CN116903366A - 一种双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法 - Google Patents

一种双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法 Download PDF

Info

Publication number
CN116903366A
CN116903366A CN202310866762.9A CN202310866762A CN116903366A CN 116903366 A CN116903366 A CN 116903366A CN 202310866762 A CN202310866762 A CN 202310866762A CN 116903366 A CN116903366 A CN 116903366A
Authority
CN
China
Prior art keywords
photochromic
lanbo
ceramic powder
double perovskite
application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310866762.9A
Other languages
English (en)
Inventor
杨正文
冯荣宝
徐赞
宋友艳
字映竹
赵和平
白雪
朱晓东
何彦妮
邹礼泽
邱建备
宋志国
黄安君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310866762.9A priority Critical patent/CN116903366A/zh
Publication of CN116903366A publication Critical patent/CN116903366A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • C04B2235/3291Silver oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Abstract

本发明涉及光致变色材料技术领域,具体涉及一种双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法,本发明将高纯的BaCO3、La2O3、Nb2O5和Ag2O进行研磨混匀得到混合粉料A;混合粉料A置于温度为1350℃、空气气氛中高温烧结6h,研磨得到Ba2LaNbO6:Ag+光致变色陶瓷粉;Ba2LaNbO6:Ag+光致变色陶瓷粉在365nm紫外灯的照射下能够快速地由白色变为粉色,本发明Ba2LaNbO6:Ag+光致变色材料在紫外线激发下具有优异的光致变色性能。通过低价Ag+离子掺杂解决无机双钙钛矿氧化物Ba2LaNbO6光致变色浅的问题:增加氧空位含量,从而有助于实现光致变色效应。同时扩展了无机光致变色材料的探索范围与双钙钛矿氧化物的应用范围。

Description

一种双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法
技术领域
本发明涉及光致变色技术领域,具体涉及一种双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法。
背景技术
一些物质在外场(如光场、电场、磁场、热场等)的刺激下能够发生光学性质的变化,其中比较常见的有光致变色、电致变色、热致变色等。其中,因为光场操控具有很好的安全性与易操作性,光致变色近年来受到众多人的关注。
光致变色主要指材料在某个特定波长的光的照射下发生光学性能的变化,从而样品的颜色发生变化。光致变色材料应用于光存储、分子开关,防伪标记等领域;现有技术中,光致变色材料主要分为无机光致变色材料、有机光致变色材料、有机-无机光致变色材料;其中无机光致变色材料因具有更优异的热稳定性、更长的使用循环次数寿命而常用于科学研究,目前主要无机光致变色材料主要包括:过渡金属氧化物(如WO3、TiO2等)、强氧化物(BaMgSiO4、Ca2SnO2等)、铁电体(Na0.5Bi2.5Nb2O9,Na0.5Bi4.5Ti4O15,K0.5Na0.5NbO3等)。近年来,双钙钛矿氧化物作为一种新型的无机材料,在光伏材料、发光材料、光催化等领域显现出瞩目的应用前景,然而,在光致变色领域,无机双钙钛矿氧化物还鲜有相关报道,在双钙钛氧化物中实现明显的光致变色现象,即可以扩展无机光致变色材料的探索范围,为探索性能更好的无机光致变色材料提供了一个新的方向,又可以进一步扩大双钙钛矿氧化物的应用范围。
无机光致变色通常与空位缺陷诱导的色心的形成或者发色团中价电子跳变产生的电荷转移有关。其中色心的形成与材料中的氧空位含量密切相关。较大的氧空位缺陷含量有助于提高材料的光致变色性能。可以通过以下策略增加无机光致变色材料中的氧空位含量:(1)挥发元素的选择,如Ba2+、Mg2+、Ca2+等;(2)高合成温度。合成温度越高,蒸发的金属阳离子越多,为了维持电荷平衡,基质中的氧空位含量越高;(3)掺杂低价元素,然而并非是所有低价元素的掺杂都能实现氧空位的增加。
因此,为了解决上述问题,本文提出了一种双钙钛矿Ba2LaNbO6掺杂银离子光致变色陶瓷粉的制备方法。首先,Ba元素的存在可以产生更多阳离子缺陷,同时,铌酸盐通常需要较高的烧结温度,最后,选择银离子作为低价元素来作为掺杂元素。通过以上方法来增加双钙钛矿Ba2LaNbO6中的氧空位含量,从而在双钙钛矿氧化物中实现明显的光致变色现象。
发明内容
本发明的目的在于提供一种双钙钛矿Ba2LaNbO6掺杂银离子光致变色陶瓷粉的制备方法,利用高温固相烧结,以在双钙钛矿氧化物Ba2LaNbO6中实现明显的光致变色现象。
为实现上述技术目的,达到上述技术效果,本发明是通过以下技术方案实现:
一种双钙钛矿Ba2LaNbO6掺杂银离子光致变色陶瓷粉的制备方法,包括如下步骤:
S1:将高纯的BaCO3、La2O3、Nb2O5和Ag2O进行研磨混匀得到混合粉料A;
S2:将步骤S1所得混合粉料A置于温度为1350℃、空气气氛中高温烧结6h,自然冷却到室温后,研磨得到Ba2LaNbO6:Ag+光致变色陶瓷粉末;
进一步的,所述步骤S1中的混合粉料A中掺杂离子Ag+(Ag2O),浓度以mol百分比计,其中Ag+占1~4mol%。
进一步的,本发明制备的Ba2LaNbO6:Ag+原始状态为白色,当表面受到波长为365nm的紫外光照射一定时间后,受到辐照范围内的陶瓷粉表面区域将变成具有显著区分度的粉色。
本发明的有益效果:
本发明提出的一种双钙钛矿Ba2LaNbO6掺杂银离子光致变色陶瓷粉的制备方法,得到光致变色无机双钙钛矿Ba2LaNbO6:Ag+陶瓷粉;本发明Ba2LaNbO6:Ag+光致变色材料在紫外激发下具有优异的光致变色性能;通过低价Ag+离子掺杂解决无机双钙钛矿氧化物Ba2LaNbO6光致变色浅的问题:增加氧空位含量,从而有助于实现光致变色效应。同时扩展了无机光致变色材料的探索范围与双钙钛矿氧化物的应用范围。
本发明Ba2LaNbO6:Ag+光致变色陶瓷粉在经过365nm紫外灯的照射下能够快速地由白色变为深粉色,本发明Ba2LaNbO6:Ag+光致变色材料在紫外激发下具有优异的光致变色性能,在应用于信息存储和防伪标识等领域时具有优越的性能前景。
本发明中控制掺杂离子Ag+(Ag2O)的浓度以mol百分比计,可以实现对光致变色材料的优化调节,并提高了材料的稳定性和光致变色效果的可控性,从而获得更好的光致变色效果和性能。传统的光致变色材料在长期使用过程中存在稳定性问题,容易发生退色或失去光致变色能力。而通过掺杂银离子,可以增加双钙钛矿Ba2LaNbO6中的氧空位含量,提高材料的稳定性。氧空位的存在能够增强材料的电子传导性能,并减少电子的再组合速率,从而延长光致变色材料的使用寿命。
双钙钛矿Ba2LaNbO6掺杂银离子光致变色陶瓷粉具有广泛的应用潜力。防伪标识方面,该材料具有明显的颜色变化特性,可以用于制作防伪标记,提高产品的安全性和可辨识性;在传感器领域,该材料的光致变色特性可以用于制作光学传感器,实现对环境参数的快速检测和监测;在光学存储和显示材料方面,该材料可以用于制作高密度的光学存储介质和高分辨率的显示器件,提高存储和显示的效果。该材料不仅具有较高的热稳定性和使用寿命,还能实现明显的光致变色效果,为其在各个应用领域的推广提供了可靠的基础。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1所述Ba2LaNbO6、Ba2LaNbO6:1mol%Ag+、Ba2LaNbO6:2mol%Ag+、Ba2LaNbO6:4mol%Ag+光致变色材料的XRD图;
图2为实施例2所述Ba2LaNbO6、Ba2LaNbO6:1mol%Ag+、Ba2LaNbO6:2mol%Ag+、Ba2LaNbO6:4mol%Ag+光致变色材料分别在365nm紫外灯下照射2min前后的漫反射光谱;
图3为实施例3所述的Ba2LaNbO6:2mol%Ag+光致变色材料在365nm紫外灯下照射2min前样品的颜色;
图4为实施例3所述的Ba2LaNbO6:2mol%Ag+光致变色材料在365nm紫外灯下照射2min后样品的颜色。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
一种双钙钛矿Ba2LaNbO6掺杂银离子光致变色陶瓷粉的制备方法,具体步骤如下:
S1:将高纯的BaCO3、La2O3、Nb2O5和Ag2O进行研磨混匀得到混合粉料A;
S2:将步骤S1所得混合粉料A置于温度为1350℃、空气气氛中高温烧结6h,自然冷却到室温后,研磨得到Ba2LaNbO6:Ag+光致变色陶瓷粉末;
所述步骤S1中的原料BaCO3、La2O3、Nb2O5和Ag2O按2:1:1的化学计量比称量,混合粉料A中掺杂离子Ag+(Ag2O),浓度以mol百分比计,其中Ag+占1~4mol%;
本发明制备的Ba2LaNbO6:Ag+原始状态为白色,当表面受到波长为365nm的紫外光照射一定时间后,受到辐照范围内的陶瓷粉表面区域将变成具有显著区分度的粉色。
实施例1
如图1所示
将本申请获得的样品进行X射线衍射分析,得到X射线衍射图,如图1所示,从图中可以看出该系列样品掺杂不同浓度Ag+后的衍射峰均与Ba2LaNbO6标准卡片PDFNO.37-0856匹配,说明该系列样品均为Ba2LaNbO6相;
纯相表示样品中只存在这种化合物,这意味着该系列样品中Ag+离子成功进入Ba2LaNbO6晶格中,即不存在与Ba2LaNbO6不同的化合物或杂质,所以通过本申请获得样本取得的效果,能够准确评估Ba2LaNbO6:Ag+的特性和性质。
实施例2
如图2所示,探究了不同浓度Ag+掺杂对Ba2LaNbO6陶瓷粉光致变色性能的影响。
利用装有积分球的分光光度计(U-4100)测得不同Ag+离子掺杂Ba2LaNbO6陶瓷粉在365nm光照前后的漫反射光谱;
将本申请获得到样品通过365nm紫外光辐照2min,测得Ba2LaNbO6、Ba2LaNbO6:1mol%Ag+、Ba2LaNbO6:2mol%Ag+、Ba2LaNbO6:4mol%Ag+陶瓷粉变色前后的漫反射光谱,如图2所示,可以看出,样品在365nm紫外灯照射2min后,漫反射光谱在400nm-800nm范围内的强度降低,结果显示,掺杂2mol%Ag+离子后,Ba2LaNbO6:Ag+陶瓷粉变色效果最好。
实施例3
如图3、4所示
通过掩膜版的覆盖,在365nm紫外灯的照射下,可以实现光质变色图案的写入。
如图3所示为Ba2LaNbO6:Ag+陶瓷粉变色前的照片,陶瓷粉的颜色主要为白色。通过掩膜板遮盖,在365nm紫外灯的照射下,可以明显发现样品由白色变为粉色。
本发明所得的Ba2LaNbO6:Ag+陶瓷粉,其中烧结温度为1350℃时,烧结时间为6h,得到具有光致变色效应的无铅双钙钛矿氧化物,并且光致变色现象显示出响应速度快、对比度高的优点。说明具有光致变色特点的银离子掺杂的Ba2LaNbO6双钙钛矿氧化物在光开关、光存储以及光学探测器等方面具有广泛的应用前景。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (3)

1.一种双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法,其特征在于,包括如下步骤:
S1:将高纯的BaCO3、La2O3、Nb2O5和Ag2O进行研磨混匀得到混合粉料A;
S2:将步骤S1所得混合粉料A置于温度为1350℃、空气气氛中高温烧结6h,自然冷却到室温后,研磨得到Ba2LaNbO6:Ag+光致变色陶瓷粉末。
2.如权利要求1所述的银离子掺杂的双钙钛矿光致变色陶瓷粉的制备方法,其特征在于:所述步骤S1中的BaCO3、La2O3、Nb2O5按2:1:1的化学计量比称量,掺杂离子Ag+以mol百分比算,其中Ag+占1~4mol%。
3.如权利要求1所述的双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法,其特征在于:所述步骤S2中的Ba2LaNbO6:Ag+光致变色陶瓷粉末在365nm紫外灯的照射下实现快速的由白色变为粉色的过程。
CN202310866762.9A 2023-07-14 2023-07-14 一种双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法 Pending CN116903366A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310866762.9A CN116903366A (zh) 2023-07-14 2023-07-14 一种双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310866762.9A CN116903366A (zh) 2023-07-14 2023-07-14 一种双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法

Publications (1)

Publication Number Publication Date
CN116903366A true CN116903366A (zh) 2023-10-20

Family

ID=88364212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310866762.9A Pending CN116903366A (zh) 2023-07-14 2023-07-14 一种双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法

Country Status (1)

Country Link
CN (1) CN116903366A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053279A (ja) * 2011-09-06 2013-03-21 Kictec Inc 無機蛍光材料
CN103205253A (zh) * 2009-06-17 2013-07-17 中国科学院上海硅酸盐研究所 用于白光led的铌酸盐或钽酸盐荧光材料及其制备方法
CN108690612A (zh) * 2018-06-29 2018-10-23 陕西科技大学 一种以铌酸盐为基质的铕掺杂橙红色荧光粉及其制备方法
CN108753293A (zh) * 2018-06-29 2018-11-06 陕西科技大学 一种以铌酸盐为基质的白色荧光粉及其制备方法
CN114634816A (zh) * 2022-03-31 2022-06-17 成都大学 一种双钙钛矿荧光材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205253A (zh) * 2009-06-17 2013-07-17 中国科学院上海硅酸盐研究所 用于白光led的铌酸盐或钽酸盐荧光材料及其制备方法
JP2013053279A (ja) * 2011-09-06 2013-03-21 Kictec Inc 無機蛍光材料
CN108690612A (zh) * 2018-06-29 2018-10-23 陕西科技大学 一种以铌酸盐为基质的铕掺杂橙红色荧光粉及其制备方法
CN108753293A (zh) * 2018-06-29 2018-11-06 陕西科技大学 一种以铌酸盐为基质的白色荧光粉及其制备方法
CN114634816A (zh) * 2022-03-31 2022-06-17 成都大学 一种双钙钛矿荧光材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
Lin et al. Reversible modulation of photoenergy in Sm-doped (K 0.5 Na 0.5) NbO 3 transparent ceramics via photochromic behavior
Liu et al. Deep-red-emitting Mg2InSbO6: Mn4+ phosphors with a double-perovskite structure for plant-cultivation LEDs: synthesis and photoluminescence properties
Zhang et al. Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0. 5Bi2. 5Nb2O9 ferroelectrics
Komornicki et al. Structural, electrical and optical properties of TiO2–WO3 polycrystalline ceramics
Wang et al. Dual-mode optical ratiometric thermometer based on rare earth ions doped perovskite oxides with tunable luminescence
Lv et al. Reversible photoluminescence switching in photochromic material Sr 6 Ca 4 (PO 4) 6 F 2: Eu 2+ and the modified performance by trap engineering via Ln 3+(Ln= La, Y, Gd, Lu) co-doping for erasable optical data storage
CN106978175B (zh) 一类掺杂稀土元素的铋层状结构多功能材料及其制备方法
CN112071984A (zh) 一种基于稀土离子掺杂钙钛矿纳米晶体的深紫外光电探测器及其制备方法
Liu et al. Reversible up-conversion emission and photo-switching properties in Er doped (K, Na) NbO3 ferroelectrics
Yan et al. Creating dual-mode luminescence in piezoelectric calcium niobates through lanthanide-doped for anti-counterfeiting and temperature sensing
Perrella et al. Structural, electronic and photoluminescence properties of Eu3+-doped CaYAlO4 obtained by using citric acid complexes as precursors
Zhang et al. Phosphor SrZrO3: Sm3+ with fluorescence modulation and photochromic characteristics for erasable optical storage
CN115595153A (zh) Led用双钙钛矿型红色荧光粉、制备方法、应用
Tang et al. Rapid high-contrast reversible coloration of Ba 3 MgSi 2 O 8: Pr 3+ photochromic materials for rewritable light-printing
CN109401749B (zh) 一种无机可逆光致变色材料及其制备方法
Akiyama et al. Photochromism enhancement in reduced tridymite BaMgSiO4 by Fe-doping
Li et al. Near-infrared emission in perovskite oxides MZrO3: Bi (M= Ba, Sr) by dopants’ selective site occupancy
Wu et al. Effect of Ho addition on the optical and electrical properties of 0.98 KNN-0.02 SYT ceramics
CN114349505A (zh) Pr3+掺杂的陶瓷在双模式混合防伪中的应用及防伪光学器件
Wei et al. Engineering luminescence switching and photochromic performance in tungsten bronze oxides for handwriting display based on variable valence ion strategy
CN116903366A (zh) 一种双钙钛矿掺杂银离子光致变色陶瓷粉的制备方法
Wang et al. Simultaneous high transmittance and large tunability of up-conversion photoluminescence in Er3+ doped KNN-based ceramics
CN108624316B (zh) 基于稀土掺杂光致色变材料在x射线探测中的应用
CN114804871B (zh) 一种钨青铜基光致变色陶瓷材料及其制备方法
Li et al. Vitamin needed: Lanthanides in optoelectronic applications of metal halide perovskites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination