导(葡萄糖限制)条件下的eGFP水平高接近4倍(表2)。因此,还研究了破坏FLO8对启动子变体pG1-3的影响,该变体本身具有较高的内在表达。对于启动子变体也表现出积极的影响,与在野生型背景中来自相同启动子的表达相比,使dFLO8菌株中的eGFP水平再次提高了2.5至3倍(表2)。
实施例3:FLO8破坏对分泌的重组蛋白的PG1-3驱动的生产率的影响
接下来,评估了dFLO8突变对pG1-3驱动的分泌模型蛋白的表达的影响。为此,将vHH或scR的表达盒转化为CBS2612和CBS2612_dFLO8。
a)巴斯德毕赤酵母dFLO8菌株的构建和选择标记物的回收
使用巴斯德毕赤酵母野生型菌株CBS2612(CBS-KNAW真菌生物多样性中心,斯基希米尔科文化中心,荷兰乌特勒支)作为宿主菌株。
如实施例1中所述构建CBS2612_KanR_dFLO8#2。为了基于Cre-loxP重组从基因组中切除KanMX选择标记物盒,如Gasser等人,2013所述。使用质粒pTAC_Cre_hphMX4通过电穿孔对CBS2612_KanR_dFLO8#2进行瞬时转化。pTAC_Cre_hphMX4是质粒pYX022(R&D系统)的衍生物,并且由大肠杆菌的复制起点、用于Cre-重组酶基因的表达盒、潮霉素抗性盒以及ARS/CEN元件组成。对于其构建,使用EcoR91I pTAC_Cre_kanMX(Marx等人,2008)进行消化,以去除卡那霉素抗性盒。用相同的酶消化质粒pGA26_hphMX4,以切除潮霉素抗性盒,并且通过连接将合适的片段融合。
在含有100μg mL-1潮霉素的YPD琼脂上进行阳性转化体的选择。随后在YPD琼脂(不含潮霉素,以促进pKTAC-CRE_hygR的丢失)以及含有500μg mL-1遗传霉素的YPD琼脂上平行重新筛选潮霉素抗性克隆。使用引物Det_bw和Det_fw,通过PCR和凝胶电泳进一步检查对遗传霉素失去抗性的菌株(表1),以确认从基因组中切除KanMX抗性盒。从相应的菌株中选择CBS2612_L_dFLO8#2_4用于进一步使用。
b)在PG1-3的转录控制下分泌抗体片段scFv(scR)和vHH的巴斯德毕赤酵母菌株的 构建
表达质粒pPM2d_pAOX_scR和pPM2d_pAOX_vHH是pPUZZLE质粒主链的衍生物(Stadlmayr等人,2010)。它们由大肠杆菌的复制起点(pUC19)、Zeocin抗性盒、酿酒酵母α-交配因子前体前导、目的基因(vHH或scR)和酿酒酵母CYC1转录终止子以及用于整合到巴斯德毕赤酵母基因组中的基因座(3′AOX1区)组成。对于其构建,编码scFv(scR)和vHH的基因通过DNA2.0进行密码子优化,并作为合成DNA获得(序列如下所述)。His6-标签在C末端与用于检测的基因融合。在用XhoI和BamHI(用于scR)或EcoRV(用于vHH)限制性消化后,将每个基因连接到用XhoI和BamHI或EcoRV消化的pPM2d_pAOX中。通过用AlwNI和SbfI限制性消化这些质粒以及表达质粒pPM1aZ10_pG1-3_eGFP(也是WO2017021541A1中描述的pPUZZLE衍生物)并融合适当的质粒片段,完成了用PG1-3替换PAOX1。源自pPM1aZ10_pG1-3_eGFP的片段还包含用于AOX终止子的序列,该序列能够靶向整合到该基因座。
所得的表达质粒pPM1aZ30_pG1-3_scR和pPM1aZ30_pG1-3_vHH用AscI线性化,并且使用如在Gasser等人,2013中描述的标准方案通过电穿孔被转化为CBS2612(简称wt),CBS2612_KanR_dFLO8#2(简称dFLO8)或CBS2612_L_dFLO8#2_4(简称dFLO8L)。
在含有50μg mL-1的Zeocin和500μg mL-1的遗传霉素(如果适用)的选择性YPD琼脂上进行阳性转化体的选择。
c)抗体片段生产率的筛选
对于表达筛选,将相应的转化体的单个菌落接种在含有25μg mL-1的Zeocin和500μgmL-1的遗传霉素(如果合适)的2mL液体YP培养基(每升:20g的蛋白胨,10g的酵母提取物)中,并在24-DWP中以280rpm在25℃下生长约24小时。使用这些培养物来接种2mL的合成筛选培养基ASMv6(对于组成,参见实施例2)(该培养基包含50g L-1的多糖和1.5%的葡萄糖释放酶(使葡萄糖释放速率为约0.8mg h-1mL-1;m2p介质开发试剂盒))至8的起始OD600。培养条件与预培养条件相似。在48小时后,将1mL的细胞悬液转移至预先称重的1.5mL离心管中,并在室温下以16100g离心5分钟。小心地将上清液转移到新的小瓶中,并在-20℃下储存,直至进一步使用。再次对含有沉淀的离心管称重,以测定细胞湿重(WCW)。通过如下所述的微流控毛细管电泳对上清液中的重组分泌蛋白进行定量。
d)通过微流控毛细管电泳(mCE)进行定量
使用“LabChip GX/GXII系统”(PerkinElmer)用于培养上清液中的分泌蛋白滴度的定量分析。使用了消耗品“蛋白质表达实验室芯片(Protein Express Lab Chip)”(760499,PerkinElmer)和“蛋白质表达试剂试剂盒(Protein Express Reagent Kit’)”(CLS960008,PerkinElmer)。芯片和样品制备均根据制造商的建议进行。程序的简要说明在下面给出。
芯片制备:在试剂已经达到室温后,将520μL和280μL的蛋白质表达凝胶基质(Protein Express Gel Matrix)转移到旋转过滤器中。将20μL的蛋白质表达染料溶液加入到含有520μL凝胶基质的旋转过滤器中。在将含有染料的旋转过滤器沿反向方向短暂涡旋后,将两个旋转过滤器均以9300g离心10分钟。为了清洗芯片,向所有活性芯片孔中加入120μL的Milli-水,并对芯片进行仪器清洗程序。在用Milli-/>水进行两次进一步冲洗步骤后,将剩余的流体完全吸出,并将适量的经过滤的凝胶基质溶液以及蛋白表达下标记物溶液(Protein Express Lower Marker solution)添加到适当的芯片孔中。
样品和阶梯制备:对于样品制备,将6μL的样品与21μL的样品缓冲液在96孔微量滴定板中混合。将样品在100℃下变性5分钟,并以1200g离心2分钟。随后,加入150μL的Milli-水。通过移液将样品溶液短暂混合,并在测量前再次以1200g离心2分钟。为了制备阶梯,在PCR管中在100℃下将12μL的蛋白质表达阶梯变性5分钟。随后,加入120μL的Milli-/>水,并短暂涡流阶梯溶液,然后在微型离心机中旋转管15秒。
通过使用由制造商提供的LabChip软件进行定量,并与BSA标准品进行比较。
表3显示,与野生型相比,在dFLO8菌株的上清液中平均scR滴度高1.8倍,而生物量浓度没有差异,导致dFLO8菌株的上清液中的scR产量高1.86倍。在表达vHH的菌株的情况下,也观察到在dFLO8突变时平均滴度和vHH产量的类似增加(1.7倍)(表4)。
表3:用pPM1aZ30_pG1-3_scR转化的CBS2612和CB2612_L_dFLO8#2_4的24-DWP筛选的平均WCW、产物滴度和产量。每个构建体筛选20个克隆。
菌株 WCW±SD 滴度±SD 产量±SD
[g L-1] [mg L-1] [mg g-1]
wt+pG1-3_scR#1-20 80.8±3.64 29.3±8.99 0.36±0.107
dFLO8L+pG1-3_scR#1-20 79.3±2.40 53.0±4.53 0.67±0.057
表4:用pPM1aZ30_pG1-3_vHH转化的CBS2612和CB2612_KanR_dFLO8#2的24-DWP筛选的平均WCW、产物滴度和产量。每个构建体筛选20个克隆。
菌株 WCW±SD 滴度±SD 产量±SD
[g L-1] [mg L-1] [mg g-1]
wt+pG1-3_vHH#1-20 92.4±3.21 56.2±32.70 0.61±0.351
dFLO8+pG1-3_vHH#1-20 90.7±4.48 97.0±31.70 1.04±0.360
接下来,通过使用如实施例1中所述的分裂标记物盒方法,在从上述筛选中选择的四个不同的vHH表达克隆(CBS2612_pG1-3_vHH#4、#5、#13和#15)中破坏FLO8。随后,使用24-DWP筛选方案来筛选dFLO8突变克隆以及相应的FLO8亲本克隆的生产率。表5显示,在dFLO8克隆中vHH滴度和产物产率要高2至3倍。为了验证增加的产量水平是基于较高的转录表达,在不同的时间点通过qPCR对vHH转录物水平进行了定量。在dFLO8克隆中平均观察到2倍高的vHH表达水平,表明提高的vHH滴度确实是基于pG1-3的较高的转录活性(参见实施例4)。
表5:4种不同的vHH表达菌株及其相应的dFLO8菌株的平均WCW和滴度。筛选了每种亲本菌株的4个复制品以及6个相应的dFLO8菌株。(FC:倍数变化)。
菌株 WCW±SD 滴度±SD FC
[g L-1] [mg L-1]
pG1-3_vHH#4 81.8±1.25 81.4±6.42
pG1-3_vHH#4_dFLO8#1-6 78.9±0.94 171.9±3.90 2.11
pG1-3_vHH#5 86.6±1.23 37.9±2.22
pG1-3_vHH#5_dFLO8#1-6 79.8±1.51 91.2±4.17 2.41
pG1-3_vHH#13 77.6±1.81 33.6±1.30
pG1-3_vHH#13_dFLO8#1-6 78.9±1.52 101.7±2.05 3.03
pG1-3_vHH#15 80.1±1.23 37.7±2.05
pG1-3_vHH#15_dFLO8#1-6 78.7±3.70 101.1±4.21 2.68
实施例4:FLO8破坏对pG1-3控制的vHH转录的影响
为了测试FLO8的破坏是否导致在pG1-3的控制下的基因的转录活性增加,对CBS2612_pG1-3_vHH#4和#13以及相应的dFLO8突变菌株CBS2612_pG1-3_vHH#4_dFLO8_1和#13_dFLO8_2的6个技术复制品(表5;实施例3)如实施例3所述以24-DWP格式培养。在2、19和26小时后,收获来自2个复制品的1mL的培养物,并在16100g和4℃下离心1分钟,并且弃去上清液。随后,将细胞沉淀重新悬浮在1mL的TRI试剂(西格玛奥德里奇)中,并在-80℃下储存,直至进一步处理。
RNA分离如实施例6中所述进行。为了去除残留的DNA,根据制造商的手册,使用DNA-freeTM试剂盒(Ambion)处理RNA样品。随后,通过凝胶电泳以及使用NanoDrop 2000(赛默飞世尔科技公司)的分光光度法分析来分析RNA的质量、纯度和浓度。
根据制造商的手册,使用Biozym cDNA合成试剂盒进行cDNA的合成。简言之,向含有逆转录酶、dNTP、RNA酶抑制剂和合成缓冲液的主混合物中加入500ng的总RNA。对于引发寡聚d(T)23,使用了VN(NEB)。在55℃下进行反应混合物的孵育60分钟。随后,通过在99℃下孵育反应混合物5分钟来实现酶的失活。
对于定量实时PCR(qPCR),使用了vHH特异性引物(表6)。通过与ACT1表达水平比较进行归一化(表6)。为了分析1μL的cDNA,将水和引物与SensiMix SYBR 2x Master Mix(Bioline)混合,并在实时PCR循环仪(Rotor-Gene,Qiagen)中进行分析。
表6:用于vHH转录物分析的定量实时PCR引物
引物 序列
vHH_fw TGTAACGTGAATGTCGGATTTG(SEQ ID NO:81)
vHH_bw TAGTGATGGTGGTGGTGATG(SEQ ID NO:82)10
Act1_fw CCTGAGGCTTTGTTCCACCCACT(SEQ ID NO:83)
Act1_bw GGAACATAGTAGCAC CGGCATAACGA(SEQ ID NO:84)
所有样品均以技术三份样品进行测量。使用Rotor-Gene软件,采用比较定量(QC)方法进行数据分析。
表7显示,在dFLO8菌株中,平均vHH-转录物水平在所有分析的培养时间点期间均升高。
表7:在不同的筛选培养时间点的平均相对vHH转录物水平
实施例5:在实验室规模的生物反应器补料分批培养中,FLO8破坏对pG1-3驱动的分泌的抗体片段生产率的影响
在进行补料分批培养之前,如实施例3中所述,通过Cre介导的重组从菌株CBS2612_pG1-3_vHH#4_dFLO8_4(简称dFLO8_pG1-3_vHH#4_4)(表5,实施例3)的基因组中切除遗传霉素抗性标记物盒。将所得的菌株CBS2612_pG1-3_vHH#4_dFLO8_4#L1(简称L_dFLO8_pG1-3_vHH#4_4_1)的三个复制品的生产率与其亲本菌株的三个复制品的产物水平以如实施例3所述的24-DPW筛选格式进行比较(表8)。CBS2612_pG1-3_vHH#4_dFLO8_4#L1的平均生产率与其亲本菌株保持相似(p值为0.096)。
表8:在24-DWP筛选中CBS2612_dFLO8_pG1-3_vHH#4_4和CBS2612_L_dFLO8_pG1-3_vHH#4_4_1的WCW和滴度。
菌株 WCW±SD 滴度±SD
[g L-1] [mg L-1]
dFLO8_pG1-3_vHH#4_4 80.87±1.91 306.34±12.85
L_dFLO8_pG1-3_vHH#4_4_1 80.40±0.57 329.92±8.48
在1L台式生物反应器(SR0700ODLS;德国达斯吉普(Dasgip,Germany))中,用菌株CBS2612_pG1-3_vHH#4和相应的loxed dFLO8突变体CBS2612_L_dFLO8_pG1-3_vHH#4_4_1进行补料分批培养。对于预培养,将在1L摇瓶中的100mL的含有50μg mL的Zeocin的YPG培养基用1.0mL低温储备液接种,并在180rpm和25℃下孵育约24小时。分批培养在0.25L的工作体积下操作,并且被接种至1.5的起始OD600。甘油分批培养基组成在下面给出。在整个过程期间,温度控制在30℃,DO通过自动调节搅拌器速度(在400rpm与1200rpm之间)和空气流量(在9.5sL h-1与30sL h-1之间)被保持在30%,并且pH通过自动添加12.5%的NH4OH被调节为5.0。在表明批结束的DO的突然升高后,使用了线性增量葡萄糖进料(培养基组成详述如下),导致快速初始生长速率,随后是逐渐降低μ的延长阶段,该阶段已经针对基于PG1-3的qP至μ动力学进行了特别优化(Prielhofer等人,2018)。
甘油分批培养基每升包含:
2g的柠檬酸一水合物(C6H8O7*H2O)、45g的甘油、12.6g的(NH4)2HPO4、0.5g的MgSO4*7H2O、0.9g的KCl、0.022g的CaCl2*2H2O、6.6mL的生物素贮备溶液(0.2g L-1)和4.6mL的PTM0微量盐贮备溶液(如实施例2所述)。加入HCl(浓的)以将pH设定为5。
葡萄糖进料培养基每升包含:
495g的葡萄糖一水合物、5.2g的MgSO4*7H2O、8.4g的KCl、0.28g的CaCl2*2H2O、11.8mL的生物素贮备溶液(0.2g L-1)和10.1mL的PTM0微量盐贮备溶液(如实施例2所述)。
在整个过程中的不同时间点分析了YDM和分泌的重组蛋白(表9)。对于YDM分析,将1mL的培养液转移至2mL的预干燥的(在105℃下持续至少24小时)并预称重的离心管中。在以16100g离心5分钟后,小心地将上清液转移至新鲜的小瓶中,并在-20℃下储存,直到进一步使用。用去离子水洗涤细胞沉淀两次,并在105℃下干燥至少24小时,然后再次测量重量。
如实施例3所述,通过微流控毛细管电泳(GXII,Perkin-Elmer)分析上清液。
表9:在生物反应器补料分批培养CBS2612_pG1-3_vHH#4和L_CBS2612_dFLO8_pG1-3_vHH#4_4_1期间的YDM和vHH滴度
*葡萄糖-进料开始
从表9可以看出,在整个过程中,dFLO8菌株的产物滴度始终高于wt-背景菌株。在过程结束时,观察到生产率的5.7倍提高。同样在补料分批培养中,在整个时间过程中在dFLO8菌株中观察到增加的vHH转录物水平。
实施例6:FLO8破坏对非甲醇碳调节的启动子的表达强度和调节行为的影响
在下一步中,研究了在诱导条件下FLO8的破坏对其他碳调节的启动子(在WO2013050551A1和Prielhofer等人,2013中描述)的转录强度的影响。对于在葡萄糖限制条件下的转录组分析,使用了CBS7435野生型和CBS7436_KanR_dFLO8#2。在24深孔板(24-DWP)中培养预培养物和主培养物。对于第一次预培养,使含有500μg mL-1遗传霉素(如果合适)的2mL的YPD(每升:10g的酵母提取物、20g的蛋白胨、20g的葡萄糖)分别接种有CBS7435和CBS7435_KanR_dFLO8#2的单个菌落,并在25℃和280rpm下生长约24小时。对于第二次预培养,使用接种至起始OD600为4的2mL的M2(D)培养基(组成如下所述)。加入释放葡萄糖的聚合物珠(12mm进料珠,Kuhner,CH),以1.63t0.74 mg/片(t=时间[h])的非线性速率释放葡萄糖,并将培养物在25℃和280rpm下孵育约24小时。对于主培养物,使用2mL的M2培养基(M2(D),不含葡萄糖)。以280rpm和25℃摇动培养物。葡萄糖的缓慢释放确保了葡萄糖有限的生长。在主培养3小时后采集样品(估计的比生长速率:0.1h-1),立即以2:1的比率与预冷的固定液(在乙醇[绝对]中的5%[体积/体积]苯酚)混合,等分到密封的管中,并以16100g离心1分钟。将沉淀储存在-80℃,直到进一步使用。
M2(D)每升包含:22.0g的葡萄糖一水合物、22.0g的柠檬酸一水合物、3.15g的(NH4)2HPO4、0.49g的MgSO4*7H2O、0.80g的KCl、0.0268g的CaCl2*2H2O、1.47mL的PTM 0微量盐贮备溶液(如实施例1所述)和0.4mg的生物素;用KOH(固体)将pH设定为5。
对于RNA分离,加入1mL的TRI试剂(西格玛奥德里奇)和500μL酸洗的玻璃珠,并在FastPrep-24(mpbio)中以5.5m/s的速度破碎细胞40秒。然后,加入200μL的氯仿。随后,剧烈地摇晃样品,并且然后允许在室温下静置5-10分钟。在16100g和4℃下离心10分钟以促进相分离后,将含有RNA的上部无色水相转移到新的管中,并加入500μL的异丙醇以沉淀RNA。在孵育10分钟后,将样品在16100g和4℃下离心10分钟,并且弃去上清液。将RNA沉淀用70%乙醇洗涤一次,风干,并重新悬浮在不含RNAse的水中。
对于转录组分析,使用内部设计的巴斯德毕赤酵母特异性寡核苷酸阵列(AMAD-ID034821,8×15K定制阵列;美国安捷伦(Agilent,USA))(Graf等人;BMC基因组公司(BMCGenomics)2008;9:390.)。cRNA的合成、杂交以及扫描均按照用于2色表达阵列的安捷伦方案进行。用Cy3和Cy5以三份标记样品,并与由在各种培养条件下生长的细胞产生的参考池杂交。对于所有样品,进行染料交换实验。
微阵列数据的归一化步骤和统计分析包括使用局部加权MA-散点图平滑(LOESS)消除颜色偏差,然后使用“Aquantile”方法进行阵列间归一化。为了鉴定差异表达的基因和计算p值,使用了具有eBayes修正的线性模型拟合。Benjamini&Yekutieli,2001使用错误发现法(FDR)针对多次测量调整了p值。调整的p值<0.05的基因被认为具有统计学意义的差异表达。为了鉴定差异表达的基因,另外应用了至少0.58>log2 FC<-0.58的倍数变化截止值。
所有步骤均使用R软件(Robinson MD,McCarthy DJ,Smyth GK.edgeR:“用于数字基因表达数据的差异表达分析的生物导体包(a Bioconductor package fordifferential expression analysis of digital gene expression data)”2010.《生物信息学(Bioinformatics)》26:139–40.)和limma包进行。碳调节的基因(受碳源调节的启动子控制的基因)的选择的倍数变化在表10中示出。与野生型相比,在dFLO8突变体中天然FLO8基因的表达明显且显著降低。对于所有碳源调节的基因,可以看到dFLO8突变体中转录物水平增加,在诱导条件下转录强度达到高3.7至11.4倍。所有这些基因在dFLO8突变菌株中都具有具有统计学意义的较高转录(经调整的p值<0.05)。这强烈表明,通过FLO8的破坏增强了如在Prielhofer等人,2013和Prielhofer等人,2018中所述的所有非甲醇碳调节的启动子的生产潜力。相反,GAP启动子的表达强度不受FLO8的破坏的影响。
表10:在葡萄糖限制诱导条件下,dFLO8突变体对FLO8基因和受碳调节的启动子控制的基因的转录强度的影响。显示了dFLO8突变菌株与野生型菌株相比的倍数变化(FC)。经调整的p值<0.05的表达变化显示出具有统计学意义的差异。
实施例7:FLO8破坏对甲醇调节的启动子pAOX1的转录强度的影响
对于在甲醇诱导条件下的巴斯德毕赤酵母标准启动子(诸如pAOX1和pGAP),还测定了FLO8的破坏对转录强度的影响。因此,在pAOX1的控制下表达重组Fab片段的菌株CBS7435和相应的dFLO8突变菌株dFLO8#2在基于甲醇的补料分批培养中培养。
分批补料在1.4L DASGIP反应器(德国艾本德公司(Eppendorf,Germany))中进行,其中最大工作容积为1.0L。培养温度被控制在25℃,pH通过加入25%的氢氧化铵被控制在5.0,并且溶解氧浓度通过将搅拌器速度控制在400-1200rpm之间以及将气流控制在24-72sL/h之间被保持在高于20%饱和度。
用于补料分批培养的接种物在含有100mL的包含20g/L甘油和50μg/mL的Zeocin的YP培养基的摇瓶中培养,并在28℃和180rpm下孵育约24小时。培养物用于将生物反应器中0.4L的起始体积接种至1.0的起始光密度(600nm)。在约24小时后完成该批次,并且提供第一(10mL)盐丸。
然后以5mL/h的恒定速率进料甘油补料分批溶液持续5小时。然后,向培养物提供甲醇脉冲(2g)和盐丸(10mL)。在已经通过培养物中溶解氧浓度的增加指示甲醇脉冲消耗后,以1.0g/h的进料速率开始具有甲醇补料分批溶液的恒定进料。每10g新形成的生物质提供10mL的盐丸,其相当于约43g的甲醇进料介质。随着生物质浓度的增加,当在短时间段内关闭甲醇进料时,由于培养物中溶解氧的突然增加,当可以排除甲醇累积时,甲醇进料速率适当增加。最终甲醇进料速率为2.5g/h。
频繁地采集样品。在约100小时后,当细胞密度已经达到超过100g/L细胞干重时,收获培养物。
培养基如下:
分批培养基(每升)包含:2.0g的柠檬酸、12.4g的(NH4)2HPO4、0.022g的CaCl2·2H2O、0.9g的KCl、0.5g的MgSO4·7H2O、40g的甘油、4.6mL的PTM1微量盐贮备溶液。用25%的HCl将pH值设定为5.0。
甘油补料分批溶液(每升)包含:623g的甘油、12mL的PTM0微量盐贮备溶液和40mg生物素。在实施例2中给出了PTM0组成。
纯甲醇的甲醇补料分批溶液(每升)包含:12mL的PTM0微量盐贮备溶液和40mg的生物素。
盐丸溶液(每升)包含:20.8g的MgSO4·7H2O、41.6的KCl、1.04g的CaCl2·2H2O。
使用抗人IgG抗体(ab7497,Abcam)作为包被抗体并使用山羊抗人IgG(Fab特异性)-碱性磷酸酶缀合的抗体(Sigma A8542)作为检测抗体,通过ELISA对完整Fab进行定量。使用人Fab/κIgG片段(Bethyl P80-115)作为起始浓度为100ng/mL的标准品,相应地稀释上清液样品。使用pNPP(Sigma S0942)进行检测。包被缓冲液、稀释缓冲液和洗涤缓冲液基于PBS(2mM的KH2PO4、10mM的Na2HPO4.2 H2O、2.7mM g的KCl、8mM的NaCl、pH 7.4),并相应地用BSA(1%(w/v))和/或吐温20(0.1%(v/v))完成。
关于产物滴度,在dFLO8突变体中在pAOX1的控制下的Fab产量的增加在甲醇补料分批培养结束时(在119小时后,如WO2015/158800A1中所描述的)最大1.45倍,而生物量形成略有减少(减少10-14%)。
在53.5小时(25小时甲醇进料)后采集微阵列样品,并如实施例6中所述进行处理。在表11中示出了dFLO8突变菌株与野生型菌株相比的基因选择的倍数变化。同样,与野生型相比,在dFLO8突变体中FLO8转录物水平显著较低。与表10中所示的非甲醇碳调节的基因和启动子相反,与野生型相比,在其完全诱导条件下,甲醇诱导型pAOX1在dFLO8突变体中没有显示出显著增加的转录强度(因为经调节的p值大于0.05)。在甲醇培养的细胞中,对pGAP也没有显著影响。因此,这些标准启动子在巴斯德毕赤酵母中的转录不受FLO8的低表达的影响。
表11:在甲醇诱导补料分批条件下,dFLO8突变体对FLO8基因和受甲醇诱导型AOX1启动子控制的基因的转录强度的影响。显示了dFLO8突变菌株与野生型菌株相比的倍数变化(FC)。经调整的p值<0.05的表达变化显示出具有统计学意义的差异。
实施例8:FLO8破坏对由非甲醇碳调节的启动子驱动的细胞内eGFP表达的影响
由于由大多数非甲醇碳调节的启动子驱动的天然基因表达(WO2013050551A1;Prielhofer等人,2013)在dFLO8菌株的诱导条件下被显著上调(参见实施例6),在WO2013050551A1和Prielhofer等人(2013)中描述的相应eGFP-报告菌株中也检测到了FLO8的破坏。对于每种非甲醇诱导型启动子,携带pPM1aZ10_pG#_eGFP表达载体(CBS2612_pG3_eGFP#1;CBS2612_pG4_eGFP#6;CBS2612_pG6_eGFP#53;X33_pG7_eGFP#1;CBS2612_pG8_eGFP#8)的菌株被选择,并通过采用实施例1中所述的分裂标记物盒方法来破坏FLO8。在诱导(葡萄糖限制)条件下进行的筛选-培养如实施例2所述进行,不同之处在于多糖和葡萄糖释放酶是从不同的供应商(EnPump 200,Enpresso)获得的。由于新的葡萄糖释放酶的性质不同,将浓度调整为0.4%,其对应于约0.6mg mL-1h-1的恒定葡萄糖释放速率。在每种情况下,均筛选相应亲本的两个复制品以及至少7个相应的dFLO8菌株。如实施例2所述测定eGFP-生产率,不同之处在于未对细胞大小的值进行归一化。表12显示,对FLO8的破坏导致每种启动子的eGFP荧光的增加,在pG3和pG8的情况下分别达到1.7倍和1.2倍,以及在pG4和pG7的情况下达到2.3倍和在pG6的情况下达到2.2倍。这进一步强调了FLO8的破坏对除pG1和pG1衍生物之外的其他非甲醇碳调节的启动子的增强的潜力。
这些结果证实,与野生型宿主细胞中的eGFP表达相比,在dFLO8宿主细胞中受pG1或pG1衍生物(pG1-3)控制的eGFP表达增加。表2显示,FLO8的破坏导致eGFP荧光的增加,在pG1和pG1-3的情况下分别为3.8(或3.9)和2.8(或2.9)倍。
表12:在非甲醇碳调节的启动子的控制下dFLO8对eGFP的表达的影响。示出了在限制葡萄糖(诱导)条件下培养48小时后,eGFP表达水平(作为pGAP表达的百分比)以及相应的dFLO8_pG#_eGFP菌株与亲本野生型菌株相比的倍数变化。
启动子 宿主细胞 相对于pGAP±SD的eGFP表达 FC dFLO8/wt
pGAP wt 100±2.2%
pG3 wt 20±0.7%
pG3 dFLO8 33±4.5% 1.7
pG4 wt 42±1.1%
pG4 dFLO8 96±9.0% 2.3
pG6 wt 76±0.0%
pG6 dFLO8 164±1.4% 2.2
pG7 wt 697±1.0%
pG7 dFLO8 1591±2% 2.3
pG8 wt 20±3.1%
pG8 dFLO8 24±3.4% 1.2
参见文献:
Benjamini Y&Yekutieli D(2001)“在依赖性下多重测试中错误发现率的控制(The Control of the False Discovery Rate in Multiple Testing underDependency)”《统计年鉴(The Annals of Statistics)》29:1165-1188。
Gasser B,Prielhofer R,Marx H,Maurer M,Nocon J,Steiger M,Puxbaum V,Sauer M&Mattanovich D(2013)“巴斯德毕赤酵母:用于生物医学研究的蛋白质生产宿主和模型生物体(Pichia pastoris:protein production host and model organism forbiomedical research)”《未来微生物学(Future Microbiol)》8:191-208。
Marx H,Mattanovich D&Sauer M(2008)“核黄素生物合成途径在巴斯德毕赤酵母中的过表达(Overexpression of the riboflavin biosynthetic pathway in Pichiapastoris)”《微生物细胞工厂(Microb Cell Fact)》7:23。
Prielhofer R,Reichinger M,Wagner N,Claes K,Kiziak C,Gasser B&Mattanovich D(2018)“在一半发酵时间内优异的蛋白滴度:用于巴斯德毕赤酵母的葡萄糖调节的GTH1启动子的启动子和工艺工程(Superior protein titers in half thefermentation time:Promoter and process engineering for the glucose-regulatedGTH1 promoter of Pichia pastoris)”《生物技术和生物工程(Biotechnol Bioeng)》。
Stadlmayr G,Mecklenbrauker A,Rothmuller M,Maurer M,Sauer M,Mattanovich D&Gasser B(2010)“用于异源蛋白生产的新型巴斯德毕赤酵母启动子的鉴定和表征(Identification and characterisation of novel Pichia pastoris promotersfor heterologous protein production)”《生物技术杂志(J Biotechnol)》150:519-529。

Claims (15)

1.重组宿主细胞,其包括编码FLO8蛋白的内源基因,所述FLO8蛋白包括鉴定为SEQ IDNO:1的氨基酸序列或其同源物,所述宿主细胞通过一种或多种基因修饰进行工程改造,以与所述一种或多种基因修饰之前的宿主细胞相比减少所述基因的表达,并且所述宿主细胞包括异源表达盒,所述异源表达盒包括受表达盒启动子(ECP)控制的目的基因(GOI),所述ECP可被非甲醇碳源抑制。
2.所述宿主细胞,其中所述内源多核苷酸是编码所述FLO8蛋白的基因,其中所述一种或多种基因修饰包括(i)一种或多种内源多核苷酸或其一部分;或(ii)表达控制序列的破坏、取代、缺失或敲除,优选地其中所述表达控制序列选自由启动子、核糖体结合位点、转录或翻译起始和终止序列、增强子和激活子序列组成的组。
3.根据权利要求1或2所述的宿主细胞,其中编码所述FLO8蛋白的所述内源基因或所述同源物通过所述一种或多种基因修饰敲除。
4.根据权利要求1至3中任一项所述的宿主细胞,其中在存在生长限制量的非甲醇碳源的情况下,优选地在不存在甲醇的情况下,所述ECP是可诱导的;并且在高于所述生长限制量的过量的非甲醇碳源的存在下是可抑制的。
5.根据权利要求1至4中任一项所述的宿主细胞,其中所述ECP包括与序列SEQ ID NO:10-16中的任何一个或SEQ ID NO:41-45中的任何一个的至少300nt的至少60%的序列同一性。
6.根据权利要求5所述的宿主细胞,其中所述ECP包括SEQ ID NO:10或SEQ ID NO:11或者由SEQ ID NO:10或SEQ ID NO:11组成。
7.根据权利要求1至6中任一项所述的宿主细胞,其中所述表达盒进一步包括编码能够分泌由所述GOI编码的目的蛋白(POI)的信号肽的核苷酸序列,优选地其中编码所述信号肽的所述核苷酸序列与所述GOI的5’端相邻融合。
8.根据权利要求1至7中任一项所述的宿主细胞,其中所述GOI编码目的蛋白(POI),所述目的蛋白是选自由抗原结合蛋白、治疗性蛋白、酶、肽、蛋白抗生素、毒素融合蛋白、碳水化合物-蛋白缀合物、结构蛋白、调节蛋白、疫苗抗原、生长因子、激素、细胞因子、过程酶和代谢酶组成的组的肽或蛋白。
9.根据权利要求1至8中任一项所述的宿主细胞,其是:
a)选自由毕赤酵母(Pichia)、汉逊酵母(Hansenula)、孔玛氏酵母(Komagataella)、酿酒酵母(Saccharomyces)、克鲁维酵母(Kluyveromyces)、假丝酵母(Candida)、亨利绪方酵母(Ogataea)、耶氏酵母(Yarrowia)和地丝菌(Geotrichum)组成的组的属的酵母细胞,诸如巴斯德毕赤酵母(Pichia pastoris)、菲氏孔玛氏酵母(Komagataella phaffii)、巴斯德孔玛氏酵母(Komagataella pastoris)、假巴斯德孔玛氏酵母(Komagataellapseudopastoris)、酿酒酵母(Saccharomyces cerevisiae)、小亨利绪方酵母(Ogataeaminuta)、乳酸克鲁维酵母(Kluyveromces lactis)、马克斯克鲁维酵母(Kluyveromesmarxianus)、解脂耶氏酵母(Yarrowia lipolytica)或多形汉逊酵母(Hansenulapolymorpha);或者
b)丝状真菌诸如泡盛曲霉(Aspergillus awamori)或里氏木霉(Trichoderma reesei)的细胞。
10.用于通过减少编码FLO8蛋白的基因在所述宿主细胞中的表达来增加目的蛋白(POI)的产量的方法,所述目的蛋白(POI)由在启动子的控制下表达编码所述POI的目的基因(GOI)的宿主细胞产生,所述启动子可被非甲醇碳源抑制,所述FLO8蛋白包括鉴定为SEQID NO:1的氨基酸序列或其同源物。
11.通过在产生目的蛋白(POI)的条件下培养权利要求1至9中任一项所述的宿主细胞来生产由目的基因(GOI)编码的所述POI的方法。
12.根据权利要求10或11所述的方法,包括以下步骤:
a)在生长条件下培养所述宿主细胞;和
b)在生长限制条件下,在至多1g/L的第二非甲醇碳源的存在下培养所述宿主细胞,使得所述GOI的表达以产生所述POI,优选地其中所述步骤a)培养在分批阶段中进行;并且所述步骤b)培养在补料分批或连续培养阶段中进行。
13.根据权利要求12所述的方法,其中所述第一碳源或第二碳源选自糖、多元醇、醇或前述中的任何一种或多种的混合物。
14.用于在宿主细胞中产生目的蛋白(POI)的方法,包括以下步骤:
a)对所述宿主细胞进行基因工程改造,以减少编码FLO8蛋白的内源基因的表达,所述FLO8蛋白包括鉴定为SEQ ID NO:1的氨基酸序列或其同源物;
b)将异源表达盒引入到所述宿主细胞中,所述异源表达盒包括在表达盒启动子(ECP)的控制下表达所述POI的目的基因(GOI),所述表达盒启动子可操作地连接到所述GOI,所述ECP可被非甲醇碳源抑制;
c)在产生所述POI的条件下培养所述宿主细胞;
d)任选地从细胞培养物中分离所述POI;和
e)任选地纯化所述POI。
15.根据权利要求14所述的方法,其中所述ECP包括与序列SEQ ID NO:10-16中的任何一个或SEQ ID NO:41-45中的任何一个的至少300nt的至少60%的序列同一性。
CN202310749149.9A 2019-01-11 2020-01-10 重组宿主细胞中碳源调节的蛋白的产生 Pending CN116904331A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP19151376.1 2019-01-11
EP19151376 2019-01-11
PCT/EP2020/050517 WO2020144313A1 (en) 2019-01-11 2020-01-10 Carbon-source regulated protein production in a recombinant host cell
CN202080008585.5A CN113423836B (zh) 2019-01-11 2020-01-10 重组宿主细胞中碳源调节的蛋白的产生

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN202080008585.5A Division CN113423836B (zh) 2019-01-11 2020-01-10 重组宿主细胞中碳源调节的蛋白的产生

Publications (1)

Publication Number Publication Date
CN116904331A true CN116904331A (zh) 2023-10-20

Family

ID=65268724

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202080008585.5A Active CN113423836B (zh) 2019-01-11 2020-01-10 重组宿主细胞中碳源调节的蛋白的产生
CN202310749149.9A Pending CN116904331A (zh) 2019-01-11 2020-01-10 重组宿主细胞中碳源调节的蛋白的产生

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202080008585.5A Active CN113423836B (zh) 2019-01-11 2020-01-10 重组宿主细胞中碳源调节的蛋白的产生

Country Status (11)

Country Link
US (2) US11773424B2 (zh)
EP (1) EP3874047B1 (zh)
JP (1) JP7061234B2 (zh)
KR (2) KR102495283B1 (zh)
CN (2) CN113423836B (zh)
CA (1) CA3125217C (zh)
DK (1) DK3874047T3 (zh)
ES (1) ES2921137T3 (zh)
SG (1) SG11202105667RA (zh)
TW (1) TW202031898A (zh)
WO (1) WO2020144313A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3193155A1 (en) 2020-09-30 2022-04-07 Lonza Ltd Host cells overexpressing translational factors
CN113764034B (zh) * 2021-08-03 2023-09-22 腾讯科技(深圳)有限公司 基因组序列中潜在bgc的预测方法、装置、设备及介质
CN114657190B (zh) * 2022-04-06 2023-08-29 暨南大学 Msn2p作为负调控因子在提高宿主细胞中蛋白表达中的应用
CN115386009B (zh) * 2022-04-26 2023-12-01 江苏靶标生物医药研究所有限公司 一种膜联蛋白v与血管生成抑制剂融合蛋白的构建方法和应用
CN115716868B (zh) * 2022-08-01 2024-01-26 华中农业大学 转录因子MrPigB突变体及其应用
CN116041426B (zh) * 2022-08-18 2023-11-03 齐齐哈尔大学 玉米蛋白源抗粘附肽及其制备方法和应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0578746B1 (en) 1991-04-01 2002-07-03 Merck &amp; Co., Inc. GENES WHICH INFLUENCE $i(PICHIA) PROTEOLYTIC ACTIVITY, AND USES THEREFOR
US6153424A (en) 1995-11-09 2000-11-28 Zymogenetics, Inc. Protease-deficient strains of Pichia methanolica
EP2140008A2 (en) 2007-04-20 2010-01-06 Polymun Scientific Immunbiologische Forschung GmbH Yeast expression systems
US10392625B2 (en) 2009-02-26 2019-08-27 Glaxosmithkline Llc Host cells and methods of use
EP2258855A1 (en) 2009-05-28 2010-12-08 Universität für Bodenkultur Wien Expression sequences
EP2669375B1 (en) 2011-01-27 2018-10-17 Kaneka Corporation Yeast of the genus pichia modified to express high levels of a mpp1 homolog and process for producing protein
EP2707382B1 (en) 2011-05-09 2019-07-17 Ablynx NV Method for the production of immunoglobulin single variable domains
KR102128957B1 (ko) 2011-10-07 2020-07-02 론자 리미티드 조절가능한 프로모터
SG11201502745XA (en) 2012-10-29 2015-05-28 Lonza Ag Expression sequences
KR102291978B1 (ko) 2014-04-17 2021-08-23 베링거 인겔하임 에르체파우 게엠베하 운트 코 카게 목적 단백질의 발현을 위한 재조합 숙주세포
AU2015248815B2 (en) * 2014-04-17 2021-07-08 Boehringer Ingelheim Rcv Gmbh & Co Kg Recombinant host cell engineered to overexpress helper proteins
EP2952584A1 (en) 2014-06-04 2015-12-09 Boehringer Ingelheim RCV GmbH & Co KG Improved protein production
EP3332005B1 (en) 2015-08-05 2021-09-22 Lonza Ltd Promoter variants

Also Published As

Publication number Publication date
CA3125217C (en) 2023-01-17
KR20210114401A (ko) 2021-09-23
KR102495283B1 (ko) 2023-02-06
TW202031898A (zh) 2020-09-01
EP3874047A1 (en) 2021-09-08
JP7061234B2 (ja) 2022-04-27
CN113423836B (zh) 2023-07-11
US20220042064A1 (en) 2022-02-10
CA3125217A1 (en) 2020-07-16
US11773424B2 (en) 2023-10-03
ES2921137T3 (es) 2022-08-18
SG11202105667RA (en) 2021-07-29
WO2020144313A1 (en) 2020-07-16
DK3874047T3 (da) 2022-06-20
EP3874047B1 (en) 2022-04-06
CN113423836A (zh) 2021-09-21
JP2022508470A (ja) 2022-01-19
US20240018563A1 (en) 2024-01-18
KR20230022260A (ko) 2023-02-14

Similar Documents

Publication Publication Date Title
CN113423836B (zh) 重组宿主细胞中碳源调节的蛋白的产生
US11976284B2 (en) Promoter variants for protein production
JP6698352B2 (ja) 構成的プロモーター
EP3332005B1 (en) Promoter variants
JP2023156329A (ja) 目的タンパク質を産生するための宿主細胞
CN113015782A (zh) 用于酵母的前导序列
EP3947695B1 (en) Mut- methylotrophic yeast
KR20230075436A (ko) 번역 인자를 과발현하는 숙주 세포
WO2020200415A1 (en) Mut- methylotrophic yeast
WO2020200414A1 (en) Protein production in mut-methylotrophic yeast

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination